Prestressed Patents (Class 385/108)
-
Patent number: 9494754Abstract: A fiber optic drop cable includes an optical fiber, a tight buffer layer on the optical fiber, at least one strength member, and a jacket surrounding the tight buffer layer. The jacket is coupled to the at least one strength member by at least partial embedment of at least one of the strength members in the jacket, which facilitates coupling between the jacket and strength member. The fiber optic drop cable has an average delta attenuation of 0.4 dB or less at a reference wavelength of 1625 nanometers with the fiber optic cable wrapped 2 turns about a 7.5 millimeter diameter mandrel.Type: GrantFiled: May 10, 2013Date of Patent: November 15, 2016Assignee: CCS TECHNOLOGY, INC.Inventors: Cory Fritz Guenter, James Arthur Register, III, Todd Ray Rhyne
-
Patent number: 8938144Abstract: An optical fiber cable including, in a radial direction outward, a central strength member, a first layer of loose buffer tubes stranded around the central strength member, at least one of the loose buffer tubes of the first layer containing at least one light waveguide, an intermediate layer, a second layer of loose buffer tubes stranded around the intermediate layer, at least one of the loose buffer tubes of the second layer containing at least one light waveguide, and a jacket surrounding the second layer of loose buffer tubes, wherein the intermediate layer is formed of a material having a high coefficient of friction.Type: GrantFiled: October 23, 2013Date of Patent: January 20, 2015Assignee: Draka Comteq B.V.Inventors: Jan Hennink, Jean-Pierre Bonicel, Pascal Maria Willem Bindels
-
Patent number: 8913863Abstract: A hydrocarbon application cable of reduced nylon with increased flexibility and useful life. The cable may be of a hose or solid configuration and particularly beneficial for use in marine operations. A power and data communicative core of the cable may be surrounded by a lightweight intermediate polymer layer of a given hardness which is ultimately then surrounded by an outer polymer jacket having a hardness that is greater than the given hardness. Thus, a lighter weight polymer is provided interior of the outer polymer jacket, which may be of nylon or other suitably hard material. As such, the overall weight and cost of the cable may be substantially reduced.Type: GrantFiled: March 24, 2009Date of Patent: December 16, 2014Assignee: WesternGeco L.L.C.Inventors: Joseph Varkey, Jushik Yun, Byong Jun Kim
-
Patent number: 8897613Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.Type: GrantFiled: October 16, 2012Date of Patent: November 25, 2014Assignee: ADC Telecommunications, Inc.Inventor: Wayne M. Kachmar
-
Patent number: 8842956Abstract: A non-kink, non-hockling optical cable comprising an optical fiber capable of propagating light along its longitudinal axis. A buffer layer made of a soft plastic material surrounds the silica core and cladding, and a supplemental layer surrounds the buffer layer. The supplemental layer consists essentially of a liquid crystal polymer (LCP) material to enhance the tensile strength of the optical fiber. Finally, an encasing polymer layer with a breaking strain greater than 30%, surrounds the supplemental layer, to increase the flexibility of the optical cable.Type: GrantFiled: March 20, 2012Date of Patent: September 23, 2014Assignee: Linden Photonics, Inc.Inventors: Stephen M. O'Riorden, Amaresh Mahapatra
-
Patent number: 8798418Abstract: An optical cable includes a buffer tube housing at least one optical fiber, a sheath surrounding such buffer tube and at least one longitudinal strength member embedded in the sheath, in which at least one separation element is provided between a portion of the outer surface of the buffer tube and the inner surface of the sheath, laying in an axial plane not containing the at least one strength member.Type: GrantFiled: March 16, 2009Date of Patent: August 5, 2014Assignee: Prysmian S.p.A.Inventors: Martin Davies, Simon James Frampton, Roger Pike, Ralph Sutehall
-
Patent number: 8781280Abstract: A cable is provided having an expansion joint. The cable includes a cable jacket which makes up an outer layer of the cable, a non-end section where the cable jacket is removed from the cable which forms an opening, and an expansion joint which covers the opening and is bonded to the cable jacket at opposite sides of the opening. The expansion joint is made up of a flexible or compressible material.Type: GrantFiled: May 10, 2011Date of Patent: July 15, 2014Assignee: AFL Telecommunications LLCInventors: Christopher Donaldson, Lawrence Srutkowski
-
Patent number: 8750669Abstract: A rack cabling system including a rack having mounted thereon a first hardware component and a patch panel housing mounted on the rack adjacent the first hardware component. The patch panel housing populates no more than a three rack unit (RU space), the patch panel housing including a first end having cable pathway openings and a second end having connector elements mounted therein. The patch panel may have a first cable pathway opening located adjacent the first side of the housing and defining a primary position and a first connector element mounted on the second end and the first connector element having a first position corresponding to the primary position of the first cable pathway opening. Cable harnesses are routed with less than three bends of the cables between the first hardware component and the patch panel housing, so that the first cable harness is terminated at the first connector element in the first position.Type: GrantFiled: March 4, 2013Date of Patent: June 10, 2014Assignee: Methode Electronics Inc.Inventors: Michael R. Carter, David E. Hildreth, Robert C. Neumann, Tyler M. Miller
-
Patent number: 8611713Abstract: An optical cable includes an optical fiber, a primary coating coated on the optical fiber, and an outer coating coated on the primary coating. The optical cable is spiral, and can be compressed or stretched. The outer coating comprises about 40 to 70 weight percent of caoutchouc, about 20 to 50 weight percent of neoprene, about 0 to 6 weight percent of magnesium oxide, about 0 to 6 weight percent of zinc oxide, and about 0 to 6 weight percent of vulcanization accelerator.Type: GrantFiled: August 28, 2012Date of Patent: December 17, 2013Assignee: Hon Hai Precision Industry Co., Ltd.Inventor: I-Thun Lin
-
Publication number: 20130259435Abstract: Cables have armor including a polymer, the armor having an armor profile that resembles conventional metal armored cable. The armor provides additional crush and impact resistance for the optical fibers and/or fiber optic assembly therein. The armored cables recover substantially from deformation caused by crush loads. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space.Type: ApplicationFiled: May 23, 2013Publication date: October 3, 2013Inventors: Gregory Blake Bohler, Julian Latelle Greenwood, III, Keith Aaron Greer, Wesley Brian Nicholson, James Arthur Register, III, Kimberly Dawn Slan
-
Patent number: 8412012Abstract: An optical fiber cable includes an unbuffered optical fiber, a tensile reinforcement member surrounding the unbuffered optical fiber, and a jacket surrounding the tensile reinforcement member. The jacket is suitable for outside plant environment. A water blocking material is placed between the unbuffered fiber and the jacket. The unbuffered optical fiber comprises an ultra bend-insensitive fiber that meets the requirements of ITU-T G.657.B3 and exhibits an additional loss of less than approximately 0.2 dB/turn when the fiber is wrapped around a 5 mm bend radius mandrel. The optical fiber cable also exhibits an additional loss of less than approximately 0.4 dB/km at 1550 nm when the cable is subjected to ?20° C. outside plant environment.Type: GrantFiled: December 16, 2011Date of Patent: April 2, 2013Assignee: OFS Fitel, LLCInventors: Stefan Jost, Elmar Staudinger, Peter A. Weimann
-
Patent number: 8391663Abstract: A rack cabling system including a rack having mounted thereon a first hardware component and a patch panel housing mounted on the rack adjacent the first hardware component. The patch panel housing populates no more than a three rack unit (RU space), the patch panel housing including a front end having cable pathway openings and a rear end having connector coupler plates mounted therein. The patch panel may have a first cable pathway opening located adjacent the first side of the housing and defining a primary position and a first connector coupler plate mounted on the rear adjacent on the first side and the first connector plate having a first position corresponding to the primary position of the first cable pathway opening. Cable harnesses are routed with less than three bends of the cables between the first hardware component and the patch panel housing, so that the first cable harness is terminated at the first coupler plate in the first position.Type: GrantFiled: May 24, 2011Date of Patent: March 5, 2013Assignee: Methode Electronics, Inc.Inventors: Michael R. Carter, David E. Hildreth, Tyler M. Miller, Robert C. Neumann
-
Patent number: 8388242Abstract: A fiber optic cable assembly includes a connector and a fiber optic cable. The connector includes a housing having a first axial end and an oppositely disposed second axial end. A ferrule is disposed in the housing. A plurality of optical fibers is mounted in the ferrule. The fiber optic cable includes an outer jacket defining a fiber passage that extends longitudinally through the outer jacket and a window that extends through the outer jacket and the fiber passage. First and second strength members are oppositely disposed about the fiber passage in the outer jacket. A plurality of optical fibers is disposed in the fiber passage. The optical fibers are joined at splices to the optical fibers of the connector. A splice sleeve is disposed over the splices. The splice sleeve is disposed in the window of the outer jacket.Type: GrantFiled: May 19, 2011Date of Patent: March 5, 2013Assignee: ADC Telecommunications, Inc.Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
-
Patent number: 8380030Abstract: A bend-insensitive optical cable for transmitting optical signals includes an optical cable having a length, extending from an input end adapted to receive the optical signals, to an output end and including at least one single-mode optical fiber having a cable cut-off wavelength, of 1290 nm to 1650 nm. The at least one optical fiber is helically twisted around a longitudinal axis with a twisting pitch, for a twisted length, extending along at least a portion of the length, of the optical cable, wherein the twisted length and the twisting pitch are selected such that the optical cable exhibits a measured cut-off wavelength equal to or lower than 1260 nm. Preferably, the at least one fiber has a mode-field diameter of 8.6 ?m to 9.5 ?m. According to a preferred embodiment, the optical cable includes two optical fibers twisted together along the longitudinal axis, each of the two optical fibers having a cable cut-off wavelength of 1290 nm to 1650 nm.Type: GrantFiled: November 7, 2008Date of Patent: February 19, 2013Assignee: Prysmian S.p.A.Inventors: Marco Ruzzier, Francesco Sartori, Enrico Consonni, Daniele Cuomo
-
Patent number: 8369667Abstract: Downhole cables are described that are configured to protect internal structures that may be detrimentally impacted by exposure to the downhole environment, by protecting such structures by at least two protective layers. In some examples, the structures to be protected may be housed in a protective tube housed within the protective outer sheath. The described configuration enables the use of structures such as polymer fibers in the cables for strength and load-bearing capability by protecting the fibers, by multiple protective layers, from exposure to gases or fluids within a wellbore.Type: GrantFiled: May 22, 2009Date of Patent: February 5, 2013Assignee: Halliburton Energy Services, Inc.Inventor: Lawrence Charles Rose
-
Patent number: 8363994Abstract: A fiber optic cable assembly includes an outer jacket defining a first passage and a second passage disposed adjacent to the first passage. The outer jacket includes a wall disposed between an outer surface of the outer jacket and the first passage. A plurality of optical fibers is disposed in the first passage. A reinforcing member is disposed in the second passage. An access member is disposed in the wall of the outer jacket.Type: GrantFiled: March 2, 2011Date of Patent: January 29, 2013Assignee: ADC Telecommunications, Inc.Inventor: Wayne M. Kachmar
-
Patent number: 8290320Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.Type: GrantFiled: September 27, 2011Date of Patent: October 16, 2012Assignee: ADC Telecommunications, Inc.Inventor: Wayne M. Kachmar
-
Patent number: 8285094Abstract: The multicore fiber comprises 7 or more cores, wherein diameters of the adjacent cores differ from one another, wherein each of the cores performs single-mode propagation, wherein a relative refractive index difference of each of the cores is less than 1.4%, wherein a distance between the adjacent cores is less than 50 ?m, wherein, in a case where a transmission wavelength of each of the cores is ?, the distance between the adjacent cores is , a mode field diameter of each of the cores is MFD, and a theoretical cutoff wavelength of each of the cores is ?c, (/MFD)·(2?c/(?c+?))?3.95 is satisfied, and wherein a distance between the outer circumference of the coreand an outer circumference of the clad is 2.5 or higher times as long as the mode field diameter of each of the cores.Type: GrantFiled: February 23, 2012Date of Patent: October 9, 2012Assignee: Fujikura Ltd.Inventors: Katsuhiro Takenaga, Ning Guan, Syouji Tanigawa
-
Patent number: 8238706Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a bowtie shape. The outer jacket defines at least first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The fiber optic cable includes a plurality of optical fibers positioned within the first passage and a tensile strength member positioned within the second passage. The tensile strength member has a highly flexible construction and a transverse cross-sectional profile that is elongated in the orientation extending along the major axis.Type: GrantFiled: May 19, 2011Date of Patent: August 7, 2012Assignee: ADC Telecommunications, Inc.Inventor: Wayne M. Kachmar
-
Patent number: 8184935Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first, second and third separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The third passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The first, second and third passages are generally aligned along the major axis with the third passage being positioned between the first and second passages.Type: GrantFiled: October 21, 2010Date of Patent: May 22, 2012Assignee: ADC Telecommunications, Inc.Inventor: Wayne M. Kachmar
-
Patent number: 8145021Abstract: Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.Type: GrantFiled: January 13, 2010Date of Patent: March 27, 2012Assignee: Atomic Energy Council-Institute of Nuclear ResearchInventors: Yi-Ping Liang, Kuo-Hsin Lin, Hwen-Fen Hong, Hwa-Yuh Shin, Cherng-Tsong Kuo
-
Patent number: 8107781Abstract: A fiber optic cable assembly includes an optical fiber, a strength layer surrounding the optical fiber and an outer jacket surrounding the strength layer. The outer jacket includes a base material having a Shore D Hardness of at least 85 and liquid crystal polymer embedded in the base material. The liquid crystal polymer constitutes less than 2% of the outer jacket by weight.Type: GrantFiled: November 19, 2010Date of Patent: January 31, 2012Assignee: ADC Telecommunications, Inc.Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
-
Patent number: 8041166Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.Type: GrantFiled: October 28, 2009Date of Patent: October 18, 2011Assignee: ADC Telecommunications, Inc.Inventor: Wayne M. Kachmar
-
Patent number: 8023786Abstract: In order to improve a cable, comprising an inner cable body, in which at least one conductor strand of an optical and/or electrical conductor runs in the longitudinal direction of the cable, an outer cable sheath, enclosing the inner cable body and lying between an outer sheath surface of the cable and the inner cable body, and at least one information carrier unit, disposed within the outer sheath surface of the cable such that the cable also comprises a shielding, the invention proposes that the information carrier unit having an antenna unit lying in an antenna surface running approximately parallel to the longitudinal direction of the cable, by the antenna surface running at a distance from an electrical shielding of the cable and by providing, between the antenna surface and the shielding, a spacing layer, in which the electromagnetic field that couples to the antenna unit and passes through the antenna surface can extend between the antenna unit and the shielding.Type: GrantFiled: November 6, 2009Date of Patent: September 20, 2011Assignee: Lapp Engineering & Co.Inventor: Siegbert Lapp
-
Patent number: 8000573Abstract: Generic tow lead-in for streamers providing communication between the seismic systems and the streamers, consisting of at least four wire power quad, at least four multimode optical fibers and at least one signal pair, where the at least one signal line do not utilize a screen.Type: GrantFiled: August 15, 2005Date of Patent: August 16, 2011Inventor: Phil Roscoe
-
Patent number: 7907807Abstract: Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).Type: GrantFiled: October 14, 2008Date of Patent: March 15, 2011Assignee: Weatherford/Lamb, Inc.Inventors: Paul E. Sanders, Edward M. Dowd, Andrew S. Kuczma, Trevor W. MacDougall, Brian J. Pike
-
Patent number: 7706640Abstract: A telecommunication fiber optic cable for gas pipeline application has a built-in leakage detecting device. The cable has an optical core including a number of telecommunication optical fibers, an outer jacket covering the optical core, and one or more gas leakage detector optical fibers. One or more gas leakage detector optical fibers are enclosed within the outer jacket. Preferably, the cable has a linearly extending rod reinforcing system having strength rods that force the cable to bend in a preferential bending place. Preferably, the leakage detector optical fibers are located at, or close to, a plane that is substantially orthogonal to the preferential bending plane and passing through the cable neutral axis.Type: GrantFiled: October 23, 2003Date of Patent: April 27, 2010Assignee: Prysmian Cavi E Sistemi Energia S.R.L.Inventors: Massimo Pizzorno, Alessandro Ginocchio, Mauro Maritano
-
Patent number: 7693377Abstract: An optical fiber module includes an optical fiber that transmits a light and a holding unit that holds the optical fiber in a state in which the optical fiber is stretched in its longitudinal direction to change optical characteristics of the optical fiber.Type: GrantFiled: September 3, 2008Date of Patent: April 6, 2010Assignee: The Furukawa Electric Co., Ltd.Inventors: Masanori Takahashi, Jiro Hiroishi, Masateru Tadakuma, Takeshi Yagi
-
Patent number: 7509009Abstract: The present invention provides an optical fiber structure that allows for reliable and easy branching of optical fibers, as well as a method of manufacturing such optical fiber structure. The optical fiber structure proposed by the present invention is characterized by a structure wherein multiple optical fiber units, each comprising multiple optical fibers that are aligned two-dimensionally in such a way that one side is covered by a first covering body, are aligned so that the covered surfaces face the same direction, and the covered or uncovered surfaces of the multiple optical fiber units are integrally covered by a second covering body. The second covering body should preferably be made of silicone rubber having a tearing strength of 29 kgf/cm or below.Type: GrantFiled: March 9, 2006Date of Patent: March 24, 2009Assignee: Tomoegawa Paper Co., LtdInventors: Masayoshi Suzuki, Kyoichi Sasaki, Ken Sukegawa
-
Patent number: 7433564Abstract: An optical phase modulator made of lithium niobate or the like phase-modulates the output light of a single-wavelength laser light source 20 that emits CW light, and the phase-modulated light is inputted to a dispersion medium 22. The positive chirp and negative chirp of light to which frequency chirp is applied by phase modulation draw near in the dispersion medium and an optical pulse is generated.Type: GrantFiled: May 25, 2004Date of Patent: October 7, 2008Assignee: Fujitsu LimitedInventors: Fumio Futami, Shigeki Watanabe
-
Patent number: 7402215Abstract: Deformed wire for a submarine optical fiber cable used for the pressure-proof layer of the submarine optical cable and having a high strength, that is, having a tensile strength of 1800 MPa or more, is provided, which deformed wire for reinforcing submarine optical fiber cable is characterized by including, by wt %, C: more than 0.65% to 1.1%, Ceq=C+1/4Si+1/5Mn+4/13Cr satisfying 0.80%?Ceq?1.80%, having a number of shear bands cutting across an L-section center axial line of 20/mm per unit length of the center axis, having an angle formed by the center axis and shear bands in the range of 10 to 90°, having a tensile strength of 1800 MPa or more, having a sectional area forming an approximately fan shape, a plurality of the approximately fan shapes being combined to form a circular hollow cross-section for accommodating optical fibers, having at its surface a pebbled surface comprised of relief shapes of depths of 0.2 to 5 ?m, and having a weld at least at one location in the longitudinal direction.Type: GrantFiled: January 14, 2003Date of Patent: July 22, 2008Assignees: Nippon Steel Corporation, Namitei Co., Ltd., OCC CorporationInventors: Shoichi Ohashi, Hitoshi Demachi, Masatsugu Murao, Michiyasu Honda
-
Patent number: 7231119Abstract: A tube assembly of the present invention has at least one subunit with at least one dry insert generally surrounding the subunit which may be disposed within a tube, thereby forming a tube assembly. The subunit includes a fiber optic ribbon and a sheath, wherein the sheath is tight-buffered about the fiber optic ribbon, thereby inhibiting buckling of the ribbon during temperature variations. Additionally, the tube assembly can be a portion of a fiber optic cable having a sheath that may include a plurality of strength members and a cable jacket. In other embodiments, the subunits and dry insert are disposed within a cavity, thereby forming a tubeless cable. Additionally, subunits may include a marking indicia for denoting the security level.Type: GrantFiled: July 6, 2004Date of Patent: June 12, 2007Assignee: Corning Cable Systems, LLC.Inventors: Brian K. Rhoney, Samuel D. Nave, Todd R. Rhyne, Scott M. Torrey, Martyn N. Easton, David C. Hall, Alan T. Parsons, Jody L. Greenwood, Kenneth D. Temple, Jr., Jason C. Lail
-
Patent number: 7224872Abstract: An array of fiber optic hydrophones or geophones is formed by winding of optical fiber around a continuous, yet flexible cylindrical core. The cylindrical core contains an elastomer filled with a specified percentage of voided plastic microspheres. The elastomer provides the necessary radial support of the optical fiber, and with the included voided microspheres, provides sufficient radial compliance under acoustic pressure for proper operation of the hydrophone. The cylindrical core can be made in very long sections allowing a plurality of fiber optic hydrophones to be wound onto it using a single optical fiber, with individual hydrophone elements separated by integral reflectors such as Fiber Bragg Gratings (FBSs). The center of the core may include a strength member and a central hollow tube for the passing of additional optical fibers. The aforementioned hydrophone array is then packaged within a protective outer coating or coatings as required for the specified application.Type: GrantFiled: October 3, 2003Date of Patent: May 29, 2007Assignee: Sabeus, Inc.Inventors: Eric L. Goldner, William Briggs
-
Patent number: 7221831Abstract: A multi-tube fiber optic cable maintains a plurality of fiber tubes, each fiber tube containing at least one optical fiber therein. The plurality of fiber tubes are disposed apart from a central axis of the cable. A plurality of strength members are disposed apart from a central axis of said cable. An outer jacket surrounds the plurality of fiber tubes and the plurality of strength members and is formed from a pressure extruded polymer. The plurality of fiber tubes and strength members are held in either one of an oscillated geometry or a helical geometry by the pressure extruded jacket.Type: GrantFiled: March 3, 2005Date of Patent: May 22, 2007Assignee: NexansInventors: David Keller, Randie Yoder
-
Patent number: 7203396Abstract: An all optical chopping device for shaping and reshaping comprising an all optical AND logic gate having a first input for receiving a first optical signal, a second input for receiving a second optical signal and at least one output. The AND gate may be arranged to produce at least at one output thereof an optical output signal corresponding to a portion of the AND product of the first optical signal and the second optical signals. The optical output signal may be narrower than at least one of the first optical signal and the second optical signal.Type: GrantFiled: April 20, 2004Date of Patent: April 10, 2007Assignee: Main Street Ventures, LLCInventors: Arie Shahar, Eldan Halberthal
-
Patent number: 6990266Abstract: An optical switching element having a simple configuration and high response and capable of performing gradation display by area gradation is provided. In a state where a light extracting portion is in contact with an upper substrate, light enters the light extracting portion from the upper substrate, emits from the back face of the light extracting portion, is passed through a lower substrate, and becomes transmission light. In a state where the light extracting portion is attracted by the lower substrate side, the incident light is totally reflected by a total reflection face, and total reflection light emits from a V-shaped groove. The incident light can be switched in two directions and obtained as the transmission light and the total reflection light.Type: GrantFiled: April 11, 2005Date of Patent: January 24, 2006Assignee: Sony CorporationInventor: Takuya Makino
-
Patent number: 6782011Abstract: A lensed polarization maintaining fiber having a lens on an end thereof has a core, two stress-applied regions disposed on both sides of the core, respectively, and a clad containing the core and stress-applied regions. The lens has at least an inclined face, the inclined face including an edge. Each of the stress-applied regions is exposed on the inclined face except the edge.Type: GrantFiled: April 2, 2002Date of Patent: August 24, 2004Assignee: The Furukawa Electric Co., Ltd.Inventors: Teruo Kusano, Toshio Mugishima, Jun Miyokawa
-
Patent number: 6775444Abstract: A fiber optic assembly and method of manufacturing the same include at least one central strength member, a first layer of optical fibers, a second layer of optical fibers, and a jacket. The first and second layers of optical fibers are adjoining layers formed by a common strander. Optical fibers can migrate between the adjoining two layers at different longitudinal positions in the cable without entanglement among themselves. Additionally, the optical fibers in adjoining layers can have the same lay length and same phase relationship.Type: GrantFiled: February 28, 2003Date of Patent: August 10, 2004Assignee: Corning Cable Systems LLCInventor: William C. Hurley
-
Patent number: 6618526Abstract: A fiber optic cable having at least two interfaces being formed by first and second members. Between the interfaces is at least one retention area having an optical fiber component disposed therein. The retention area is disposed generally longitudinally and non-helically relative to an axis of the cable. The cable may also include a cable jacket substantially surrounding the members, a cushioning zone adjacent the optical fiber component, a water-blocking component and/or an interfacial layer. In another embodiment, a fiber optic cable includes a strength group having at least one strength member and an optical fiber being proof-tested to 125 KPSI or greater.Type: GrantFiled: September 27, 2001Date of Patent: September 9, 2003Assignee: Corning Cable Systems LLCInventors: William S. Jackman, Louis A. Barrett
-
Patent number: 6459836Abstract: A protective cable armor for cable having tensile stiffness and providing structural protection from invasion by foreign objects. The armor comprises a substantially planar sheet member having a length and a width and an intermittent corrugation pattern disposed therein. The intermittent corrugation pattern comprises at least one land extending across the width of the sheet member and having a defined land width. The intermittent corrugation pattern further comprises at least one, groove extending across the width of the sheet member and having a defined groove width, where the defined land width differs from the defined groove width. The land is disposed adjacent the groove. The sheet member can also be disposed in a substantially tubular form.Type: GrantFiled: December 16, 1999Date of Patent: October 1, 2002Assignee: Avaya Technology Corp.Inventors: Luis M. Bocanegra, Lisa A. Dixon, Michael D. Kinard, Phillip M. Thomas, Robert A. Williams
-
Patent number: 5293442Abstract: A polymer-insulated crush-resistant high-strength optical waveguide fiber cable buffered by a braided layer of porous polytetrafluoroethylene fibers to provide strength, a low thermal expansion coefficient buffer, and strong environmental protection.Type: GrantFiled: July 15, 1992Date of Patent: March 8, 1994Assignee: W. L. Gore & Associates, Inc.Inventor: Emile G. Sayegh
-
Patent number: 5222173Abstract: The electro-optical overhead wire is made from a plurality of circular cross-sectioned strand elements and consists of a core and a plurality of wire layers surrounding the core radially. The wire layers include at least one layer of chiefly electrically conducting wires and at least one other layer of predominantly high tensile strength wires. At least one of the wire layers of the high tensile strength wire also contains at least two strand elements arranged symmetrically around the core and each consisting of a high quality steel tube with an outer diameter of 2.5 mm containing at least 12 light wave guides. Alternatively or in addition, the electro-optical overhead wire is made up of a core and a first wire layer immediately surrounding the core and a second wire layer immediately surrounding the first wire layer, while the core contains a high quality steel tube with a five mm diameter containing 12, 18 or 24 bundles of light wave guides containing two light wave guides in each bundle.Type: GrantFiled: August 26, 1991Date of Patent: June 22, 1993Assignee: Felten & Guilleaume Enrgietechnik AktiengesellschaftInventor: Joachim Bausch
-
Patent number: 5150443Abstract: A cable for data transmission comprising a core comprising at least one energy transmission line; a jacket enclosing the core; armor strands wound around the jacket; and an embedding elastic structure, surrounding the jacket and designed to receive the armor strands. The cable may be manufactured as follows: (1) surrounding the core with a jacket; (2) surrounding the jacket with an embedding layer of curable but non cured thermosetting material; (3) enclosing the thermosetting layer with helically wound armor strands, in such a way that complementary grooves are generated in the embedding layer; and (4) subjecting the cable to heat in order to cure the thermosetting material of the embedding structure.Type: GrantFiled: August 14, 1990Date of Patent: September 22, 1992Assignee: Schlumberger Techonolgy CorporationInventor: Willem A. Wijnberg