Abstract: Systems and methods are disclosed that provide an infrared-transmissive dome, such as for infrared imaging applications. For example, an infrared camera system includes a housing having a lens coupled to the housing and an infrared detector within the housing configured to receive infrared energy passing through the lens. An infrared-transmissive dome, coupled to the infrared camera system, includes a main body providing a hollow, hemispherical-shaped dome, with the main body made of an ultra-high molecular weight or a very-high molecular weight polyethylene material. The main body may have a wall thickness equal to or less than approximately 0.012 inches to allow infrared transmittance greater than approximately sixty five percent through the main body to the lens for infrared imaging in a wavelength range of approximately three to fourteen micrometers.
Type:
Grant
Filed:
March 11, 2010
Date of Patent:
December 9, 2014
Assignee:
FLIR Systems, Inc.
Inventors:
Theodore R. Hoelter, Barbara Sharp, Warn Burt, Robert Pietsch, Marcel Tremblay, Earl R. Lewis
Abstract: A method comprises receiving an image of the area, the image representing the area in a first color space; converting the received image to at least one second color space to produce a plurality of converted images, each converted image corresponding to one of a plurality of color sub-spaces in the at least one second color space; calculating upper and lower thresholds for at least two of the plurality of color sub-spaces; applying the calculated upper and lower thresholds to the converted images corresponding to the at least two color sub-spaces to segment the corresponding converted images; fusing the segmented converted images corresponding to the at least two color sub-spaces to segment the received image; and updating the segmentation of the received image based on edge density data in the received image.
Type:
Grant
Filed:
December 7, 2009
Date of Patent:
July 2, 2013
Assignee:
Honeywell International Inc.
Inventors:
Lalitha M. Eswara, Lokesh Rayasandra Boregowda
Abstract: A shaft, a circular plate portion and a cylindrical portion are integrally formed with one another through cutting operations to provide a rotor hub of a motor. An inner region on the lower surface of the circular plate portion is formed continuously with the outer peripheral surface of the shaft, and a hub thrust portion is provided in the inner portion so as to axially face a sleeve thrust portion on a sleeve main body. A stepped portion on the lower surface of the circular plate portion is disposed on the outer side of thrust dynamic pressure grooves on the sleeve thrust portion. In this manner, the stepped portion is disposed in a region where a thrust bearing portion is not provided, so that the hub thrust portion can be formed at a low cost in manufacturing the rotor hub by cutting.
Abstract: An image retrieval method and apparatus independent of an illumination change are provided. The image retrieval method involves: inputting a query image; detecting an illumination color from the query image and converting the illumination color into a standard illumination color; extracting color information of the query image by using color descriptors; and retrieving a similar image by comparing the extracted color information with color information of a database which converts a variety of images into images of standard illumination colors and extracts and stores the color information of the images in advance. According to the method, without changing the structures of color descriptors or a similarity comparison using color information, an image retrieval independent of illumination changes is enabled by adding only a preceding step of standard illumination conversion.
Type:
Grant
Filed:
November 27, 2002
Date of Patent:
October 31, 2006
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Sang-kyun Kim, Yang-lim Choi, Chang-yeong Kim, Du-sik Park
Abstract: This invention is a method for the non-invasive and safe testing of telecommunication and broadcast towers or other airwave or cable transmitting and receiving devices and related equipment using a calibrated infrared camera and computer, computer software, a color monitor or a color printer. This novel method of testing and determination of potential problem sites and failure prediction can be conducted from ground level and at some distance from the tower or device being tested, substantially reducing the risk of falling from extreme heights or being exposed to hazardous EMF fields, microwave or RF transmission waves, all of which are fatal or hazardous to health of the person conducting the testing.