Prestressed Patents (Class 385/108)
  • Patent number: 9494754
    Abstract: A fiber optic drop cable includes an optical fiber, a tight buffer layer on the optical fiber, at least one strength member, and a jacket surrounding the tight buffer layer. The jacket is coupled to the at least one strength member by at least partial embedment of at least one of the strength members in the jacket, which facilitates coupling between the jacket and strength member. The fiber optic drop cable has an average delta attenuation of 0.4 dB or less at a reference wavelength of 1625 nanometers with the fiber optic cable wrapped 2 turns about a 7.5 millimeter diameter mandrel.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 15, 2016
    Assignee: CCS TECHNOLOGY, INC.
    Inventors: Cory Fritz Guenter, James Arthur Register, III, Todd Ray Rhyne
  • Patent number: 8938144
    Abstract: An optical fiber cable including, in a radial direction outward, a central strength member, a first layer of loose buffer tubes stranded around the central strength member, at least one of the loose buffer tubes of the first layer containing at least one light waveguide, an intermediate layer, a second layer of loose buffer tubes stranded around the intermediate layer, at least one of the loose buffer tubes of the second layer containing at least one light waveguide, and a jacket surrounding the second layer of loose buffer tubes, wherein the intermediate layer is formed of a material having a high coefficient of friction.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: January 20, 2015
    Assignee: Draka Comteq B.V.
    Inventors: Jan Hennink, Jean-Pierre Bonicel, Pascal Maria Willem Bindels
  • Patent number: 8913863
    Abstract: A hydrocarbon application cable of reduced nylon with increased flexibility and useful life. The cable may be of a hose or solid configuration and particularly beneficial for use in marine operations. A power and data communicative core of the cable may be surrounded by a lightweight intermediate polymer layer of a given hardness which is ultimately then surrounded by an outer polymer jacket having a hardness that is greater than the given hardness. Thus, a lighter weight polymer is provided interior of the outer polymer jacket, which may be of nylon or other suitably hard material. As such, the overall weight and cost of the cable may be substantially reduced.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 16, 2014
    Assignee: WesternGeco L.L.C.
    Inventors: Joseph Varkey, Jushik Yun, Byong Jun Kim
  • Patent number: 8897613
    Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: November 25, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8842956
    Abstract: A non-kink, non-hockling optical cable comprising an optical fiber capable of propagating light along its longitudinal axis. A buffer layer made of a soft plastic material surrounds the silica core and cladding, and a supplemental layer surrounds the buffer layer. The supplemental layer consists essentially of a liquid crystal polymer (LCP) material to enhance the tensile strength of the optical fiber. Finally, an encasing polymer layer with a breaking strain greater than 30%, surrounds the supplemental layer, to increase the flexibility of the optical cable.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: September 23, 2014
    Assignee: Linden Photonics, Inc.
    Inventors: Stephen M. O'Riorden, Amaresh Mahapatra
  • Patent number: 8798418
    Abstract: An optical cable includes a buffer tube housing at least one optical fiber, a sheath surrounding such buffer tube and at least one longitudinal strength member embedded in the sheath, in which at least one separation element is provided between a portion of the outer surface of the buffer tube and the inner surface of the sheath, laying in an axial plane not containing the at least one strength member.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 5, 2014
    Assignee: Prysmian S.p.A.
    Inventors: Martin Davies, Simon James Frampton, Roger Pike, Ralph Sutehall
  • Patent number: 8781280
    Abstract: A cable is provided having an expansion joint. The cable includes a cable jacket which makes up an outer layer of the cable, a non-end section where the cable jacket is removed from the cable which forms an opening, and an expansion joint which covers the opening and is bonded to the cable jacket at opposite sides of the opening. The expansion joint is made up of a flexible or compressible material.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: July 15, 2014
    Assignee: AFL Telecommunications LLC
    Inventors: Christopher Donaldson, Lawrence Srutkowski
  • Patent number: 8750669
    Abstract: A rack cabling system including a rack having mounted thereon a first hardware component and a patch panel housing mounted on the rack adjacent the first hardware component. The patch panel housing populates no more than a three rack unit (RU space), the patch panel housing including a first end having cable pathway openings and a second end having connector elements mounted therein. The patch panel may have a first cable pathway opening located adjacent the first side of the housing and defining a primary position and a first connector element mounted on the second end and the first connector element having a first position corresponding to the primary position of the first cable pathway opening. Cable harnesses are routed with less than three bends of the cables between the first hardware component and the patch panel housing, so that the first cable harness is terminated at the first connector element in the first position.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 10, 2014
    Assignee: Methode Electronics Inc.
    Inventors: Michael R. Carter, David E. Hildreth, Robert C. Neumann, Tyler M. Miller
  • Patent number: 8611713
    Abstract: An optical cable includes an optical fiber, a primary coating coated on the optical fiber, and an outer coating coated on the primary coating. The optical cable is spiral, and can be compressed or stretched. The outer coating comprises about 40 to 70 weight percent of caoutchouc, about 20 to 50 weight percent of neoprene, about 0 to 6 weight percent of magnesium oxide, about 0 to 6 weight percent of zinc oxide, and about 0 to 6 weight percent of vulcanization accelerator.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: December 17, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: I-Thun Lin
  • Publication number: 20130259435
    Abstract: Cables have armor including a polymer, the armor having an armor profile that resembles conventional metal armored cable. The armor provides additional crush and impact resistance for the optical fibers and/or fiber optic assembly therein. The armored cables recover substantially from deformation caused by crush loads. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space.
    Type: Application
    Filed: May 23, 2013
    Publication date: October 3, 2013
    Inventors: Gregory Blake Bohler, Julian Latelle Greenwood, III, Keith Aaron Greer, Wesley Brian Nicholson, James Arthur Register, III, Kimberly Dawn Slan
  • Patent number: 8412012
    Abstract: An optical fiber cable includes an unbuffered optical fiber, a tensile reinforcement member surrounding the unbuffered optical fiber, and a jacket surrounding the tensile reinforcement member. The jacket is suitable for outside plant environment. A water blocking material is placed between the unbuffered fiber and the jacket. The unbuffered optical fiber comprises an ultra bend-insensitive fiber that meets the requirements of ITU-T G.657.B3 and exhibits an additional loss of less than approximately 0.2 dB/turn when the fiber is wrapped around a 5 mm bend radius mandrel. The optical fiber cable also exhibits an additional loss of less than approximately 0.4 dB/km at 1550 nm when the cable is subjected to ?20° C. outside plant environment.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: April 2, 2013
    Assignee: OFS Fitel, LLC
    Inventors: Stefan Jost, Elmar Staudinger, Peter A. Weimann
  • Patent number: 8391663
    Abstract: A rack cabling system including a rack having mounted thereon a first hardware component and a patch panel housing mounted on the rack adjacent the first hardware component. The patch panel housing populates no more than a three rack unit (RU space), the patch panel housing including a front end having cable pathway openings and a rear end having connector coupler plates mounted therein. The patch panel may have a first cable pathway opening located adjacent the first side of the housing and defining a primary position and a first connector coupler plate mounted on the rear adjacent on the first side and the first connector plate having a first position corresponding to the primary position of the first cable pathway opening. Cable harnesses are routed with less than three bends of the cables between the first hardware component and the patch panel housing, so that the first cable harness is terminated at the first coupler plate in the first position.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: March 5, 2013
    Assignee: Methode Electronics, Inc.
    Inventors: Michael R. Carter, David E. Hildreth, Tyler M. Miller, Robert C. Neumann
  • Patent number: 8388242
    Abstract: A fiber optic cable assembly includes a connector and a fiber optic cable. The connector includes a housing having a first axial end and an oppositely disposed second axial end. A ferrule is disposed in the housing. A plurality of optical fibers is mounted in the ferrule. The fiber optic cable includes an outer jacket defining a fiber passage that extends longitudinally through the outer jacket and a window that extends through the outer jacket and the fiber passage. First and second strength members are oppositely disposed about the fiber passage in the outer jacket. A plurality of optical fibers is disposed in the fiber passage. The optical fibers are joined at splices to the optical fibers of the connector. A splice sleeve is disposed over the splices. The splice sleeve is disposed in the window of the outer jacket.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 5, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Patent number: 8380030
    Abstract: A bend-insensitive optical cable for transmitting optical signals includes an optical cable having a length, extending from an input end adapted to receive the optical signals, to an output end and including at least one single-mode optical fiber having a cable cut-off wavelength, of 1290 nm to 1650 nm. The at least one optical fiber is helically twisted around a longitudinal axis with a twisting pitch, for a twisted length, extending along at least a portion of the length, of the optical cable, wherein the twisted length and the twisting pitch are selected such that the optical cable exhibits a measured cut-off wavelength equal to or lower than 1260 nm. Preferably, the at least one fiber has a mode-field diameter of 8.6 ?m to 9.5 ?m. According to a preferred embodiment, the optical cable includes two optical fibers twisted together along the longitudinal axis, each of the two optical fibers having a cable cut-off wavelength of 1290 nm to 1650 nm.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 19, 2013
    Assignee: Prysmian S.p.A.
    Inventors: Marco Ruzzier, Francesco Sartori, Enrico Consonni, Daniele Cuomo
  • Patent number: 8369667
    Abstract: Downhole cables are described that are configured to protect internal structures that may be detrimentally impacted by exposure to the downhole environment, by protecting such structures by at least two protective layers. In some examples, the structures to be protected may be housed in a protective tube housed within the protective outer sheath. The described configuration enables the use of structures such as polymer fibers in the cables for strength and load-bearing capability by protecting the fibers, by multiple protective layers, from exposure to gases or fluids within a wellbore.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 5, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Lawrence Charles Rose
  • Patent number: 8363994
    Abstract: A fiber optic cable assembly includes an outer jacket defining a first passage and a second passage disposed adjacent to the first passage. The outer jacket includes a wall disposed between an outer surface of the outer jacket and the first passage. A plurality of optical fibers is disposed in the first passage. A reinforcing member is disposed in the second passage. An access member is disposed in the wall of the outer jacket.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: January 29, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8290320
    Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: October 16, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8285094
    Abstract: The multicore fiber comprises 7 or more cores, wherein diameters of the adjacent cores differ from one another, wherein each of the cores performs single-mode propagation, wherein a relative refractive index difference of each of the cores is less than 1.4%, wherein a distance between the adjacent cores is less than 50 ?m, wherein, in a case where a transmission wavelength of each of the cores is ?, the distance between the adjacent cores is , a mode field diameter of each of the cores is MFD, and a theoretical cutoff wavelength of each of the cores is ?c, (/MFD)·(2?c/(?c+?))?3.95 is satisfied, and wherein a distance between the outer circumference of the coreand an outer circumference of the clad is 2.5 or higher times as long as the mode field diameter of each of the cores.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: October 9, 2012
    Assignee: Fujikura Ltd.
    Inventors: Katsuhiro Takenaga, Ning Guan, Syouji Tanigawa
  • Patent number: 8238706
    Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a bowtie shape. The outer jacket defines at least first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The fiber optic cable includes a plurality of optical fibers positioned within the first passage and a tensile strength member positioned within the second passage. The tensile strength member has a highly flexible construction and a transverse cross-sectional profile that is elongated in the orientation extending along the major axis.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: August 7, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8184935
    Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first, second and third separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The third passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The first, second and third passages are generally aligned along the major axis with the third passage being positioned between the first and second passages.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: May 22, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8145021
    Abstract: Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 27, 2012
    Assignee: Atomic Energy Council-Institute of Nuclear Research
    Inventors: Yi-Ping Liang, Kuo-Hsin Lin, Hwen-Fen Hong, Hwa-Yuh Shin, Cherng-Tsong Kuo
  • Patent number: 8107781
    Abstract: A fiber optic cable assembly includes an optical fiber, a strength layer surrounding the optical fiber and an outer jacket surrounding the strength layer. The outer jacket includes a base material having a Shore D Hardness of at least 85 and liquid crystal polymer embedded in the base material. The liquid crystal polymer constitutes less than 2% of the outer jacket by weight.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 31, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Patent number: 8041166
    Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 18, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8023786
    Abstract: In order to improve a cable, comprising an inner cable body, in which at least one conductor strand of an optical and/or electrical conductor runs in the longitudinal direction of the cable, an outer cable sheath, enclosing the inner cable body and lying between an outer sheath surface of the cable and the inner cable body, and at least one information carrier unit, disposed within the outer sheath surface of the cable such that the cable also comprises a shielding, the invention proposes that the information carrier unit having an antenna unit lying in an antenna surface running approximately parallel to the longitudinal direction of the cable, by the antenna surface running at a distance from an electrical shielding of the cable and by providing, between the antenna surface and the shielding, a spacing layer, in which the electromagnetic field that couples to the antenna unit and passes through the antenna surface can extend between the antenna unit and the shielding.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Lapp Engineering & Co.
    Inventor: Siegbert Lapp
  • Patent number: 8000573
    Abstract: Generic tow lead-in for streamers providing communication between the seismic systems and the streamers, consisting of at least four wire power quad, at least four multimode optical fibers and at least one signal pair, where the at least one signal line do not utilize a screen.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: August 16, 2011
    Inventor: Phil Roscoe
  • Patent number: 7907807
    Abstract: Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 15, 2011
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Paul E. Sanders, Edward M. Dowd, Andrew S. Kuczma, Trevor W. MacDougall, Brian J. Pike
  • Patent number: 7706640
    Abstract: A telecommunication fiber optic cable for gas pipeline application has a built-in leakage detecting device. The cable has an optical core including a number of telecommunication optical fibers, an outer jacket covering the optical core, and one or more gas leakage detector optical fibers. One or more gas leakage detector optical fibers are enclosed within the outer jacket. Preferably, the cable has a linearly extending rod reinforcing system having strength rods that force the cable to bend in a preferential bending place. Preferably, the leakage detector optical fibers are located at, or close to, a plane that is substantially orthogonal to the preferential bending plane and passing through the cable neutral axis.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: April 27, 2010
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Mauro Maritano
  • Patent number: 7693377
    Abstract: An optical fiber module includes an optical fiber that transmits a light and a holding unit that holds the optical fiber in a state in which the optical fiber is stretched in its longitudinal direction to change optical characteristics of the optical fiber.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: April 6, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masanori Takahashi, Jiro Hiroishi, Masateru Tadakuma, Takeshi Yagi
  • Patent number: 7509009
    Abstract: The present invention provides an optical fiber structure that allows for reliable and easy branching of optical fibers, as well as a method of manufacturing such optical fiber structure. The optical fiber structure proposed by the present invention is characterized by a structure wherein multiple optical fiber units, each comprising multiple optical fibers that are aligned two-dimensionally in such a way that one side is covered by a first covering body, are aligned so that the covered surfaces face the same direction, and the covered or uncovered surfaces of the multiple optical fiber units are integrally covered by a second covering body. The second covering body should preferably be made of silicone rubber having a tearing strength of 29 kgf/cm or below.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: March 24, 2009
    Assignee: Tomoegawa Paper Co., Ltd
    Inventors: Masayoshi Suzuki, Kyoichi Sasaki, Ken Sukegawa
  • Patent number: 7433564
    Abstract: An optical phase modulator made of lithium niobate or the like phase-modulates the output light of a single-wavelength laser light source 20 that emits CW light, and the phase-modulated light is inputted to a dispersion medium 22. The positive chirp and negative chirp of light to which frequency chirp is applied by phase modulation draw near in the dispersion medium and an optical pulse is generated.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: October 7, 2008
    Assignee: Fujitsu Limited
    Inventors: Fumio Futami, Shigeki Watanabe
  • Patent number: 7402215
    Abstract: Deformed wire for a submarine optical fiber cable used for the pressure-proof layer of the submarine optical cable and having a high strength, that is, having a tensile strength of 1800 MPa or more, is provided, which deformed wire for reinforcing submarine optical fiber cable is characterized by including, by wt %, C: more than 0.65% to 1.1%, Ceq=C+1/4Si+1/5Mn+4/13Cr satisfying 0.80%?Ceq?1.80%, having a number of shear bands cutting across an L-section center axial line of 20/mm per unit length of the center axis, having an angle formed by the center axis and shear bands in the range of 10 to 90°, having a tensile strength of 1800 MPa or more, having a sectional area forming an approximately fan shape, a plurality of the approximately fan shapes being combined to form a circular hollow cross-section for accommodating optical fibers, having at its surface a pebbled surface comprised of relief shapes of depths of 0.2 to 5 ?m, and having a weld at least at one location in the longitudinal direction.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: July 22, 2008
    Assignees: Nippon Steel Corporation, Namitei Co., Ltd., OCC Corporation
    Inventors: Shoichi Ohashi, Hitoshi Demachi, Masatsugu Murao, Michiyasu Honda
  • Patent number: 7231119
    Abstract: A tube assembly of the present invention has at least one subunit with at least one dry insert generally surrounding the subunit which may be disposed within a tube, thereby forming a tube assembly. The subunit includes a fiber optic ribbon and a sheath, wherein the sheath is tight-buffered about the fiber optic ribbon, thereby inhibiting buckling of the ribbon during temperature variations. Additionally, the tube assembly can be a portion of a fiber optic cable having a sheath that may include a plurality of strength members and a cable jacket. In other embodiments, the subunits and dry insert are disposed within a cavity, thereby forming a tubeless cable. Additionally, subunits may include a marking indicia for denoting the security level.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: June 12, 2007
    Assignee: Corning Cable Systems, LLC.
    Inventors: Brian K. Rhoney, Samuel D. Nave, Todd R. Rhyne, Scott M. Torrey, Martyn N. Easton, David C. Hall, Alan T. Parsons, Jody L. Greenwood, Kenneth D. Temple, Jr., Jason C. Lail
  • Patent number: 7224872
    Abstract: An array of fiber optic hydrophones or geophones is formed by winding of optical fiber around a continuous, yet flexible cylindrical core. The cylindrical core contains an elastomer filled with a specified percentage of voided plastic microspheres. The elastomer provides the necessary radial support of the optical fiber, and with the included voided microspheres, provides sufficient radial compliance under acoustic pressure for proper operation of the hydrophone. The cylindrical core can be made in very long sections allowing a plurality of fiber optic hydrophones to be wound onto it using a single optical fiber, with individual hydrophone elements separated by integral reflectors such as Fiber Bragg Gratings (FBSs). The center of the core may include a strength member and a central hollow tube for the passing of additional optical fibers. The aforementioned hydrophone array is then packaged within a protective outer coating or coatings as required for the specified application.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: May 29, 2007
    Assignee: Sabeus, Inc.
    Inventors: Eric L. Goldner, William Briggs
  • Patent number: 7221831
    Abstract: A multi-tube fiber optic cable maintains a plurality of fiber tubes, each fiber tube containing at least one optical fiber therein. The plurality of fiber tubes are disposed apart from a central axis of the cable. A plurality of strength members are disposed apart from a central axis of said cable. An outer jacket surrounds the plurality of fiber tubes and the plurality of strength members and is formed from a pressure extruded polymer. The plurality of fiber tubes and strength members are held in either one of an oscillated geometry or a helical geometry by the pressure extruded jacket.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: May 22, 2007
    Assignee: Nexans
    Inventors: David Keller, Randie Yoder
  • Patent number: 7203396
    Abstract: An all optical chopping device for shaping and reshaping comprising an all optical AND logic gate having a first input for receiving a first optical signal, a second input for receiving a second optical signal and at least one output. The AND gate may be arranged to produce at least at one output thereof an optical output signal corresponding to a portion of the AND product of the first optical signal and the second optical signals. The optical output signal may be narrower than at least one of the first optical signal and the second optical signal.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 10, 2007
    Assignee: Main Street Ventures, LLC
    Inventors: Arie Shahar, Eldan Halberthal
  • Patent number: 6990266
    Abstract: An optical switching element having a simple configuration and high response and capable of performing gradation display by area gradation is provided. In a state where a light extracting portion is in contact with an upper substrate, light enters the light extracting portion from the upper substrate, emits from the back face of the light extracting portion, is passed through a lower substrate, and becomes transmission light. In a state where the light extracting portion is attracted by the lower substrate side, the incident light is totally reflected by a total reflection face, and total reflection light emits from a V-shaped groove. The incident light can be switched in two directions and obtained as the transmission light and the total reflection light.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: January 24, 2006
    Assignee: Sony Corporation
    Inventor: Takuya Makino
  • Patent number: 6782011
    Abstract: A lensed polarization maintaining fiber having a lens on an end thereof has a core, two stress-applied regions disposed on both sides of the core, respectively, and a clad containing the core and stress-applied regions. The lens has at least an inclined face, the inclined face including an edge. Each of the stress-applied regions is exposed on the inclined face except the edge.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: August 24, 2004
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Teruo Kusano, Toshio Mugishima, Jun Miyokawa
  • Patent number: 6775444
    Abstract: A fiber optic assembly and method of manufacturing the same include at least one central strength member, a first layer of optical fibers, a second layer of optical fibers, and a jacket. The first and second layers of optical fibers are adjoining layers formed by a common strander. Optical fibers can migrate between the adjoining two layers at different longitudinal positions in the cable without entanglement among themselves. Additionally, the optical fibers in adjoining layers can have the same lay length and same phase relationship.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: August 10, 2004
    Assignee: Corning Cable Systems LLC
    Inventor: William C. Hurley
  • Patent number: 6618526
    Abstract: A fiber optic cable having at least two interfaces being formed by first and second members. Between the interfaces is at least one retention area having an optical fiber component disposed therein. The retention area is disposed generally longitudinally and non-helically relative to an axis of the cable. The cable may also include a cable jacket substantially surrounding the members, a cushioning zone adjacent the optical fiber component, a water-blocking component and/or an interfacial layer. In another embodiment, a fiber optic cable includes a strength group having at least one strength member and an optical fiber being proof-tested to 125 KPSI or greater.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: September 9, 2003
    Assignee: Corning Cable Systems LLC
    Inventors: William S. Jackman, Louis A. Barrett
  • Patent number: 6459836
    Abstract: A protective cable armor for cable having tensile stiffness and providing structural protection from invasion by foreign objects. The armor comprises a substantially planar sheet member having a length and a width and an intermittent corrugation pattern disposed therein. The intermittent corrugation pattern comprises at least one land extending across the width of the sheet member and having a defined land width. The intermittent corrugation pattern further comprises at least one, groove extending across the width of the sheet member and having a defined groove width, where the defined land width differs from the defined groove width. The land is disposed adjacent the groove. The sheet member can also be disposed in a substantially tubular form.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: October 1, 2002
    Assignee: Avaya Technology Corp.
    Inventors: Luis M. Bocanegra, Lisa A. Dixon, Michael D. Kinard, Phillip M. Thomas, Robert A. Williams
  • Patent number: 5293442
    Abstract: A polymer-insulated crush-resistant high-strength optical waveguide fiber cable buffered by a braided layer of porous polytetrafluoroethylene fibers to provide strength, a low thermal expansion coefficient buffer, and strong environmental protection.
    Type: Grant
    Filed: July 15, 1992
    Date of Patent: March 8, 1994
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Emile G. Sayegh
  • Patent number: 5222173
    Abstract: The electro-optical overhead wire is made from a plurality of circular cross-sectioned strand elements and consists of a core and a plurality of wire layers surrounding the core radially. The wire layers include at least one layer of chiefly electrically conducting wires and at least one other layer of predominantly high tensile strength wires. At least one of the wire layers of the high tensile strength wire also contains at least two strand elements arranged symmetrically around the core and each consisting of a high quality steel tube with an outer diameter of 2.5 mm containing at least 12 light wave guides. Alternatively or in addition, the electro-optical overhead wire is made up of a core and a first wire layer immediately surrounding the core and a second wire layer immediately surrounding the first wire layer, while the core contains a high quality steel tube with a five mm diameter containing 12, 18 or 24 bundles of light wave guides containing two light wave guides in each bundle.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: June 22, 1993
    Assignee: Felten & Guilleaume Enrgietechnik Aktiengesellschaft
    Inventor: Joachim Bausch
  • Patent number: 5150443
    Abstract: A cable for data transmission comprising a core comprising at least one energy transmission line; a jacket enclosing the core; armor strands wound around the jacket; and an embedding elastic structure, surrounding the jacket and designed to receive the armor strands. The cable may be manufactured as follows: (1) surrounding the core with a jacket; (2) surrounding the jacket with an embedding layer of curable but non cured thermosetting material; (3) enclosing the thermosetting layer with helically wound armor strands, in such a way that complementary grooves are generated in the embedding layer; and (4) subjecting the cable to heat in order to cure the thermosetting material of the embedding structure.
    Type: Grant
    Filed: August 14, 1990
    Date of Patent: September 22, 1992
    Assignee: Schlumberger Techonolgy Corporation
    Inventor: Willem A. Wijnberg