Particular Fiber Orientation (e.g., Helically Wound, Etc.) Patents (Class 385/104)
  • Patent number: 10173286
    Abstract: Certain aspects of the present disclosure provide techniques and corresponding apparatus for making armored cables with one or more optical fibers contained therein. The techniques may be utilized to control an amount of excess fiber length (EFL) in the armored cables. The techniques may also allow introduction of one or more optical fibers directly into a welding process without using an inner tube in the final armored cable. The techniques may also be utilized to reduce friction and static charge on the optical fiber(s) as the fiber(s) are pushed through one or more guide tubes that protect the fiber(s) during the welding process.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: January 8, 2019
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Edward M. Dowd, Jason Scott Kiddy, Mary Margaret Sequino
  • Patent number: 10007079
    Abstract: An optical fiber unit includes: an optical fiber bundle formed by bundling a plurality of optical fibers; and a plurality of bundling members. Each of the bundling members is wound on an outer circumference of the optical fiber bundle along a length direction of the optical fiber bundle while a winding direction of the bundling member is reversed alternately, and joined with another bundling member at reverse sections where the winding direction of the bundling member is reversed. A region surrounded by a pair of the bundling members to be joined at the reverse sections includes a joining point at one of the reverse sections of another pair of the bundling members.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: June 26, 2018
    Assignee: FUJIKURA LTD.
    Inventors: Daiki Takeda, Naoki Okada, Masayoshi Yamanaka, Ken Osato, Tomoaki Kaji
  • Patent number: 9459422
    Abstract: A fiber optic cable includes a jacket forming a cavity therein, a stack of fiber optic ribbons located in the cavity, and a strength member embedded in the jacket. The jacket forms a ridge extending into the cavity lengthwise along the fiber optic cable. The ribbon stack is spiraled through the cavity such that corners of the ribbon stack pass by the ridge at intermittent locations along the length of the cable, where interactions between the ridge and the corners of the ribbon stack facilitate coupling of the ribbon stack to the jacket.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: October 4, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Eric John Mozdy, David Alan Seddon
  • Patent number: 9285246
    Abstract: An apparatus includes a reference fixture. The reference fixture includes a joint, and a joint tracker to track motion of the joint. The apparatus also includes a surgical instrument. A tether is connected between the joint and the surgical instrument. A shape sensor extends from the reference fixture through the joint, through the tether, and into the surgical instrument. The shape sensor is substantially free of twist. The joint tracker measures the motion of the joint. Information from the shape sensor in combination with information from the joint tracker provides absolute three-dimensional information relative to the reference fixture, i.e., provides absolute three-dimensional information in a fixed world reference frame.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 15, 2016
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Giuseppe M. Prisco, Theodore W. Rogers, Vincent Duindam, Myriam J. Curet, Catherine J. Mohr, Katherine D. Stoy
  • Patent number: 9158073
    Abstract: An optical fiber connector includes a fixing module, an optical fiber ferrule positioned at an end of the fixing module, and an optical fiber gripped in the fixing module. The optical fiber ferrule axially defines a through hole. An end surface of the optical fiber includes an arc surface. The optical fiber is received in the through hole of the optical ferrule.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 13, 2015
    Assignees: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Zhi-Ming Li, Le-Peng Wei
  • Patent number: 9116306
    Abstract: An optical fiber connector includes a fixing module and an optical fiber ferrule positioned at an end of the fixing module. The optical fiber connector is used for gripping a cable including an optical fiber. The optical fiber ferrule axially defines a through hole. The optical fiber is gripped in the fixing module and is partly protruded out of the optical ferrule. When the optical fiber connector is assembled to an adapter to join with another optical fiber connector, the optical fiber is bent to elastically resist an optical fiber of the another optical fiber connector.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 25, 2015
    Assignees: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Zhi-Ming Li, Le-Peng Wei
  • Patent number: 9025921
    Abstract: Embodiments of a method and apparatus for controlling the mechanical stabilization of an optical fiber are disclosed. The method may consist of placing an inflatable bladder between an optical fiber and a protective jacket. The bladder may be inflated with air, inert gas, or liquid to a desired pressure. The bladder may be sectioned to extend along part of or the entire length of the fiber. The bladder may isolate the optical fiber in a periodic fashion. The temperature of the material inside the bladder may vary axially along the optical fiber. Embodiments of the invention can stabilize the optical fiber by providing mechanical isolation from vibration and other perturbations. Embodiments of the invention can also alter Stimulated Brillouin Scattering (“SBS”) and Stimulated Raman Scattering (“SRS”) thresholds using either thermal or vibrational perturbations.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 5, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Benjamin R. Johnson
  • Patent number: 8989543
    Abstract: An optical cable comprises an optical fiber ribbon, a tension member and a sheath. The optical fiber ribbon is constructed by integrating a plurality of optical fibers arranged in parallel. The sheath is provided so as to surround the optical fiber ribbon. The sheath is used for protecting the optical cable. One optical fiber ribbon is arranged twistably within an inner space surrounded by the sheath.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: March 24, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yuya Homma, Itaru Sakabe, Kazuyuki Sohma
  • Patent number: 8983254
    Abstract: Fiber optic assemblies include subunit cables wrapped in binders. The assemblies have small cross sections and low bend radii while maintaining acceptable attenuation losses. Stranding of the subunit cables allows ease of access to the individual cables during installation.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 17, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Louis Alexander Barrett, Gerry Jay Harvey, H. Edward Hudson, Eric Raymond Logan
  • Patent number: 8965159
    Abstract: A method and structures are provided for implementing an impedance-matched, low inductance, 3-dimensional (3D) twisted-pair within a given dielectric material layer. A dielectric material layer is loaded with an electrically insulating metal spinel compound at a set loading level. Upon exposure to a focused laser beam, the spinel is converted to a metallic particle with an electrical conductivity suitable for various applications. An impedance-matched, low inductance, 3-dimensional (3D) twisted-pair is generated using a laser direct structuring process with a fine depth control achieved with a laser.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Matthew S. Doyle, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 8958673
    Abstract: Molded fiber optic cable furcation assemblies, and related fiber optic components, assemblies, and methods are disclosed. In one embodiment, an end portion of a fiber optic cable with a portion of a cable jacket removed to expose optical fibers and/or a cable strength member(s) therein and thereafter placing the cable into a mold for creating a molded furcation plug about the end portion of the fiber optic cable. The furcation plug may be overmolded about the end portion of the fiber optic cable. The molded furcation plug can be used to pull a fiber optic cable without damaging the optical fiber(s) disposed within the fiber optic cable. The molded furcation plug is advantageous since it manufactured with fewer parts, without epoxy, and/or without a labor intensive process that may be difficult to automate.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: February 17, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Timothy S. Cline, Terry L. Cooke, Tory A. Klavuhn, Mario L. Tooley
  • Patent number: 8938143
    Abstract: A branching device for enclosing a hybrid fan-out cable the hybrid fan-out cable comprising plural optical cables and power cables, the branching device includes: an enclosure having a first end, through which the hybrid fan-out cable is inserted, and a second end that is opened; and a gasket provided at the second end of the enclosure and having plural through-holes; and a cover thread-coupled to the second end of the enclosure to fasten the gasket to the second end of the enclosure in such a manner that the through-holes are exposed. In the enclosure, the hybrid fan-out cable is branched out into plural individual sub-part cable components, and each of the sub-part cable components is drawn out through one of the through-holes of the gasket to the outside. The gasket is formed from an elastic material which forms a tight seal between the inner peripheral surface of the enclosure and with the outer peripheral surface of each of the sub-part cable components to seal the other end of the enclosure.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: January 20, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mun-Hyun Do, Ho-Soon Lee, Jin-Soo Ahn, Won-Jung Bae
  • Patent number: 8938144
    Abstract: An optical fiber cable including, in a radial direction outward, a central strength member, a first layer of loose buffer tubes stranded around the central strength member, at least one of the loose buffer tubes of the first layer containing at least one light waveguide, an intermediate layer, a second layer of loose buffer tubes stranded around the intermediate layer, at least one of the loose buffer tubes of the second layer containing at least one light waveguide, and a jacket surrounding the second layer of loose buffer tubes, wherein the intermediate layer is formed of a material having a high coefficient of friction.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: January 20, 2015
    Assignee: Draka Comteq B.V.
    Inventors: Jan Hennink, Jean-Pierre Bonicel, Pascal Maria Willem Bindels
  • Patent number: 8909012
    Abstract: A hybrid cable includes a guide in the center of the cable, elements stranded side-by-side with one another around the guide, fiber optic elements including optical fibers, a metal armor, and a polymeric jacket of the cable surrounding the metal armor. The elements stranded side-by-side with one another around the guide include electrical-conductor elements, which themselves include stranded metal wires insulated in a jacket of the electrical-conductor elements. The electrical-conductor elements are round and have the same diameter as one another. Furthermore, the electrical-conductor elements are each within the range of 10 American wire gauge (AWG) to 1\0 AWG. The fiber optic elements may be included in or integrated with the group of elements stranded side-by-side with one another around the guide. The metal armor surrounds the elements stranded side-by-side with one another around the guide, and serves as a grounding conductor and an electro-magnetic interference shield.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 9, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: James Arthur Register, III, David Henry Smith
  • Patent number: 8897613
    Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: November 25, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8886000
    Abstract: A hybrid cable includes a cable jacket and elements stranded within the cable jacket. The elements include greater-capacity electrical-conductor elements and sub-assembly elements. The greater-capacity electrical-conductor elements include a metallic conductor jacketed in a polymer, each within the range of 10 American wire gauge (AWG) to 1\0 AWG. The sub-assembly elements include stranded combinations of sub-elements, where the sub-elements include at least one of polymeric tubes comprising optical fibers and lesser-capacity electrical-conductor elements, each having a lesser current-carrying capacity than 10 AWG. The sub-elements are stranded with respect to one another and additionally stranded as part of sub-assembly elements with respect to other elements.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 11, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: James Arthur Register, III, David Henry Smith
  • Patent number: 8879876
    Abstract: There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: November 4, 2014
    Assignee: Foro Energy, Inc.
    Inventors: Charles C. Rinzler, Mark S. Zediker
  • Patent number: 8879877
    Abstract: A fiber optic cable is provided having a at least one fiber element, a layer of aramid strength members, and a jacket disposed over said layer of aramid strength members. The layer of aramid strength members is wound at a lay length that is equal to or lesser than a predetermined bend radius.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: November 4, 2014
    Assignee: Nexans
    Inventors: David Keller, Christopher Raynor, Terry Gooch, Randie Yoder, Dan Rouse
  • Publication number: 20140314383
    Abstract: The present invention relates to an optical fiber cable net including: one elongated optical fiber cable having a front end portion repeatedly moved upward and downward from the lower end portion of the left side of a bee hive-like section along a line forming the bee hive-like section, the optical fiber cable being wound by a plurality of times onto pre-disposed portions where it meets the pre-disposed portions and being moved upward or downward, so that if the front end portion of the optical fiber cable reaches the lower end portion of the right side of the bee hive-like section, the front end portion of the optical fiber cable is sequentially passed through the respective net eyes of the right side of the bee hive-like section, the respective net eyes of the upper side thereof and the respective net eyes of the left side thereof.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Inventor: Hong Gi CHUN
  • Patent number: 8855454
    Abstract: The present invention relates to a bundled cable suitable for installation in multiple dwelling unit (MDU) applications. The bundled cable includes two or more binders stranded around multiple stranded cable units. The bundled cable not only maintains its integrity on a reel and during installation, but also reduces installation time.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: October 7, 2014
    Assignee: Draka Comteq, B.V.
    Inventors: Justin Elisha Quinn, Thomas Andrew Rasmussen, III
  • Publication number: 20140241677
    Abstract: A telecommunication cable includes at least one optical fibre unit surrounded by a low fire hazard halogen free polymeric inner sheath that is covered by and in contact with a peelable, environmentally resistant polymer outer sheath. At least two discrete strength members are embedded into the low fire hazard halogen free polymeric inner sheath. The cable is intended for outdoor and indoor use.
    Type: Application
    Filed: August 4, 2011
    Publication date: August 28, 2014
    Inventors: Ralph Sutehall, Martin Davies, Ian Dewi Lang, Jean-Pierre Bonicel
  • Patent number: 8805140
    Abstract: A method for connecting user devices to optical fiber units contained in an optical cable includes: providing an opening in a sheath of the optical cable to access the optical fiber units contained in the optical cable; extracting a segment of at least one optical fiber unit from the optical cable through the opening; inserting a free end of the extracted segment of optical fiber unit into a protection tube; making the protection tube slide on the extracted segment of optical fiber unit to insert an end portion of the protection tube, distal from the free end of the extract segment of the optical fiber unit, into the optical cable through the opening; positioning a closure element on the optical cable in correspondence of the opening so as to substantially realize a closure thereof; securing in a removable way the closure element to the optical cable and bringing the free end of the extracted segment of optical fiber unit in correspondence of a connection point of a user device.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: August 12, 2014
    Assignee: Prysmian S.p.A.
    Inventor: Arnaud Le Dissez
  • Publication number: 20140219618
    Abstract: Fiber optic assemblies include subunit cables wrapped in binders. The assemblies have small cross sections and low bend radii while maintaining acceptable attenuation losses. Stranding of the subunit cables allows ease of access to the individual cables during installation.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 7, 2014
    Applicant: Corning Optical Communications LLC
    Inventors: Louis Alexander Barrett, Gerry Jay Harvey, H. Edward Hudson, Eric Raymond Logan
  • Publication number: 20140219617
    Abstract: An optical cable includes an optical fiber ribbon core wire provided with an optical fiber having a core and a cladding that surrounds the core, a sheath that surrounds the optical fiber ribbon core wire, and a braid arranged inside the sheath. The braid is formed to include wires woven with each other. In the optical cable, the wire that forms the braid is pushed into the sheath so that the sheath is integrated with the braid.
    Type: Application
    Filed: January 28, 2014
    Publication date: August 7, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yuya HOMMA, Itaru SAKABE
  • Patent number: 8798418
    Abstract: An optical cable includes a buffer tube housing at least one optical fiber, a sheath surrounding such buffer tube and at least one longitudinal strength member embedded in the sheath, in which at least one separation element is provided between a portion of the outer surface of the buffer tube and the inner surface of the sheath, laying in an axial plane not containing the at least one strength member.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 5, 2014
    Assignee: Prysmian S.p.A.
    Inventors: Martin Davies, Simon James Frampton, Roger Pike, Ralph Sutehall
  • Patent number: 8750669
    Abstract: A rack cabling system including a rack having mounted thereon a first hardware component and a patch panel housing mounted on the rack adjacent the first hardware component. The patch panel housing populates no more than a three rack unit (RU space), the patch panel housing including a first end having cable pathway openings and a second end having connector elements mounted therein. The patch panel may have a first cable pathway opening located adjacent the first side of the housing and defining a primary position and a first connector element mounted on the second end and the first connector element having a first position corresponding to the primary position of the first cable pathway opening. Cable harnesses are routed with less than three bends of the cables between the first hardware component and the patch panel housing, so that the first cable harness is terminated at the first connector element in the first position.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 10, 2014
    Assignee: Methode Electronics Inc.
    Inventors: Michael R. Carter, David E. Hildreth, Robert C. Neumann, Tyler M. Miller
  • Patent number: 8737788
    Abstract: A multi-tight buffer fiber optic cable includes a first layer of tight buffer optical fibers and at least one second layer of tight buffer optical fibers surrounding the first layer of tight buffer optical fibers. A jacket surrounds the at least one second layer of tight buffer optical fibers, where the first layer of tight buffer optical fibers and the at least one second layer of tight buffer optical fibers are helically wound, and where the at least one second layer of tight buffer optical fibers are helically wound in the same direction as the first layer of tight buffer optical fibers and at substantially the same lay length.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: May 27, 2014
    Assignee: Nexans
    Inventors: David Keller, Randie Yoder, Dan Rouse, Chris Raynor, Woody Rhodes
  • Patent number: 8660392
    Abstract: Embodiments of the present disclosure disclose an optical cable and an optical cable system, where the optical cable includes an SZ-shaped optical cable skeleton and a plurality of optical fiber units. Skeleton slots is recessed in a periphery of the optical cable skeleton, and the plurality of optical fiber units is grouped and respectively disposed in the corresponding skeleton slots, thereby having the advantages of being easy to strip and draw, high reliability, and long lifetime. Moreover, the optical fiber does not need to be connected when being diverged on floors during installation, thereby reducing the fusion splicing/termination connection time, simplifying the optical cable wiring, greatly reducing deployment cost of an Optical Distribution Network (ODN), and speeding up the scale deployment of the FTTX ODN; in addition, interference among the optical fibers is avoided when the optical fibers are drawn, thereby increasing reliability of the optical fibers after installation.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 25, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wenxin Wu, De Li, Jun Zhao, Yunsheng Wen, Yanhua Xiong
  • Patent number: 8660393
    Abstract: Fiber optic cables and methods of manufacturing fiber optic cables are disclosed herein. According to one embodiment, a fiber optic cable includes a plurality of optical fibers. The fiber optic cable also includes strength material having a relatively long lay length, the strength material surrounding the plurality of optical fibers and a polymer jacket surrounding the strength material. Each of the optical fibers is configured to exhibit a bend-induced optical attenuation of less than or equal to about 0.5 dB when wrapped one turn around a 10 mm mandrel at a wavelength of 850 nanometers.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: February 25, 2014
    Assignee: Corning Cable Systems LLC
    Inventor: William Carl Hurley
  • Publication number: 20140029905
    Abstract: Fiber optic assemblies include subunit cables wrapped in binders. The assemblies have small cross sections and low bend radii while maintaining acceptable attenuation losses. SZ stranding of the subunit cables allows ease of access to the individual cables during installation.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: Louis Alexander Barrett, Gerry Jay Harvey, H. Edward Hudson, Eric Raymond Logan
  • Patent number: 8611713
    Abstract: An optical cable includes an optical fiber, a primary coating coated on the optical fiber, and an outer coating coated on the primary coating. The optical cable is spiral, and can be compressed or stretched. The outer coating comprises about 40 to 70 weight percent of caoutchouc, about 20 to 50 weight percent of neoprene, about 0 to 6 weight percent of magnesium oxide, about 0 to 6 weight percent of zinc oxide, and about 0 to 6 weight percent of vulcanization accelerator.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: December 17, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: I-Thun Lin
  • Patent number: 8582942
    Abstract: A fiber optic cable can comprise technology for mitigating stress on optical fibers of the cable. The technology can protect the optical fibers from compression, such as stemming from installation, deployment, or handling. The technology can compensate for thermally induced expansion and contraction of cable elements having differing thermal expansion characteristics, arising when the cable is subjected to temperature variations. The cable can comprise a central strength member onto which an elastomeric material, such as silicone, has been applied. The elastomeric material can protect optical fibers that are located between the central strength member and an outside jacket.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: November 12, 2013
    Assignee: Superior Essex Communications LP
    Inventor: Julie Anne Burnett
  • Patent number: 8582938
    Abstract: Fiber optic distribution cables and methods for manufacturing the same are disclosed. The fiber optic distribution cables present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. In one fiber optic distribution cable, a length of distribution optical fiber that is removed from the distribution cable and presented outward of the protective covering is longer than the opening at access location. In another embodiment, a demarcation point is provided for inhibiting the movement (i.e., pistoning) of the distribution optical fiber into and out of the distribution cable. In still another embodiment, an indexing tube is provided for indexing a tether tube within the indexing tube for providing the distribution optical fiber with a suitable excess fiber length. Additionally, other embodiments may include a fiber optic distribution cable having a dry construction and/or a non-round cross-section.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: November 12, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph T. Cody, Dennis M. Knecht, Christopher Paul Lewallen, James P. Luther
  • Patent number: 8571367
    Abstract: The invention relates to a fiber optic furcation assembly (1) which comprises an over-molded body (2) formed from a flexible material, having a first end (15) and an opposed second end (16), the first end (15) being adapted to receive a portion of a fiber optic distribution cable (3) having at least two optical fibers (7), and the second end (16) being adapted to receive a portion of at least one furcation cable jacket (13) sheathing at least one furcated optical fiber (7?) from the fiber optic distribution cable (3), at least one of the fiber optic distribution cable (3) and the furcation cable jacket (13) comprising reinforcement members (9, 12). To reduce the load of the optical fibers (7) within the furcation assembly at least a portion of the reinforcement members (9, 12) is anchored within the over-molded body (2) so as to transmit a load from the over-molded body via the anchored reinforcement members (9, 12) to the respective cable (3, 4).
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: October 29, 2013
    Assignee: Tyco Electronics Nederland BV
    Inventors: Theo Van Der Meulen, Paul Schneider, Frans Van Geijn
  • Patent number: 8565563
    Abstract: A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 3 mm?DO?5 mm.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 22, 2013
    Assignee: Corning Cable Systems LLC
    Inventor: James Arthur Register, III
  • Patent number: 8565564
    Abstract: An optical fiber cable for bundled drop applications has a plurality of optical fiber sub-units stranded together in an S-Z lay configuration and a jacket surrounding and holding the sub-units in the S-Z configuration without assistance from binder threads. The jacket contacts at least some of the sub-units and has one, but preferably at least two, longitudinally disposed grooves on an external surface. With at least two grooves, the sub-units are accessed by bending the cable until the jacket buckles between the grooves, cutting the jacket at the buckle, and peeling back a portion of the jacket longitudinally between the grooves.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: October 22, 2013
    Assignee: Prysmian Communications Cables and Systems USA, LLC
    Inventors: Jonathan Gerald Fitz, Ben H. Wells, Mauricio Silva
  • Patent number: 8494327
    Abstract: A fiber optic cable includes a plurality of optical fiber subunits, each of the subunits including four fiber optic elements and an enclosing jacket. A plurality of optical fiber subunit assemblies are also included, each of which includes a plurality of the optical fiber subunits and an enclosing micro-sheath. The subunits are stranded around one another. A sheath encloses the plurality of optical fiber subunit assemblies.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: July 23, 2013
    Assignee: Nexans
    Inventors: David Keller, Jeff Rosenquist
  • Publication number: 20130183013
    Abstract: It is disclosed a process for manufacturing a fiber optic overhead ground wire cable. The process comprising the following steps: providing an optical core; providing a reinforcing structure consisting of at least one layer of wires onto the optical core, at least part of the wires being clad with a first metallic material; extruding an outer layer onto the reinforcing structure, the outer layer being made of a second metallic material having a softening point substantially similar to the softening point of the first metallic material; and cooling the outer layer immediately after extruding.
    Type: Application
    Filed: July 19, 2010
    Publication date: July 18, 2013
    Applicant: PRYSMIAN S.P.A
    Inventors: Josep Martin Regalado, Josep Maria Batlle I Ferrer, Josep Oriol Vidal Casanas, Valentina Ghinaglia, Lluis-Ramon Sales Casals
  • Patent number: 8467645
    Abstract: An assembly of fiber optic elements includes at least two subunits, each of which has at least one fiber optic unit and a flat binder wrapped over the subunits into an arrangement. The at least two subunits are stranded in a S-Z arrangement at a first lay length and the binder is stranded over the subunits in a uni-directional helical lay at a second lay length. The payoff tension and the first lay length of the subunits, combined with a payoff tension and the second lay length of the binder are simultaneously sufficient to hold the subunits within the arrangement, while being loose enough to allow a single subunit to be removed without destroying the arrangement.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: June 18, 2013
    Assignee: Nexans
    Inventors: David Keller, Randie Yoder, Terry Gooch
  • Patent number: 8422843
    Abstract: A multi-fiber cable assembly includes a plurality of optical fibers and at least two fiber grouping members disposed in a reverse double helical configuration about the plurality of optical fibers. An outer jacket surrounds the fiber grouping members and the plurality of optical fibers.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 16, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8412012
    Abstract: An optical fiber cable includes an unbuffered optical fiber, a tensile reinforcement member surrounding the unbuffered optical fiber, and a jacket surrounding the tensile reinforcement member. The jacket is suitable for outside plant environment. A water blocking material is placed between the unbuffered fiber and the jacket. The unbuffered optical fiber comprises an ultra bend-insensitive fiber that meets the requirements of ITU-T G.657.B3 and exhibits an additional loss of less than approximately 0.2 dB/turn when the fiber is wrapped around a 5 mm bend radius mandrel. The optical fiber cable also exhibits an additional loss of less than approximately 0.4 dB/km at 1550 nm when the cable is subjected to ?20° C. outside plant environment.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: April 2, 2013
    Assignee: OFS Fitel, LLC
    Inventors: Stefan Jost, Elmar Staudinger, Peter A. Weimann
  • Publication number: 20130058614
    Abstract: Discrete bands (60) are applied to switchback regions (50) of stranded cable cores (10) to secure the stranded tubes (20) prior to jacketing. The bands (60) obviate the need for complex processes such as the application of binder threads.
    Type: Application
    Filed: October 31, 2012
    Publication date: March 7, 2013
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III, Richard Steven Wagman
  • Patent number: 8391663
    Abstract: A rack cabling system including a rack having mounted thereon a first hardware component and a patch panel housing mounted on the rack adjacent the first hardware component. The patch panel housing populates no more than a three rack unit (RU space), the patch panel housing including a front end having cable pathway openings and a rear end having connector coupler plates mounted therein. The patch panel may have a first cable pathway opening located adjacent the first side of the housing and defining a primary position and a first connector coupler plate mounted on the rear adjacent on the first side and the first connector plate having a first position corresponding to the primary position of the first cable pathway opening. Cable harnesses are routed with less than three bends of the cables between the first hardware component and the patch panel housing, so that the first cable harness is terminated at the first coupler plate in the first position.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: March 5, 2013
    Assignee: Methode Electronics, Inc.
    Inventors: Michael R. Carter, David E. Hildreth, Tyler M. Miller, Robert C. Neumann
  • Patent number: 8388242
    Abstract: A fiber optic cable assembly includes a connector and a fiber optic cable. The connector includes a housing having a first axial end and an oppositely disposed second axial end. A ferrule is disposed in the housing. A plurality of optical fibers is mounted in the ferrule. The fiber optic cable includes an outer jacket defining a fiber passage that extends longitudinally through the outer jacket and a window that extends through the outer jacket and the fiber passage. First and second strength members are oppositely disposed about the fiber passage in the outer jacket. A plurality of optical fibers is disposed in the fiber passage. The optical fibers are joined at splices to the optical fibers of the connector. A splice sleeve is disposed over the splices. The splice sleeve is disposed in the window of the outer jacket.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 5, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Patent number: 8380029
    Abstract: Fiber optic cable furcation methods and assemblies are disclosed, wherein the method includes removing an end portion of the cable outer jacket from the fiber optic cable to expose end portions of the micromodules contained within. The method also includes helically stranding the exposed micromodule end portions to form a stranded section having a stranded configuration that includes at least three turns and that substantially immobilizes the optical fibers within their respective micromodules. The method also includes arranging a maintaining member on at least a portion of the stranded section to maintain the stranded configuration.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Timothy S. Cline, William C. Hurley, Eric R. Logan
  • Patent number: 8380030
    Abstract: A bend-insensitive optical cable for transmitting optical signals includes an optical cable having a length, extending from an input end adapted to receive the optical signals, to an output end and including at least one single-mode optical fiber having a cable cut-off wavelength, of 1290 nm to 1650 nm. The at least one optical fiber is helically twisted around a longitudinal axis with a twisting pitch, for a twisted length, extending along at least a portion of the length, of the optical cable, wherein the twisted length and the twisting pitch are selected such that the optical cable exhibits a measured cut-off wavelength equal to or lower than 1260 nm. Preferably, the at least one fiber has a mode-field diameter of 8.6 ?m to 9.5 ?m. According to a preferred embodiment, the optical cable includes two optical fibers twisted together along the longitudinal axis, each of the two optical fibers having a cable cut-off wavelength of 1290 nm to 1650 nm.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 19, 2013
    Assignee: Prysmian S.p.A.
    Inventors: Marco Ruzzier, Francesco Sartori, Enrico Consonni, Daniele Cuomo
  • Patent number: 8374471
    Abstract: A cable, comprising a cylindrical cable wall (2) surrounding a hollow cable inner space (3), wherein the cable (1) is provided with at least one signal conductor (5), for instance glass fiber and/or glass fiber bundle, wherein, in a first position, the signal conductor (5) extends substantially in the cable inner space (3) and over a particular distance along the cable wall (2), along an at least partly curved path, such that a length of the signal conductor (5) is larger than a length of the cable wall (2).
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 12, 2013
    Assignee: Draka Comteq B.V.
    Inventor: Willem Griffioen
  • Patent number: 8369667
    Abstract: Downhole cables are described that are configured to protect internal structures that may be detrimentally impacted by exposure to the downhole environment, by protecting such structures by at least two protective layers. In some examples, the structures to be protected may be housed in a protective tube housed within the protective outer sheath. The described configuration enables the use of structures such as polymer fibers in the cables for strength and load-bearing capability by protecting the fibers, by multiple protective layers, from exposure to gases or fluids within a wellbore.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 5, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Lawrence Charles Rose
  • Patent number: 8363994
    Abstract: A fiber optic cable assembly includes an outer jacket defining a first passage and a second passage disposed adjacent to the first passage. The outer jacket includes a wall disposed between an outer surface of the outer jacket and the first passage. A plurality of optical fibers is disposed in the first passage. A reinforcing member is disposed in the second passage. An access member is disposed in the wall of the outer jacket.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: January 29, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8335417
    Abstract: A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of bend-resistant multimode optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of bend-resistant optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 3 mm?DO?5 mm.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: December 18, 2012
    Assignee: Corning Cable Systems LLC
    Inventor: James A. Register, III