Optical Transmission Cable Patents (Class 385/100)
-
Patent number: 11675151Abstract: A fiber splice closure for housing an optical connection between a distribution cable and at least one drop cable of an optical network includes a base and an insert. The base includes round drop cable ports configured to receive a drop cable containing a first optical fiber. Screw holes are arranged in a radial side wall of the drop cable ports and receive a fixing device to secure the drop cable. A round port receives a distribution cable containing a second optical fiber. A clamp secures the distribution cable to the base. An insert has first and second wrap guides that house excess first optical fiber.Type: GrantFiled: March 22, 2022Date of Patent: June 13, 2023Assignee: PPC BROADBAND FIBER LTD.Inventors: Shaun Trezise, Kim Leeson
-
Patent number: 11663439Abstract: A cable-tie carrier is disclosed herein that includes a chip holder with a recess cavity for holding an electronic chip and a cable that is removably attached to the chip holder. The electronic chip stores identification information or testing data that may be used to identify and track the part. External computing devices (e.g., smart phone, tablet, scanner) may access the stored identification information or testing data for a user. The electronic chip is fastened, magnetically attached, or stuck with adhesive to the chip holder to position a transmitter (or antenna) to face out of the recess cavity.Type: GrantFiled: July 16, 2019Date of Patent: May 30, 2023Assignee: SPM Oil & Gas Inc.Inventors: Ben Ward, Allen Eugene Gammel, Joshua Errett Wood
-
Patent number: 11603651Abstract: A distributed utility system includes water source supply lines capable of being placed in fluid communication with a separate water source, water discharge lines capable of being placed in fluid communication with a separate water discharge destination, a water source and destination control manifold to allow selected water source supply lines to be placed in fluid communication with selected water discharge lines, and a storm water collection and distribution system. The storm water system includes a storm water collection conduit and a collected storm water discharge line in fluid communication with the storm water collection conduit, and the storm water discharge line can be placed in fluid communication with the plurality of water discharge lines via the control manifold. The distributed utility system further includes a utility line disposed within at least one of the water source supply lines, water discharge lines and collected storm water discharge line.Type: GrantFiled: November 2, 2020Date of Patent: March 14, 2023Inventor: Matthew F. Russell
-
Patent number: 11579393Abstract: A fiber optic cable breakout assembly includes: a fiber optic cable including a plurality of first optical fibers and a first jacket surrounding the optical fibers; a breakout canister; a plurality of pigtail cords, each of the pigtail cords including a second optical fiber partially encased in a second jacket and an optical connector, each of the pigtail cords extending away from the canister, each of the optical fibers extending through the canister; and a flexible furcation tube attached to and extending between the fiber optic cable and the breakout canister, the furcation tube including an armored inner layer and a polymeric outer layer, wherein each of the first optical fibers is spliced to a respective second optical fiber within the inner layer of the furcation tube.Type: GrantFiled: March 16, 2021Date of Patent: February 14, 2023Assignee: CommScope Technologies LLCInventor: Nahid Islam
-
Patent number: 11567270Abstract: A pre-terminated end of a fiber optic cable has a protective cap that protects the optical fiber and the ferrule assembly at the terminal end. The protective cap has an attachment feature enabling a pull cord to attach to the protective cap. The protective cap has a body including an exterior surface and a receptacle formed in the body and configured to receive a portion of the fiber optic cable, and the attachment feature. The attachment feature includes a cavity formed in a tip of the body and at least two openings formed in the exterior surface of the body and connected to the cavity.Type: GrantFiled: August 13, 2021Date of Patent: January 31, 2023Assignee: Clearfield, Inc.Inventors: John P. Hill, Daniel J. Johnson
-
Patent number: 11561357Abstract: Telecommunications assemblies and modules incorporating demateable fiber optic connection interfaces for coupling non-ferrulized optical fibers.Type: GrantFiled: April 18, 2018Date of Patent: January 24, 2023Assignee: CommScope Connectivity Belgium BVBAInventors: Stefano Beri, Jan Watté, Danny Willy August Verheyden, David Jan Irma Van Baelen
-
Patent number: 11540719Abstract: Disclosed is an optical probe of an optical coherence tomography (OCT) system according to an exemplary embodiment of the present disclosure. The optical probe of the OCT system includes: an optical fiber receiving light generated from a light source and transferring the received light to a plurality of lenses and receiving light reflected from tissue from the plurality of lenses and transferring the received light to an optical coherence system; a plurality of lenses including a first lens positioned at a distal end of the optical fiber and a second lens positioned at a predetermined point in a longitudinal direction of the optical fiber; and a sheath capable of accommodating the optical fiber therein.Type: GrantFiled: November 28, 2017Date of Patent: January 3, 2023Assignee: DOTTER INC.Inventors: Yosuf Syed Ahmed, Juhyun Chung, Jong Woo Han, Hyung Il Kim
-
Patent number: 11494156Abstract: A cable connection information display system includes a cable having a first cable connector, and a first cable connection information display subsystem that is included on the cable adjacent the first cable connector. The first cable connection information display subsystem includes a first display device, and a first connection information receiving subsystem that is coupled to the first cable connector and the first display device. The first connection information receiving subsystem receives first connection information, which identifies at least a first computing device and a first port, via the first cable connector and from the first computing device that includes the first port that is connected to the first cable connector. The first connection information receiving subsystem then provides the first connection information for display on the first display device to identify the first computing device and the first port.Type: GrantFiled: July 22, 2021Date of Patent: November 8, 2022Assignee: Dell Products L.P.Inventors: Maunish Shah, Shree Rathinasamy, Joseph LaSalle White
-
Patent number: 11480749Abstract: A multicore fiber optic cable comprising of a central fiber having a central fiber outer diameter, a central fiber coating surrounding the central fiber outer diameter of the central fiber, the central fiber coating having a continuous spiraled groove around the central fiber outer diameter, a dual core optical fiber having a dual core optical fiber geometry, the dual core optical fiber spiraled around the central fiber coating and disposed within the spiraled groove such that the dual core optical fiber is wound around the central fiber coating in a spiral pattern and the central fiber core geometry and the dual core optical fiber geometry are oriented longitudinally to negate link path length difference; and an outer sheath surrounding the central fiber coating and the dual core optical fiber.Type: GrantFiled: January 28, 2021Date of Patent: October 25, 2022Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Mark Beranek, Jordan Hollady, John Diehl, Jason McKinney
-
Patent number: 11482351Abstract: A network apparatus includes a hybrid data/power cable further including a power conductor and a data conductor extending between a first end and a second end thereof, the first end of the hybrid data/power cable terminating with a first connector head. The first connector head includes a fuse element coupled in series with the power conductor of the hybrid data/power cable. A remote device is coupled to the second end of the hybrid data/power cable for receiving a data signal from the data conductor of the hybrid data/power cable and a DC voltage from the power conductor of the first hybrid data/power cable. The remote device includes a current-limiting circuit coupled in series with the power conductor of the first hybrid data/power cable to produce a DC voltage at an output of the current-limiting circuit. The remote device further includes a buck/boost converter coupled to the output of the current-limiting circuit for adjusting the DC voltage.Type: GrantFiled: September 29, 2020Date of Patent: October 25, 2022Assignee: Hewlett Packard Enterprise Development LPInventor: Stephen E. Horvath
-
Patent number: 11467363Abstract: A breakout device for mid-span fiber separation. First and second portions that each have a hollow interior space that defines a first part of a primary interior pathway and that defines a first part of a secondary interior pathway that branches away from the primary pathway. The first and second portions together bound the primary and secondary pathways. The first and second portions together define: a first entrance orifice, a second exit orifice and a third exit orifice. The first and second portions are configured to permit in-situ placement of the device upon elongated fibers. All the fibers extend through the first entrance orifice at the entrance to the primary pathway, a first group of the fibers extend through the second exit orifice at an exit from the primary pathway, and a second group of the fibers extend through the third exit orifice at an exit from the secondary pathway.Type: GrantFiled: June 10, 2021Date of Patent: October 11, 2022Assignee: Preformed Line Products Co.Inventors: Cameron Clines, Dan Levac, Matt Becker
-
Patent number: 11434687Abstract: The aim of the invention is to provide a rubber profiled safety strip or an elastic profiled safety strip which can carry out a signaling function. To this end a profiled safety strip (10) is provided for a door (15) of a transport means, wherein the profiled safety strip (10) contains an opaque elastic main part (11) in which at least one receiving region (17, 18) is formed, and in the at least one receiving region (17, 18) an insert strip (12, 31) is disposed, which contains at least one light source (13, 32) and is made of an elastic material that is at least partly transparent.Type: GrantFiled: May 18, 2018Date of Patent: September 6, 2022Assignee: Gummi-Welz GmbH & Co. KG Gummi-KunststofftechnikInventor: Horst Grein
-
Patent number: 11428885Abstract: There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.Type: GrantFiled: November 10, 2020Date of Patent: August 30, 2022Assignee: HIFI ENGINEERING INC.Inventors: John Hull, Neil Gulewicz, Robert Sokolowski, Oleksiy Pletnyov, Souheil Merhi, Philip Cheuk, Seyed Ehsan Jalilian
-
Patent number: 11415743Abstract: A multicore optical fiber includes two or more cores, a common interior cladding surrounding the two or more cores, and a common exterior cladding surrounding the common interior cladding. The common exterior cladding has a lower relative refractive index than the common interior cladding and reduces tunneling losses from the cores. The reduced tunneling loss allows placement of cores closer to the edge of the fiber, thus providing multicore optical fibers having higher core count for a given fiber diameter. Separation between cores is controlled to minimize crosstalk.Type: GrantFiled: March 3, 2021Date of Patent: August 16, 2022Assignee: Corning IncorporatedInventors: Ming-Jun Li, Gaozhu Peng
-
Patent number: 11409064Abstract: An optical communication cable is provided having a cable body with an inner surface defining a passage within the cable body and a plurality of core elements within the passage. A film surrounds the plurality of core elements, wherein the film directs a radial force inward onto the plurality of core elements to restrain and hold the plurality of core elements in place.Type: GrantFiled: January 11, 2021Date of Patent: August 9, 2022Assignee: CORNING OPTICAL COMMUNICATIONS LLCInventors: Michael Emmerich, Warren Welborn McAlpine, Guenter Wuensch
-
Patent number: 11391903Abstract: It is disclosed a method for coupling an optical fiber to a fiber optic cable, the fiber optic cable comprising a sheath surrounding an optical core comprising a buffer tube, the optical fiber being loosely contained in the buffer tube. The method comprises: cutting the sheath for a predetermined length thereof and exposing a corresponding portion of the optical core extending outward beyond a butt of the cut sheath; cutting the buffer tube of the exposed optical core and exposing a portion of the optical fiber; using a blocking tube to at least partially surround a section of the exposed portion of the optical fiber; and injecting a sealant into the blocking tube to lock the optical fiber within the blocking tube and couple the optical fiber to the fiber optic cable.Type: GrantFiled: March 5, 2021Date of Patent: July 19, 2022Assignee: PRYSMIAN S.P.A.Inventors: Ralph Sutehall, Patrick Briggs
-
Patent number: 11360281Abstract: An intermittent tape core wire (140) of an optical fiber cable is assembled into a cable core so that in a k core wire, an l core wire, and an m core wire composed of a multi-core optical fibers continuously adjacent in the width direction of the intermittent tape core wire (140), a difference ? between a core wire twisting direction D2km of the k core wire at a bonding portion (142) connecting the k core wire and the l core wire and a core wire twisting direction D2kl of the k core wire at a bonding portion (142) connecting the k core wire and the m core wire is different from when manufactured.Type: GrantFiled: July 2, 2019Date of Patent: June 14, 2022Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATIONInventors: Masashi Kikuchi, Yusuke Yamada, Hisashi Izumita, Junichi Kawataka, Kazunori Katayama
-
Patent number: 11340414Abstract: An optical fiber cable including a central strength member, a first plurality of tight-buffered ribbon stacks, a binder film, and a cable sheath. The central strength member extends along a longitudinal axis of the optical fiber cable. The tight-buffered ribbon stacks are SZ-stranded around the central strength member. An interstitial space is provided between adjacent tight-buffered ribbon stacks. A binder film continuously and contiguously surrounds the first plurality of tight-buffered ribbon stacks along the longitudinal axis. The binder film includes first portions and at least one second portion. Each of the at least one second portion of the binder film extends into one of the interstitial spaces of the first plurality of tight-buffered ribbon stacks. The cable sheath continuously and contiguously surrounds the binder film along the longitudinal axis, and the cable sheath is coupled to the first portions of the binder film.Type: GrantFiled: June 30, 2020Date of Patent: May 24, 2022Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATIONInventors: Bradley Jerome Blazer, Julian Latelle Greenwood, III, Warren Welborn McAlpine, David Alan Seddon
-
Patent number: 11339613Abstract: Composite cables suitable for use in conjunction with wellbore tools. One cable may include a polymer composite that includes dopants dispersed in a polymer matrix and continuous fibers extending along an axial length of the cable through the polymer matrix, wherein the cable is characterized by at least one of the following: (1) at least a portion of the cable having a density greater than about 2 g/cm3, wherein at least some of the dopants have a density of about 6 g/cm3 or greater, (2) at least a portion of the cable having a density less than about 2 g/cm3, wherein at least some of the dopants have a density of about 0.9 g/cm3 or less, (3) at least some of the dopants are ferromagnetic, or (4) at least some of the dopants are hydrogen getters.Type: GrantFiled: August 5, 2020Date of Patent: May 24, 2022Assignee: Halliburton Energy Services, Inc.Inventors: Sean Gregory Thomas, Michael Fripp
-
Patent number: 11327259Abstract: A multichip package may include at least a package substrate, a main die mounted on the package substrate, a transceiver die mounted on the package substrate, and an optical engine die mounted on the package substrate. The main die may communicate with the transceiver die via a first high-bandwidth interconnect bridge embedded in the package substrate. The transceiver die may communicate with the optical engine die via a second high-bandwidth interconnect bridge embedded in the package substrate. The transceiver die has physical-layer circuits that directly drive the optical engine. An optical cable can be connected directly to the optical engine of the multichip package.Type: GrantFiled: December 7, 2017Date of Patent: May 10, 2022Assignee: Intel CorporationInventors: Peng Li, Joel Martinez, Jon Long
-
Patent number: 11320620Abstract: Embodiments of a bundled optical fiber cable are provided. Included therein is a central cable unit spanning a first length from a first end to a second end. The central cable unit has a first plurality of optical fibers disposed within a cable jacket. The bundled optical fiber cable also includes at least one optical fiber drop cable wound around the cable jacket of the central cable unit. Each optical fiber drop cable spans a second length from a first end to a second end. Further, each optical fiber drop cable includes one or more optical fibers disposed within a buffer tube. The first end of each optical fiber drop cable is substantially coterminal with the first end of the central cable unit, and the first length spanned by the central cable unit is longer than the second length spanned by each of the optical fiber drop cables.Type: GrantFiled: December 15, 2020Date of Patent: May 3, 2022Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATIONInventors: Ryan Everette Frye, Corey Scott Keisler, James Arthur Register, III, Benjamin Gray Whitener, Christopher L. Willis
-
Patent number: 11322904Abstract: An optical amplifier is provided in which adjacent ones of a plurality of cores each containing a rare-earth element and included in an amplifying multi-core optical fiber (MCF) serve as coupled cores at an amplifying wavelength, a connecting MCF is connected to the amplifying MCF, a pump light source is connected to the connecting MCF, and the pump light source pumps the rare-earth element in the amplifying MCF through the connecting MCF.Type: GrantFiled: October 11, 2018Date of Patent: May 3, 2022Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Takemi Hasegawa, Hirotaka Sakuma, Tetsuya Hayashi
-
Patent number: 11268984Abstract: A system and method for forming a low cost optical sensor array. The sensor includes an optical fiber; a first nanocomposite thin film along at least a portion of the optical fiber for interrogating a first parameter through a correlated signal having a first wavelength; and a second nanocomposite thin film along at least a portion of the optical fiber for interrogating a second parameter through a correlated signal having a second wavelength different from the wavelength of the first parameter.Type: GrantFiled: April 17, 2019Date of Patent: March 8, 2022Assignee: United States Department of EnergyInventors: Chenhu Sun, Ping Lu, Ruishu Wright, Paul R Ohodnicki
-
Patent number: 11262515Abstract: An optical fiber cable includes a core that includes an assembled plurality of optical fibers; an inner sheath that accommodates the core therein, a pair of tension members that are embedded in the inner sheath and that are disposed on opposite sides of the core, and an outer sheath that covers the inner sheath. The inner sheath is formed with a dividing portion that divides an inner peripheral surface and an outer peripheral surface of the inner sheath in a circumferential direction. The dividing portion extends along a longitudinal direction in which the optical fiber cable extends.Type: GrantFiled: November 17, 2017Date of Patent: March 1, 2022Assignee: FUJIKURA LTD.Inventors: Masatoshi Ohno, Shinnosuke Sato, Mizuki Isaji, Kouji Tomikawa, Akira Namazue, Ken Osato
-
Patent number: 11248969Abstract: A method is provided for determining temperature changes of an optical fibre having Fiber Bragg Grating (FBG) patterns provided in at least one portion (Portion 1) of the optical fibre. The optical fibre is connected between a first detector arrangement and a second detector arrangement. Light is emitted into the optical fibre in a first direction from the first detector arrangement, which receives reflections from the FBG patterns of the emitted light. The reflections are processed for determining a current temperature change related to the optical fibre. On the basis of predetermined criteria, light is emitted into the optical fibre in an opposite second, direction from the second detector arrangement. The second detector arrangement receives reflections from the FBG patterns of the light emitted in the second direction and the reflections are processed for determining a current temperature change related to the optical fibre.Type: GrantFiled: February 7, 2019Date of Patent: February 15, 2022Assignee: SAAB ABInventors: Roy Josefsson, Daniel Eckerstroem
-
Patent number: 11243365Abstract: Methods for providing flammability protection for plastic optical fiber (POF) embedded inside avionics line replaceable units (LRUs) or other equipment used in airborne vehicles such as commercial or fighter aircrafts. A thin and flexible flammability protection tube is placed around the POF. In one proposed implementation, a very thin (100 to 250 microns in wall thickness) polyimide tube is placed outside and around the POF cable embedded inside an LRU or other equipment. The thin-walled polyimide tube does not diminish the flexibility of the POF cable.Type: GrantFiled: November 16, 2018Date of Patent: February 8, 2022Assignee: The Boeing CompanyInventors: Dennis G. Koshinz, Eric Y. Chan, Tuong K. Truong, Henry B. Pang, Kim Quan Anh Nguyen
-
Patent number: 11221450Abstract: The present disclosure relates to systems and method for deploying a fiber optic network. Distribution devices are used to index fibers within the system to ensure that live fibers are provided at output locations throughout the system. In an example, fibers can be indexed in multiple directions within the system. In an example, fibers can be stored and deployed form storage spools.Type: GrantFiled: August 21, 2020Date of Patent: January 11, 2022Assignee: CommScope Technologies LLCInventors: Paul Kmit, Thomas Parsons, Erik J. Gronvall, Douglas C. Ellens, Panayiotis Toundas, Timothy G. Badar, Trevor D. Smith, Thomas G. LeBlanc, Todd Loeffelholz
-
Patent number: 11215777Abstract: An optical fiber cable includes a central tube having a first inner and a first outer surface. The first inner surface defines a bore along a longitudinal axis of the cable. Optical fibers are disposed within the bore of the central tube. A cable jacket is disposed around the central tube. The cable jacket has a second inner and a second outer surface defining a first thickness. A skin layer is disposed around the cable jacket. The skin layer has a third inner and a third outer surface defining a second thickness that is 100 ?m or less. The cable jacket material is different from the skin layer material, and the third outer surface defines the outermost surface of the optical fiber cable. Access sections made of the second material extend from the skin layer into the first thickness of the cable jacket.Type: GrantFiled: July 21, 2020Date of Patent: January 4, 2022Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATIONInventors: George Cornelius Abernathy, James Arthur Register, III
-
Patent number: 11209594Abstract: A fiber optic cable includes a plurality of fusion spliced optical fibers, with a polymeric overcoating extending over a fusion splice region as well as over a stripped section of each optical fiber proximate to the fusion splice region, wherein the plurality of fusion spliced optical fibers has a non-coplanar arrangement at the fusion splice region. A method for fabricating a fiber optic cable includes fusion splicing first and second pluralities of optical fibers arranged in a respective one-dimensional array to form a plurality of fusion spliced optical fibers, and contacting the fusion splices as well as stripped sections of the fusion spliced optical fibers with polymeric material in a flowable state. Either before or after the contacting step, the method further includes altering a position of at least some of the spliced optical fibers to yield a configuration in which the plurality of fusion spliced optical fibers have a non-coplanar arrangement at the fusion splice region.Type: GrantFiled: February 3, 2021Date of Patent: December 28, 2021Assignee: Corning IncorporatedInventor: Qi Wu
-
Patent number: 11204473Abstract: An optical fiber drop cable. The optical fiber drop cable includes at least one optical fiber and at least one inner tensile element wound around the at least one optical fiber having a laylength of at least 200 mm. The optical fiber drop cable also includes an interior jacket disposed around the at least one inner tensile element and an exterior jacket having an inner surface and an outer surface. The optical fiber drop cable further includes at least one outer tensile element disposed between the interior jacket and the outer surface of the exterior jacket. Each of the at least one outer tensile element has a laylength of at least 1 m. The exterior jacket includes at least one polyolefin, at least one thermoplastic elastomer, and at least one high aspect ratio inorganic filler. The exterior jacket has an averaged coefficient of thermal expansion of no more than 120(10?6) m/mK.Type: GrantFiled: June 3, 2020Date of Patent: December 21, 2021Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATIONInventors: Xiaole Cheng, Jason Clay Lail
-
Patent number: 11199675Abstract: The present disclosure relates to indexing cables for use in building fiber optic networks using an indexing architecture. In certain examples, fan-out structures are used. Certain types of indexing cables have one or more branch cable sections at each end. Certain types of indexing cables have multiple interface cable sections at one or both ends.Type: GrantFiled: June 18, 2020Date of Patent: December 14, 2021Assignee: CommScope Connectivity Belgium BVBAInventor: Olivier Hubert Daniel Yves Rousseaux
-
Patent number: 11181709Abstract: Provided is a manufacturing method of an optical fiber ribbon for manufacturing an intermittent-connection-type optical fiber ribbon including a connection part and a non-connection part. The manufacturing method includes: a release agent applying process of intermittently applying a release agent for preventing optical fibers from being bonded to each other with a connection resin in a longitudinal direction of the optical fibers in a state where the optical fibers are arranged in parallel; and a connection resin applying process of allowing the optical fibers in the state of being arranged in parallel to pass through a die for applying the connection resin around the optical fibers after the release agent applying process, and of curing the connection resin.Type: GrantFiled: January 17, 2019Date of Patent: November 23, 2021Assignee: SSUMITOMOM ELECTRIC INDUSTRIES, LTD.Inventors: Fumiaki Sato, Shigeru Suemori, Hiroki Ishikawa, Masahiko Ishikawa, Fumikazu Yoshizawa
-
Patent number: 11156793Abstract: A cable arrangement includes first and second optical fiber ribbons both having first ends terminated at a first multi-fiber optical connector. The first ribbon includes a drop fiber routed to a drop interface and indexed fibers having ends indexed at a first row of a second multi-fiber connector. The second ribbon includes fibers having ends terminated at the second multi-fiber connector (e.g., at a second row of the second multi-fiber connector).Type: GrantFiled: March 18, 2020Date of Patent: October 26, 2021Assignee: CommScope Technologies LLCInventors: Todd Loeffelholz, Timothy G. Badar
-
Patent number: 11145440Abstract: Methods of testing and installing fire-resistant coaxial cables are described. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.Type: GrantFiled: April 8, 2019Date of Patent: October 12, 2021Assignee: American Fire Wire, Inc.Inventor: William E. Rogers
-
Patent number: 11137564Abstract: The present disclosure relates to a hardened fiber optic fan-out arrangement including a fan-out housing. A plurality of fiber optic pigtails projects outwardly from the fan-out housing. The fiber optic pigtails have free ends including hardened de-mateable fiber optic connection interfaces. A fiber optic feeder cable also projects outwardly from the fan-out housing. The fiber optic feeder cable is optically coupled to the fiber optic pigtails.Type: GrantFiled: July 25, 2018Date of Patent: October 5, 2021Assignee: COMMSCOPE TECHNOLOGIES LLCInventors: Patrick Jacques Ann Diepstraten, Daniel Eduardo Herrera, Darren Craig Atkinson, Roman Kamenik, Emmanuel Alberto Altamirano Escobedo
-
Patent number: 11131812Abstract: A fibre optic connector is described the fibre optic connector comprising a threaded body; a tether strand spreader; a compression seal, when assembled the compression seal located between the tethered strand spreader and the threaded body; a threaded sealing block, connectable to the threaded body, when assembled forcing the tether strand spreader into the threaded body; a fibre terminator; and an elongated sheath connectable to the threaded body and at least partially covering the fibre terminator.Type: GrantFiled: October 29, 2019Date of Patent: September 28, 2021Assignee: Boxfish Research LimitedInventor: Benjamin Martin King
-
Patent number: 11131822Abstract: A breakout transition assembly including a plurality of optical fibers extending through a cable, a plurality of furcation tubes and a housing with a cable inlet and a furcation chamber. The cable, optical fibers and furcation tubes are fixed relative to the housing with a volume of hardened epoxy in the furcation chamber. The cable inlet includes a clearance that tapers between a first end and a second end. In another aspect, the breakout transition can also include a breakout holder comprising at least one guide, such that the plurality of furcation tubes are fixedly received in the at least one guide in the breakout holder, and the volume of hardened epoxy retains the breakout holder in an engaged position with the transition body.Type: GrantFiled: April 27, 2018Date of Patent: September 28, 2021Assignee: CommScope Technologies LLCInventors: Paula Lockhart, Clair Iburg
-
Patent number: 11131820Abstract: Various implementations of epoxy transitions for fiber optic modules are disclosed. As disclosed herein, a fiber optic module system may include a fiber optic module holding a plurality of multi-fiber adapters at a front of the fiber optic module, a multi-fiber cable, and an epoxy transition to transition the multi-fiber cable to a plurality of individual optical fibers inside the fiber optic module. The epoxy transition may be filled with an epoxy to secure the individual optical fibers inside the epoxy transition.Type: GrantFiled: May 13, 2020Date of Patent: September 28, 2021Assignee: Panduit Corp.Inventors: Thomas M. Sedor, Mark T. Sargis
-
Patent number: 11127512Abstract: The invention concerns a power cable suitable for providing power to and from a downhole tool situated within a borehole. The cable comprises at least one inner conductor comprising at least one first electrically conductive material, at least one inner insulating layer surrounding the inner conductor(s), comprising at least one electrically insulating material, an armour sheath surrounding the inner insulating layer(s) comprising at least one second electrically conductive material and at least one outer conducting layer surrounding, and electrically contacting, the armour sheath, comprising at least one third electrically conductive material.Type: GrantFiled: January 29, 2016Date of Patent: September 21, 2021Assignee: NEXANSInventors: Robin K. Sangar, Arne Martin Aanerud
-
Patent number: 11059747Abstract: A light diffusing optical fiber includes a glass core, a cladding, a phosphor layer surrounding the cladding, and a plurality of scattering structures positioned within the glass core, the cladding, or both. The phosphor layer includes two or more phosphors and is configured to convert guided light diffusing through the phosphor layer into emission light such that the color of the emission light has a chromaticity within a u?-v? chromaticity region on a CIE 1976 chromaticity space defined by: a first u?-v? boundary line and a second u?-v? boundary line that extend parallel to a planckian locus at a distance of ±0.02 Duv from the planckian locus, a third u?-v? boundary line that extends along an isothermal line for a correlated color temperature of about 2000 K, and a fourth u?-v? boundary line that extends along an isothermal line for a correlated color temperature of about 10000 K.Type: GrantFiled: March 28, 2018Date of Patent: July 13, 2021Assignee: Corning IncorporatedInventors: Stephan Lvovich Logunov, Manuela Ocampo
-
Patent number: 11047767Abstract: An optical fiber characteristic measurement device includes: a detector that detects Brillouin scattered light obtained by causing light to be incident on an optical fiber under test; a spectrum analyzer that obtains a Brillouin gain spectrum from the Brillouin scattered light; and a spectrum analyzing controller that: measures a characteristic of the optical fiber under test by analyzing the Brillouin gain spectrum to obtain a peak frequency of the Brillouin gain spectrum, and changes a frequency range used by the spectrum analyzer to obtain the Brillouin gain spectrum according to the peak frequency.Type: GrantFiled: October 16, 2019Date of Patent: June 29, 2021Assignee: YOKOGAWA ELECTRIC CORPORATIONInventor: Osamu Furukawa
-
Patent number: 11044014Abstract: The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.Type: GrantFiled: April 9, 2020Date of Patent: June 22, 2021Assignee: CommScope Technologies LLCInventors: Trevor D. Smith, Yu Lu, Wayne M. Kachmar
-
Patent number: 11029477Abstract: Provided is an optical fiber cable that is easier to be laid and enables higher-density packaging than an existing cable. This optical fiber cable is a slotless type optical fiber cable including: an optical unit formed by collecting and twisting a plurality of optical fibers or ribbons each formed by arranging the plurality of optical fibers; a cable core housing the optical unit; and a cable jacket provided around the cable core, and a tension member made of a fiber body within the cable core.Type: GrantFiled: March 19, 2018Date of Patent: June 8, 2021Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Fumiaki Sato, Yoshiaki Nagao, Ryoei Oka, Ken Takahashi, Takao Hirama
-
Patent number: 11022769Abstract: The present invention relates to a pre-terminated (pre-terminated) optical fibre cable assembly (10,90), which is configured to be installed through a duct (20). The pre-terminated optical fibre construction (10,90) includes at least one optical fibre (46). A protective sleeve (26) is added to the optical fibre (46) before adding a terminal connector (24) to the leading end of at least one optical fibre (46). The protective sleeve (26) extends from behind the terminal connector (24) along part of the length of the optical fibre (46). When the cable is installed through a duct, the protective sleeve protects the portion of the fibre that protrudes from the end of the duct, for example in a communications cabinet (16). A residual length (28) of the protective sleeve remains within the duct. Terminal connectors and protective sleeves can be applied at both ends of the cable assembly, or only one end.Type: GrantFiled: February 7, 2018Date of Patent: June 1, 2021Assignee: EMTELLE UK LIMITEDInventor: Eben Colin Kirkpatrick
-
Patent number: 11016256Abstract: A flame-retardant optical cable is disclosed which includes a polymeric central loose tube housing optical fibres, a metallic armour surrounding the polymeric central loose tube, and a multi-layered sheath surrounding and in direct contact with the metallic armour. The multi-layered sheath includes an inner layer, an intermediate layer, and an outer layer, all made of a LSoH flame-retardant material. The LSoH flame-retardant material of the intermediate layer has a limiting oxygen index (LOI) higher than the LOI of the LSoH flame-retardant material of the inner layer and of the outer layer. Such cable has improved flame-retardant properties, particularly in terms of slowing flame propagation, heat release, droplets and emission of smokes, when it is exposed to flames during fire.Type: GrantFiled: October 30, 2017Date of Patent: May 25, 2021Assignee: PRYSMIAN S.P.A.Inventors: Zekeriya Sirin, Baris Soenmez
-
Patent number: 11002934Abstract: A fiber optic connection assembly for fiber to the home, comprising: a fan-out member; a multi-fiber optical cable having a first end introduced into the fan-out member and a second end extending out of the fan-out member; a multi-fiber optic connector connected to the second end of the multi-fiber optical cable; a plurality of single-fiber optical cables each having a first end introduced into the fan-out member and spliced with a respective one of fibers of the multi-fiber optical cable and a second end extending out of the fan-out member; and a plurality of single-fiber optic connectors connected to the second ends of the single-fiber optical cables, respectively; a plurality of first fiber optic adapters mated with the plurality of single-fiber optic connectors, respectively; and a plurality of outer shields each constructed to receive the connector and the adapter of a respective single-fiber optical cable therein, wherein the outer shield is hermetically fitted on the connector and the adapter of the reType: GrantFiled: September 20, 2017Date of Patent: May 11, 2021Assignee: CommScope Telecommunications (Shanghai) Co. Ltd.Inventors: Zhengbin Wang, Wenyong Fan, Jianfeng Jin, Xin Tian, Liming Wang
-
Patent number: 10998977Abstract: A system includes (i) an optical link including multiple spans of optical fiber and multiple network elements and (ii) at least one switch configured to reverse a direction that at least one of the network elements communicates over the optical link.Type: GrantFiled: May 18, 2018Date of Patent: May 4, 2021Assignee: Neptune Subsea IP LimitedInventor: Herve A. Fevrier
-
Patent number: 10996413Abstract: A fire-resistant optical fibre cable includes a core having a central strength member and buffer tubes arranged around the central strength member. Each buffer tube contains optical fibres. A mica layer is arranged around the core. A glass yarn layer surrounds and is in direct contact with the mica layer. Metal armour surrounds the glass yarn layer. A multi-layered sheath surrounds and is in direct contact with the armour. The sheath includes a first layer, a second layer surrounding and in contact with the first layer, and a third layer in a radial inner position with respect to the first layer and in direct contact thereto. The first, second and third layers are made of LS0H flame-retardant material. The LS0H material of the first layer has an LOI higher than the LOI of the LS0H material of the second and third layers. The second layer is the cable outermost layer.Type: GrantFiled: March 19, 2020Date of Patent: May 4, 2021Assignee: Prysmian S.p.A.Inventors: Zekeriya Sirin, Baris Sönmez, Can Altingoz
-
Patent number: 10983295Abstract: An optical cable comprising an optical core and an external sheath surrounding the optical core, wherein the external sheath comprises an inner layer circumferentially enclosing the optical core and an outer layer circumferentially enclosing the inner layer and comprising at least one longitudinal cavity accessible from outside the external sheath and extending through at least a portion of the outer layer thickness. The inner and outer layers of the external sheath are made of a first material having a first tensile strength, while the cavities in the outer layer are filled with a second material having a second tensile strength lower than the first tensile strength.Type: GrantFiled: July 11, 2017Date of Patent: April 20, 2021Assignee: PRYSMIAN S.p.A.Inventors: Ralph Sutehall, Martin Vincent Davies, Ian Dewi Lang
-
Patent number: 10921539Abstract: An optical fiber includes an integrated detector in the form of phosphors that emit light of a characteristic frequency or wavelength in response to leakage, through the fiber cladding, of light having an interrogation wavelength ?1. Stimulation of phosphor emission by the interrogation light is indicative of aging or wear on the layers surrounding the cladding, and therefore can be used to assess the risk of imminent breakage of the fiber.Type: GrantFiled: July 28, 2015Date of Patent: February 16, 2021Inventor: Joe Denton Brown