Plural Unit Type (plural Complete Cables Within A Single Outside Sheath) Patents (Class 385/106)
  • Patent number: 6866933
    Abstract: The invention relates to a pigmented cable jacket comprising a polymer composition which comprises a multimodal polyolefin, preferably polyethylene, and pigment composition comprising a color pigment wherein a blend of said pigment composition and said polymer composition is showing an average diameter of spherulites as determined according to the dissolution-recrystallization method which is at most 50% lower, more preferred at most 30% lower and still more preferred at most 10% lower than the average diameter of spherulites in the non-blended polymer composition as determined according to the dissolution-recrystallization method.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: March 15, 2005
    Assignee: Borealis Technology Oy
    Inventors: Ruth Dammert, Magnus Nilsson, Magnus Persson
  • Publication number: 20040264896
    Abstract: An optical fiber includes a first core having a relative refractive index difference of larger than 0.36%, and a cladding. The optical fiber has fiber cut-off wavelength &lgr;c of more than 1350 nm, cable cut-off wavelength &lgr;cc of less than 1285 nm, bending loss at a wavelength of 1625 nm of not more than 10 dB/km when wound at a diameter of 20 mm, transmission loss at a wavelength range of 1285 to 1625 nm of not more than 0.40 dB/km, transmission loss at a wavelength of 1383 nm less than transmission loss at a wavelength of 1310 nm, and difference in transmission loss at a wavelength of 1383 nm of not more than 0.04 dB/km before and after exposure to hydrogen. The lower bending loss of the optical fiber provides an optical fiber cable for use in a WDM transmission in wavelength range of 1285 to 1625 nm.
    Type: Application
    Filed: June 21, 2004
    Publication date: December 30, 2004
    Applicant: The Furukawa Electric Co., Ltd.
    Inventors: Fumio Takahashi, Hideya Moridaira, Taeko Shibuta
  • Patent number: 6819861
    Abstract: A beam collecting device and a laser emission device are disclosed incorporating a laminated optical waveguide array and refraction means therein. The laminated optical waveguide array is composed of a plurality of plate-like optical waveguides made of a material having a predetermined refractive index and a plurality of spacer members having a lower refractive index than that of said optical waveguides and arranged alternately with said optical waveguides. The spacer members take the form of cylindrical members, spherical members or plate-like members. The beam collecting device and laser emission device comprise a semiconductor laser array having a plurality of laser emitting parts arranged in fast and slow axis directions, the optical waveguide array, optical fibers and a collective lens. The laser emitting parts are divided into plural groups separated in the slow axis direction.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: November 16, 2004
    Assignee: Toyoda Koki Kabushiki Kaisha
    Inventors: Hiromichi Ota, Yoshinobu Katoh, Yasuo Niino
  • Publication number: 20040190842
    Abstract: One embodiment is a fiber optic cable including at least one subunit, a tube, a plurality of strength members, and a cable jacket. The subunit includes a fiber optic ribbon and a sheath, wherein the sheath is tight-buffered about the fiber optic ribbon, thereby inhibiting buckling of the ribbon during temperature variations. The tube houses at least a portion of the at least one subunit to form a tube assembly. The plurality of strength members are disposed radially outward of the tube and are surrounded by the cable jacket. Other embodiments include a plurality of subunits in a stack with each subunit having a sheath for security purposes. Additionally, a tube assembly can have a fiber optic packing density of about 0.05 or greater.
    Type: Application
    Filed: March 31, 2003
    Publication date: September 30, 2004
    Inventors: Brian K. Rhoney, Samuel D. Nave, James A. Register, William M. Hobbs, Jill D. McPeak, Roderick S. Bayliss
  • Patent number: 6788858
    Abstract: A bundle tube type optical cable is disclosed. A bundle tube type optical cable comprises: a bundle of optical fiber tubes being arranged in the middle portion of the optical cable and each containing at least two optical fiber cores loosely arranged therein; a first water-blocking layer protecting the optical fiber cores in the optical fiber tube from external moisture by a water-blocking material filled in the inner space of the tube; an inner shell made of aluminum material enclosing the bundle of optical fiber tubes with a predetermined gap; a second water-blocking layer protecting the optical fiber tubes from external moisture by the water-blocking material filled in the inner space of the inner shell; and an outer sheath made of plastic material enclosing the outer surface of the inner shell.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: September 7, 2004
    Assignee: LG Cable Ltd.
    Inventors: Euy-don Park, Byung-gon Lee, Jin-cheol Ahn, Yon-soo Ahn
  • Publication number: 20040170364
    Abstract: A fiber optic ribbon having a first subunit and a second subunit. The first and second subunits including a plurality of respective optical fibers being connected by respective primary matrices. The first and second subunits being generally aligned along a plane with a secondary matrix contacting portions of the first and second subunits. The secondary matrix having at least one end portion and at least one medial portion. The at least one medial portion and the at least one end portion of the secondary matrix are separated by a gap along at least a portion of the longitudinal axis, thereby defining a preferential tear portion. In other embodiments, the at least one medial portion is recessed relative to the at least one end portion.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 2, 2004
    Inventors: David W. Chiasson, Carl M. Whisnant, Craig M. Conrad, Karen E. Williams, Rodney D. Cline, Terry L. Ellis, Bradley J. Blazer
  • Patent number: 6768845
    Abstract: An optical cable has a plurality of one-groove spacers 3 which are twisted in one direction around a central member 1. Anti-tensile elements 2 are arranged in the central portion of the central member 1. Each one-groove spacer having a single groove which is linear lengthwise and substantially square in cross section and holding a stack of a plurality of optical fiber ribbons 4. The inner width and the height of the side walls of the groove of the one-groove spacer are set greater than the diagonal length of the stack. Therefore, the transmission loss becomes reducible because the contact portions of the optical fiber ribbons with respect to the side walls of the grooves vary in the longitudinal direction, thus preventing a specific number of optical fibers from being continuously subjected to edgewise pressure.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: July 27, 2004
    Assignees: Sumitomo Electric Industries, Ltd., Nippon Telegraph and Telephone Corporation
    Inventors: Yoshiyuki Suetsugu, Hiroki Ishikawa, Hideyuki Iwata
  • Publication number: 20040120665
    Abstract: A unitized fiber optic cable 10 includes a plurality of unit cables 20, each of which also includes a plurality of tight buffered optical fibers 30. The unit cables 20 aid in segregating and identifying individual tight buffered optical fibers 30. Strength members, such as aramid fibers 14 can be located between the unit cables 20 and the outer cable jacket 12, instead of being located within the unit cables 20. Relatively thin unit jackets 22 can be made of a material that will not stick to the tight buffer or tight buffer layers 32 on the optical fibers 30, so aramid fibers 14 need not be located between the unit jacket 22 and the tight buffered optical fibers 30. The unit jacket 22 can be a highly filled polymer that can be the same polymer used in the tight buffer or tight buffer layer 32. The unit jacket 22 need not be a load bearing member.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: William C. Hurley, Martyn N. Easton
  • Patent number: 6738547
    Abstract: A composite cable unit having an optical sub-unit including at least one optical fiber, and an electrical sub-unit including at least one electrical conductor for power or transmission. The optical and electrical sub-units are removably connected together by a common jacket material. The composite cable unit can be used singly or in, for example, fan-out or break-out cables.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: May 18, 2004
    Assignee: Corning Cable Systems LLC
    Inventor: John A. R. Spooner
  • Patent number: 6707972
    Abstract: An optical test cable has a number of independent optical fibers bundled in a cable between two break out ends beyond which the individual fiber strings extend color coded with optical connectors installed on their ends. The optical connectors are covered with dust caps. During a measurement cycle, a technician may alternately use the independent fibers to couple a light-metering device to tested optical connectors. Providing a number of fibers allows the technician to change from one fiber to the next rather than having to polish the output face of the cable's optical connector at the testing site. The optical connectors at one end of the test cable are configured for attaching to the metering device. The optical connectors at the opposing end are either configured for attaching to a number of adapters or for direct attaching to varying standards the tested optical connectors.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: March 16, 2004
    Assignee: Westek Electronics, Inc.
    Inventor: Kevin B. Larkin
  • Patent number: 6697710
    Abstract: A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: February 24, 2004
    Assignee: California Institute of Technology
    Inventor: Brian Wilcox
  • Patent number: 6671440
    Abstract: A flexible innerduct structure is configured to contain a cable within a conduit. The innerduct structure includes a pair of adjacent strip-shaped layers of flexible material that are joined along their longitudinal edges to define a channel through which the cable can extend longitudinally through the innerduct structure between the layers. The adjacent layers have differing widths between their longitudinal edges, whereby the wider layer bulges away from the narrower layer to impart an open configuration to the channel. Other features of the innerduct structure relate to the material of which it is formed. Such features includes the structure of the material, such as a woven structure, and further include properties such as melting point, tensile strength, elongation, coefficient of friction, crimp resistance and compression recovery.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: December 30, 2003
    Assignee: Milliken & Company
    Inventor: David Drew Morris
  • Patent number: 6647186
    Abstract: The optical fiber cable includes an assembly of at least two flexible tubes accommodating optical fibers, a sheath enveloping the assembly of tubes, and at least one filamentary form strength member at the periphery of the assembly of tubes. The tubes preferably extend in the sheath in a helical or an SZ assembly. The tubes are stuck together. The sheath is preferably made of polyethylene and the tubes are preferably made of polyvinyl chloride (PVC) or a thermoplastics elastomer with diol flexible segments. In this method, when extruding the sheath around the tubes, the temperature at which the material of the sheath is extruded is adjusted to cause the tubes to stick together.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: November 11, 2003
    Assignee: Alcatel
    Inventor: Vincent Bourget
  • Patent number: 6636673
    Abstract: A fiber optic interconnect cable having at least one optical fiber ribbon surrounded by a cable jacket with substantial hoop strength, the cable jacket having a top wall, a bottom wall, and sidewalls. The sidewalls being thicker than the top and bottom walls. The jacket being formed of a material having a hardness for cable performance characteristics, the hardness being between a Shore A hardness of about 85 and a Shore D hardness of about 70. Other embodiments include a core formed as a generally rod-shaped structure with a plurality of slots formed in an outer surface thereof. The plurality of slots extending generally lengthwise along the core and an outer jacket surrounding the core. At least one interconnect ribbon cable is disposed in at least one of the slots.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: October 21, 2003
    Assignee: Corning Cable Systems LLC
    Inventors: James A. Register, III, Samuel D. Navé, Martyn Easton
  • Patent number: 6636686
    Abstract: A fiber optic light-emitting panel having one or more braided fiber optic strand assemblies formed into a light-transmitting device. The fiber optic light-emitting panel includes a plurality of three or more fiber optic strands braided together to form a braided fiber optic strand assembly. Each of the fiber optic strands includes a single optical fiber or a plurality of optical fibers to form a bundle. Each of the fiber optic strands within the braided fiber optic strand assembly has at least three (3) bends per inch along the length thereof for transmitting light laterally at the bends to form the light-transmitting device. The fiber optic light-emitting panel includes plastic ties for connecting at least two (2) of the braided fiber optic strand assemblies to form the fiber optic light-emitting panel.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: October 21, 2003
    Inventor: Bruce D. Belfer
  • Patent number: 6618527
    Abstract: A fiber optic cable includes a buffer tube, a plurality of ribbons of optical fibers extending through the buffer tube and a grease layer disposed between at least one pair of adjacent ribbons. The grease layer includes a base component and a plurality of agglomerates formed filler particles, such as silica particles. The major dimension of the majority of the agglomerates is advantageously less than 100 microns in order to reduce microbending of the optical fibers and the resulting attenuation of the signals propagating along the optical fibers. The fiber optic cable can also include a filling compound that is disposed within the buffer tube and surrounds the optical fibers and that is also formed of a base component and a plurality of agglomerates, the majority of which similarly have a major dimension of less than 100 microns.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: September 9, 2003
    Assignee: Corning Cable Systems LLC
    Inventors: Jason C. Lail, Catharina L. Tedder
  • Publication number: 20030161596
    Abstract: A fiber optic interconnect cable embodiment having at least one optical fiber ribbon surrounded by a cable jacket with substantial hoop strength, said cable jacket having top and bottom walls and sidewalls, said sidewalls being thicker than said top and bottom walls. The jacket being formed of a material having a hardness for cable performance characteristics, a preferred material hardness for the jacket material is a Shore A hardness of about 85 to a Shore D hardness of about 70. The fiber optic interconnect cable having a total vertical free space between the inner walls and the at least one optical ribbon of about 1.7 mm±25%. A fiber optic cable embodiment comprises a core formed as a generally rod-shaped structure and having a plurality of slots formed in an outer surface of the core and extending generally lengthwise therealong, an outer jacket of tubular form surrounding the core, and at least one interconnect ribbon cable disposed in each of the slots of the core.
    Type: Application
    Filed: December 26, 2000
    Publication date: August 28, 2003
    Inventors: James A. Register, Samuel D. Nave, Martyn Easton
  • Patent number: 6603908
    Abstract: A buffer tube design that allows easy access to signal carrying fibers disposed within the buffer tube with risk of damaging the signal carrying fibers. The buffer tube can be made with a ripcord disposed within. Additionally, the buffer tube has the mechanical properties that allow the ripcord to be pulled through the tube wall with less energy than is required to bend the signal carrying fibers within. The buffer tube can also be designed without a ripcord in such a way that the mechanical properties allow the tube to be hand torn using a lower amount of energy than required to bend the signal carrying fibers within.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: August 5, 2003
    Assignee: Alcatel
    Inventors: George John Dallas, Jeff Barker, Goeff Witt
  • Patent number: 6591046
    Abstract: A method is disclosed for protecting optical fibers embedded in the armor of a tow cable. The method includes the steps of winding a resin-impregnated fiber onto a stainless steel tube, and curing the resin to form a hard protective filament shell around the stainless steel tube. The fiber is a continuous fiber and the step of impregnating is either in combination with the step of winding or prior to the step of winding. The fiber used is any one of a carbon fiber, a Kevlar™ fiber, a boron fiber or the like. The winding is either applied during formation of the steel tube or subsequent to formation of the steel tube. The method further comprises the step of winding galvanized steel armor wires of a predetermined diameter around the tow cable core to form the tow cable and helixing the protected tube amongst the galvanized steel armor wires.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: July 8, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas R. Stottlemyer
  • Patent number: 6574400
    Abstract: A fiber optic cable (10) having a cable core (20) includes fiber optic cable components in the form of buffer tubes (23), a binder (26), and strength members (31). Cable core (20) includes a series of stripes (38) that comprise a mixture of adhesive and water absorbent substances. The water absorbent substance of stripes (38) is operative to swell and thereby block the flow of water in cable (10). Stripes (38) are made by the sequential coating of the adhesive and the water absorbent substances onto the cable whereby the water absorbent substance is propelled into interstices between the cable components. FIGS. 2 and 4.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: June 3, 2003
    Assignee: Corning Cable Systems LLC
    Inventor: Jason C. Lail
  • Patent number: 6546176
    Abstract: An optical fiber cable core includes a buffer tube containing at least one optical fiber and reinforced by at least two substantially radially incompressible longitudinal strength members, each strength member having surface portions radially outermost with respect to the tube axis which are at or protrude from the exterior surface of the buffer tube. If the strength members protrude from the exterior surface of the buffer tube, less than 50%, and preferably less than 20%, of the outer surface of the strength members protrudes from the exterior surface of the buffer tube. The positions of the strength members can be readily determined, can be visible and can be easily removed from the buffer tube prior to slitting the buffer tube to achieve midspan access.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: April 8, 2003
    Assignee: Pirelli Cable Corporation
    Inventors: Aaron M. Anderson, Ben H. Wells, Roger Vaughn
  • Publication number: 20030035635
    Abstract: An air blown fiber tube cable having improved thermal stability in contrast to conventional air blown fiber (ABF) tube cables and within which one or more air blown optical fiber units can be installed. The air blown fiber tube is formed from a cross-linked polyolefin (preferably cross-linked high density polyethylene) comprising at least one non-polymer filler material having a coefficient of thermal expansion less than the coefficient of thermal expansion of said tube.
    Type: Application
    Filed: August 13, 2001
    Publication date: February 20, 2003
    Inventors: Scott M. Chastain, Terri L. Dixon, Glenn M. Gregrich, Keith Quistorff, Brett W. Schultz
  • Patent number: 6512870
    Abstract: The invention relates to a device and a method for removing the residual torsion in the optical fiber ribbons of an optical fiber cable of the type used in the telecommunications industry. The cable (1) comprises a central core, a plurality of substantially helical grooves located in the central core, a plurality of optical fiber ribbons (11) located inside the grooves, and an outer protective sheathing. An intermediate portion of the cable, having a fixed length, comprises respective intermediate uncut portions of exposed ribbons which have been freed from the central core and the protective sheathing. The device comprises a spool (20) adapted to be wound up with at least some of the exposed ribbon. When the ribbons are wound onto the spool, the portions of the ribbons dowstream from the spool are free from residual torsion.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: January 28, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Saverio Ciciriello, Fabrizio Caroti
  • Publication number: 20020186939
    Abstract: A fiber optic cable comprising an optical ribbon (20), a jacket (40), and a buffer material (30) between the optical ribbon (20) and the jacket (40). Buffer material (30) includes at least one volume of buffer material defining a stress-cushioning zone (32) between optical ribbon (20) and jacket (40), the stress-cushioning zone being operative to substantially decouple jacket (40) from ribbon (20) in the region of the stress-cushioning zone (32) thereby inhibiting the application of stress to optical ribbon (20). Buffer material (30) includes at least one volume of material at an intermediate buffer zone (35) held substantially tight against an intermediate portion (25) of optical ribbon (20) for inhibiting the twisting of optical ribbon (20). The volume of material at the stress-cushioning zone (32) is substantially larger than the volume of the buffer material of the intermediate buffer zone (35).
    Type: Application
    Filed: August 2, 2002
    Publication date: December 12, 2002
    Inventors: Daniel J. Rutterman, Ronald D. Schiefer
  • Patent number: 6487346
    Abstract: Described is an optical cable or cable element with a plurality of optical waveguide elements which are stranded together and each consist of several optical waveguides, collected into a bundle, and of a plastic covering surrounding the bundle with a maximum free space of 0.1 mm, and of a non-compressible filling compound filling the intermediate spaces between the optical waveguides, and with a layer of longitudinally aligned glass or plastic fibers surrounding the optical waveguide elements and with an extruded outer jacket of a polymer, the outer jacket compressing the layer radially.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: November 26, 2002
    Assignee: Alcatel
    Inventor: Klaus Nothofer
  • Patent number: 6480653
    Abstract: The invention relates to an optical fiber cable including an outer sheath containing a plurality of optical fibers separated into at least two optical fiber modules, each of said modules consisting of a module sheath surrounding a respective group of optical fibers. According to the invention, the module sheath is formed by a film of plastics material. The film is, for example, wrapped widthwise around the group of optical fibers, a first face of the film being superposed on and fixed to a second face of the film over a portion of given width of said film.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: November 12, 2002
    Assignee: Alcatel Cable
    Inventors: Jean-Pierre Hulin, Jean-Pierre Bonicel
  • Publication number: 20020146222
    Abstract: An optical fiber cable (10) type comprises at least one tube (12) having optical fibers (14) housed therein. The optical fibers (14) extend helically in a longitudinal direction inside the tube (12). In the method of the invention, the tube (12) is fed to the die for manufacturing the cable (10) by unreeling the tube (12) from the storage reel (24) while the storage reel (24) is held stationary, thereby conferring longitudinal twist on the tube (12) constraining the optical fibers (14) it contains to follow a helical path of pitch substantially equal to the length of one turn of the tube (12) wound on the storage reel (24).
    Type: Application
    Filed: April 8, 2002
    Publication date: October 10, 2002
    Applicant: ALCATEL
    Inventors: Serge Pouilly, Hubert Prunayre, Alain Lavenne, Vincent Bourget, Alain Avrons
  • Patent number: 6453097
    Abstract: Embodiments of the invention include an optical fiber minicord cable and a communication system employing the minicord cable. The optical fiber minicord cable includes a buffered optical fiber having a first strength layer formed around the buffered optical fiber, a first fire resistant jacket formed around the first strength layer, a second strength layer formed around the first fire resistant jacket, and a second fire resistant jacket formed around the second strength layer. The first and/or second fire resistant jackets are made of a fluoropolymer such as poly(vinylidene fluoride) (PVDF) or poly(vinyl chloride) (PVC), including PVDF Solef® 32008 and low smoke poly(vinyl chloride) (LSPVC) Apex® 910. The first and/or second strength layers are made of, e.g., polyaramid yarns such as Kevlar® and Nomex®. The buffered optical fibers typically have conventional structure, with the buffer region made of a suitable material such as nylon (e.g.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: September 17, 2002
    Assignee: Fitel USA Corp.
    Inventors: Wayne McCall Newton, Carla Green Wilson
  • Patent number: 6449412
    Abstract: A fiber optic cable comprising an optical ribbon (20), a jacket (40), and a buffer material (30) between the optical ribbon (20) and the jacket (40). Buffer material (30) includes at least one volume of buffer material defining a stress-cushioning zone (32) between optical ribbon (20) and jacket (40), the stress-cushioning zone being operative to substantially decouple jacket (40) from ribbon (20) in the region of the stress-cushioning zone (32) thereby inhibiting the application of stress to optical ribbon (20). Buffer material (30) includes at least one volume of material at an intermediate buffer zone (35) held substantially tight against an intermediate portion (25) of optical ribbon (20) for inhibiting the twisting of optical ribbon (20). The volume of material at the stress-cushioning zone (32) is substantially larger than the volume of the buffer material of the intermediate buffer zone (35).
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: September 10, 2002
    Assignee: Corning Cable Systems LLC
    Inventors: Daniel J. Rutterman, Ronald D. Schiefer
  • Patent number: 6442316
    Abstract: The present invention is a fiber optic cable which uses pressure sensitive films or tactile films in order to detect areas on a fiber optic cable where excessive loads have been applied or experienced. In the present invention, a plurality of strips of tactile film or pressure sensitive film are inserted, at regular intervals, throughout the fiber optic cable structure in a fashion similar to that of swellable tape. The tactile film or pressure sensitive film used can be any color-changing stress sensor which is formed in the shape of a flat strip. The present invention uses strips of tactile or pressure sensitive film of different widths which are inserted periodically throughout the cable, both circumferentially and along the length of the cable. The films are located between the buffer tube(s) and the outer jacket of the cable or between the fibers and the outer jacket of the cable. This intermittent use decreases the overall cost and weight of the cable, over using a continuous length of tactile film.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: August 27, 2002
    Assignee: Alcatel
    Inventors: Mike Rossi, Nicholas V. Nechitailo
  • Patent number: 6438299
    Abstract: An assembly that includes a fiber-containing structure that contains a plurality of optical fibers and a furcation tube assembly that includes a plurality of loose tube optical fiber cables. Each of the loose tube optical fiber cables includes a hollow inner tube; a support structure that includes strength members, the support structure surrounding the hollow inner tube; and, a protective jacket surrounding the support structure. The assembly further includes a heat shrink tube that joins the fiber-containing structure and the furcation tube assembly and a protective tube surrounded by the heat shrink tube and disposed in surrounding relationship to the furcation tube assembly. The support structure extends in a first direction between an outer surface of the fiber-containing structure and an inner surface of the protective tube proximate a first end of the protective tube.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: August 20, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Gair D. Brown, Robert A. Throm, Yancy T. Jeleniewski
  • Patent number: 6424768
    Abstract: A cable comprising a stress-bearing matrix extending substantially through the length of the cable; and a plurality of conducting elements extending substantially through the length of the cable, the plurality of said conducting elements being located within and spaced from one another by said stress-bearing matrix, wherein at least one of the plurality of conducting elements is in intimate contact with a low friction liner disposed about the at least one of the plurality of conducting elements and the at least one of the conducting elements is longitudinally movable relative to the stress-bearing matrix.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: July 23, 2002
    Assignees: W. L. Gore & Associates, Inc., W. L. Gore & Associates, GmbH
    Inventors: David Booth, Herbert Grunsteudel, Michael Hoffmann, John David Smith
  • Patent number: 6424770
    Abstract: In an optical cable with a cable core composed of a multiplicity of strand elements and an outer sheath layer, the strand elements have a multiplicity of bundles arranged loosely in a first sheath. The bundles are composed of a multiplicity of unstranded optical waveguides running parallel to each other, which are tightly encircled by a second closely thin-walled sheath.
    Type: Grant
    Filed: January 6, 2000
    Date of Patent: July 23, 2002
    Assignee: Alcatel
    Inventor: Klaus Nothofer
  • Publication number: 20020081082
    Abstract: The present invention is a fiber optic cable which uses pressure sensitive films or tactile films in order to detect areas on a fiber optic cable where excessive loads have been applied or experienced. In the present invention, a plurality of strips of tactile film or pressure sensitive film are inserted, at regular intervals, throughout the fiber optic cable structure in a fashion similar to that of swellable tape. The tactile film or pressure sensitive film used can be any color-changing stress sensor which is formed in the shape of a flat strip. The present invention uses strips of tactile or pressure sensitive film of different widths which are inserted periodically throughout the cable, both circumferentially and along the length of the cable. The films are located between the buffer tube(s) and the outer jacket of the cable or between the fibers and the outer jacket of the cable. This intermittent use decreases the overall cost and weight of the cable, over using a continuous length of tactile film.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Inventors: Mike Rossi, Nicholas V. Nechitailo
  • Publication number: 20020076178
    Abstract: An infrared imaging system (10) includes a catheter (11). The catheter is inserted into a small passageway, such as a blood vein (23), in order to collect infrared information from the vein. The information is refracted by at least one lens (32, 46, 52, 57, 63) in a collecting section (17, 45, 56, 61) of the catheter, and is imaged onto the ends (38) of an array of optical fibers (34). The fibers transmit the information to a relay lens (42), which images the information onto respective detector elements of an infrared detector (12). The infrared detector converts the information received from the relay lens into electrical information, which is transmitted to a circuit (13). The circuit generates electrical data that is transmitted to a display (16), which displays a visible image based on the infrared radiation emitted by the scene.
    Type: Application
    Filed: December 20, 2000
    Publication date: June 20, 2002
    Inventors: Paul Klocek, Douglas W. Anderson
  • Publication number: 20020076177
    Abstract: A fiber optic cable includes a core and a surrounding protective layer. The core includes an inner tube having one or more optical fibers contained therein, and the surrounding protective layer includes an outer tube received over the inner tube, and a layer of buffer material positioned between the outer tube and the inner tube. The buffer material maintains the inner tube generally centrally located within the outer tube and providing a mechanical link between the inner tube and the outer tube to prevent relative movement therebetween. The inner tube may be coated with a low hydrogen permeability material to minimize the entrance of hydrogen into the inner tube. The low hydrogen permeability material may be coated with a protective layer of hard, scratch resistant material to protect the integrity of the low hydrogen permeability material.
    Type: Application
    Filed: July 23, 1998
    Publication date: June 20, 2002
    Inventors: JEFFREY A. BONJA, DOUGLAS A. NORTON, CHRISTOPHER J. CHESTNUT, ROBERT A. RUBINO
  • Patent number: 6377738
    Abstract: An optical fiber cable core includes a buffer tube containing at least one optical fiber and reinforced by at least two substantially radially incompressible longitudinal strength members, each strength member having surface portions radially outermost with respect to the tube axis which are at or protrude from the exterior surface of the buffer tube. If the strength members protrude from the exterior surface of the buffer tube, less than 50%, and preferably less than 20%, of the outer surface of the strength members protrudes from the exterior surface of the buffer tube. The positions of the strength members can be readily determined, can be visible and can be easily removed from the buffer tube prior to slitting the buffer tube to achieve midspan access.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: April 23, 2002
    Assignee: Pirelli Cable Corporation
    Inventors: Aaron M. Anderson, Ben H. Wells, Roger Vaughn
  • Patent number: 6366725
    Abstract: An optical cable for routing in sewers, with a cable core and a metallic cladding (5) encircling the cable core in which the cable core is composed of several stranding elements (3) which have a sheath (2) in which several optical waveguides (1) are accommodated, wherein each stranding element (3) comprises a bundle of plural optical waveguides (1) running parallel to each other and unstranded or stranded with large pitch, each bundle is encircled by a sheath (2) which fits closely around the bundle, and plural such stranding elements (3) are stranded to the cable core with the cable core being built up exclusively from such bundles.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: April 2, 2002
    Assignee: Alcatel
    Inventors: Alexander Weiss, Marta Garcia, Stefan Richter
  • Publication number: 20020001441
    Abstract: A hybrid cable includes an optical fiber and a multifilament twisted and drawn or swaged electrical conductor. According to one embodiment, the filaments of the multifilament twisted and drawn or swaged electrical conductor are twisted about the optical fiber and then drawn through one or more dies or swaged. In a second embodiment, a metal tube is drawn through one or more dies, an optical fiber is provided in the tube, and then the tube is drawn again with the optical fiber contained therein to result in a drawn filled tube having a central optical fiber. The drawn filled tube is then used a central filament and a plurality of conductive filaments are twisted and about the central filament and the twisted assembly is then drawn or swaged to result in a hybrid cable. In a third embodiment, a multifilament twisted and drawn or swaged cable is formed with a central filament harder than the surrounding the filaments.
    Type: Application
    Filed: April 13, 1999
    Publication date: January 3, 2002
    Inventor: FRANCISCO J. AVELLANET
  • Patent number: 6329054
    Abstract: A cable-sheating composition and its use as outer sheath for a power cable or a communication cable are disclosed. The cable-sheating composition is a multimodal, preferably bimodal, mixture of olefin polymers, preferable ethylene plastics, having a density of about 0.915-0.955 g/cm3 and a melt flow rate of about 0.1-0.3 g/10 min, said olefin polymer mixture comprising at least a first and a second olefin polymer, of which the first has a density and a melt flow rate selected from (a) about 0.930-0.975 g/cm3 and about 50-2000 g/10 min and (b) about 0.88-0.93 g/cm3 and about 0.1-0.8 g/10 min.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: December 11, 2001
    Assignee: Borealis Polymers Oy
    Inventors: Laila Rogestedt, Hans-Bertil Martinsson, Markku Asumalahti, Jari {umlaut over (Aa)}rilä
  • Patent number: 6327767
    Abstract: The present invention relates to a method and apparatus for continuous manufacture of a fiber-optic cable. According to the method, single optical fibers of certain length are formed into a fiber-optic cable enclosed by a secondary sheath. Further, a certain length of the optical fibers is accumulated into an active buffer, and the end of an exhausting fiber is connected by a splice to the end of a new fiber, while the fiber is being fed into the process during the splicing operation from the buffer.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: December 11, 2001
    Assignee: NK Cables Oy
    Inventors: Timo Puhakka, Leevi Karvonen, Markku T. Suvanto
  • Patent number: 6321012
    Abstract: An improved optical fiber cable in which the threads that hold the various fiber groups together is made of a water swellable material and is color coded to allow the various fibers of the optical cable to be distinguished from each other. The optical fiber cable, includes a plurality of optical fiber groups, each groups including a plurality of optical fibers; a first water swellable material wrapped around a first group and a second water swellable material wrapped around a second group, wherein the first water swellable material has a color which is different from a color of the second water swellable material so as to allow optical fibers of the first group to be distinguished from optical fibers of the second group; and a sheath holding the plurality of optical fiber groups together. The optical fiber cable further includes a buffer tube in which the plurality of optical fiber groups are disposed arranged such that the sheath surrounds the buffer tube.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: November 20, 2001
    Assignee: Alcatel
    Inventor: Steven Xuefeng Shen
  • Patent number: 6311000
    Abstract: An optical cable has tensile elements and supporting elements embedded in an extruded outside cladding. The tensile elements are hauled-off from a supply reel and introduced into an extruder head serving to manufacture the outside cladding. The supporting elements are manufactured in a coextrusion with the outside cladding by appropriate channels formed in the extruder head.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: October 30, 2001
    Assignee: Siemens Aktiengesellschaft
    Inventor: Reiner Schneider
  • Patent number: 6304701
    Abstract: A mixture of two water receptive agents. One of the water receptive agents is a mixture of two distinct superabsorbent substances, at least one of the superabsorbent substances is characterized by a very fast swelling rate whereby it is operative to quickly block the flow of water, and another of the superabsorbent substances is characterized by a high gel strength whereby it is operative to inhibit wicking. The other of the water receptive agents is a water soluble or a hydrophilic resin for enhancing the performance of the superabsorbent substances. An exemplary fiber optic cable (10) includes fiber optic cable components in the form of buffer tubes (25) having two co-extruded layers (26,27). Layer (26) is the mixture of the two water receptive agents.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: October 16, 2001
    Assignee: Corning Cable Systems LLC
    Inventors: Anne G. Bringuier, Kevin T. White
  • Patent number: 6301414
    Abstract: A communications cable network, in a duct or tube system used primarily for other purposes, wherein the communications cables are mounted on the walls of the duct or tube system. The communications cable (3), is made of a core (7-10) and a sheath (11). The core (7-10) of the communications cable (3) is extremely flexible and the sheath (11) is sufficiently rigid that cable sag is less than 20 mm for a 2000-mm distance between fastenings. The sheath (11) is removed from the core (7-10) in the area of the shafts (2) of the duct or pipe system (1).
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: October 9, 2001
    Assignee: Alcatel
    Inventors: Wolfgang Liese, Alexander Weiss, Helmut Haag, Bernd Menze
  • Patent number: 6278826
    Abstract: A preferred embodiment of the cable of the present invention incorporates a core, an outer jacket surrounding the core, and a super-absorbent foam disposed between the core and the outer jacket as well as inside the core. The super-absorbent foam comprises a polyurethane or similar type foam loaded with super-absorbent polymers (SAPs) which exhibit both water-blocking and flame-retarding characteristics. Additionally, the foam preferably is provided with a moisture content of greater than approximately 0 percent, by weight, thereby improving the flame-retarding characteristics of the foam.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: August 21, 2001
    Assignee: Lucent Technologies Inc.
    Inventor: Jim J. Sheu
  • Patent number: 6256438
    Abstract: A fiber optic cable that includes an armor layer having inner and outer surfaces and defining a passageway therethrough, a protective jacket surrounding the armor layer, a plurality of optical fibers extending lengthwise through the passageway, and a water swellable element for inhibiting water migration through the passageway. The water swellable element can be a water swellable layer on at least one of the inner and outer surfaces of the armor layer and/or a water swellable yarn extending through the passageway. The fiber optic cable is preferably tubeless, i.e., free of buffer tubes. In instances in which a water swellable layer is on the inner surface of the armor layer, the optical fibers are capable of contacting the water swellable layer.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: July 3, 2001
    Assignee: Siecor Operations, LLC
    Inventor: Michael J. Gimblet
  • Patent number: 6253012
    Abstract: A cable includes an optical fiber, a buffer tube having the optical fiber arranged therein, and a thermoset material for connecting the optical fiber to the buffer tube. The thermoset material will not melt or appreciably soften and will maintain basic elastomeric flexibility in a temperature range of −40 to 70 degrees Celsius. The thermoset material may be a flame-retardant silicone elastomer, base and curing agent, as well as a liquid rubber molded compound, which is not flame-retardant. The thermoset material allows for fiber helix movement as the cable expands and contracts from −40 to +70 degrees Celsius, and is cyclically placed for connecting the optical fiber to the buffer tube at intervals of about every ½ meter, as well as at intervals of about every 10 meters.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: June 26, 2001
    Assignee: Alcatel
    Inventors: David A. Keller, John C. Rosko, Leslie P. Keller
  • Patent number: 6249628
    Abstract: Fiber optic and composite zip cord cables (40;50) having at least one respective buffer unit (30) therein. Each zip cord (40;50) includes at least two cords (42;52,54) having respective jackets (46;56) attached by a frangible web (43;53). At least one cord includes a buffer unit (30) generally surrounded by a layer of filaments, the buffer unit comprising at least two optical fibers (31) in a buffer layer (32). The buffer units (30) can be stranded about a central member (22) and enclosed in a jacket (28).
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: June 19, 2001
    Assignee: Siecor Operations, LLC
    Inventors: Daniel J. Rutterman, William C. Hurley
  • Patent number: 6236790
    Abstract: There is provided an optical-fiber; and a cylinder body which is made from a cylindrically formed belt-shaped material and made of resin and which accommodates the optical-fiber therein.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: May 22, 2001
    Assignees: Fujikura Ltd., Nippon Telegraph and Telephone Corporation
    Inventors: Naoki Okada, Hirohito Watanabe, Matsuhiro Miyamoto, Yoshiyasu Sato, Koichiro Watanabe, Hideyuki Iwata