With Strength Member Patents (Class 385/113)
  • Patent number: 10268015
    Abstract: This optical fiber cable comprises an optical unit obtained by creating strands of a plurality of optical fiber tape cores, a tube in which the optical unit is housed, and a cable sheath that covers the outside of an aggregate of a plurality of tubes. The optical fiber tape cores have provided thereto, between some or all of optical fiber cores when a plurality of optical fiber cores are positioned in parallel, and intermittently in the longitudinal direction thereof, connecting parts that connect adjoining optical fiber cores, and non-connecting parts at which adjoining optical fiber cores are not connected. The tube has a Young's modulus lower than the Young's modulus of the cable sheath, and the aggregate is such that the plurality of tubes on the inside of the cable sheath deform elastically with respect to one another, with some thereof being in surface contact with the cable sheath.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: April 23, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Fumiaki Sato, Keisuke Okada, Yoshiaki Nagao, Nobuyuki Suzuki
  • Patent number: 10254495
    Abstract: The present disclosure relates to a fiber optic connector and cable assembly. The fiber optic connector and cable assembly includes a fiber optic connector, a fiber optic cable, and an anchoring mechanism. The fiber optic connector includes a connector housing and a ferrule assembly having a ferrule and a spring. The fiber optic cable includes at least one optical fiber contained within a cable jacket and at least one strength structure for providing tensile reinforcement to the fiber optic cable. The fiber optic cable is attached to the fiber optic connector and the at least one optical fiber runs from the fiber optic cable through a total length of the fiber optic connector. The anchor mechanism anchors the at least one optical fiber to at least one of the cable jacket and the at least one strength structure.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: April 9, 2019
    Assignee: CommScope Technologies LLC
    Inventor: Yu Lu
  • Patent number: 10215015
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 26, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Patent number: 10168503
    Abstract: Enhanced traceability of cables is provided using illumination. An embodiment comprises introducing a chemiluminescent (alternatively, fluorescent) solution into a chamber coupled to at least a portion of an insulating jacket that surrounds a transmission medium, the chamber being initially hollow and, in at least a portion thereof, comprised of a substance through which light is viewable, such that upon introduction of the solution through a port, light emitted by the solution is viewable through at least a portion of the chamber. In another embodiment, a first and second compartment contain a first and second substance, respectively, and are physically separated. When an opening is caused in the physical separation, the substances are allowed to mix, the substances being chosen as providing a chemiluminescent reaction upon the mixing, such that light emitted by the chemiluminescent reaction is viewable.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORTAION
    Inventors: Eric J. Campbell, Sarah K. Czaplewski, Lee N. Helgeson, Jonathan L. Kaus, Pamela L. Lembke
  • Patent number: 10133019
    Abstract: The present disclosure relates to a telecommunications connection device. The device including a housing, a plurality of single-fiber connectorized pigtails that extend outwardly from the housing and a multi-fiber connectorized pigtail that extends outwardly from the housing. The multi-fiber connectorized pigtail can be optically coupled with the single fiber connectorized pigtails. The device can include optical fibers routed from the multi-fiber connectorized pigtail through the housing to the single-fiber connectorized pigtails. The single-fiber connectorized pigtails can be more flexible than the multi-fiber connectorized pigtail.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: November 20, 2018
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Scott C. Kowalczyk, Steven C. Zimmel, James J. Brandt, Oscar Fernando Bran De Leon, Erik J. Gronvall, Trevor D. Smith, Yu Lu, David J. Anderson
  • Patent number: 10120152
    Abstract: An all-dielectric self-supporting (ADSS) cable may include a central strength member and a plurality of buffer tubes helically wrapped around the central member. Each of the plurality of buffer tubes may house at least one optical fiber, and an outer jacket may surround the plurality of buffer tubes and the central strength member. Additionally the central strength member may include a plurality of different strength layers including a first layer formed from relatively flexible material and a second layer formed from relatively rigid material.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: November 6, 2018
    Assignee: Superior Essex International LP
    Inventor: Christopher Robert Evans
  • Patent number: 10032540
    Abstract: A multilayer insulated wire having a polyester-based resin layer formed of a polyester-based resin containing at least a trihydric or higher hydric alcohol constituent on a conductor, and a PEEK resin layer formed of polyether ether ketone or modified polyether ether ketone, directly or by interposing an intermediate layer, on the polyester-based resin layer; a coil formed by winding processing the insulated wire, and electronic/electrical equipment having the coil.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: July 24, 2018
    Assignees: Furukawa Electric Co., Ltd., Furukawa Magnet Wire Co., Ltd.
    Inventors: Ryosuke Obika, Tsuneo Aoi
  • Patent number: 9925389
    Abstract: The present application relates to a shape memory alloy hypotube as well as use thereof in a blood vessel optical fiber guide wire. The hypotube comprises several spiral coils. This hypotube is made from a shape memory alloy such that its diameter varies over temperature. Thus, it can closely wrap an axial fiber disposed therein. Through phase change properties and shape memory properties of the memory alloy, the inner diameter of the hypotube changes over temperature. The hypotube produces two functions: making a wrapping expand and tight binding fixed. The shape memory alloy hypotube can improve the strength and safety of optical fiber guide wire. The hypotube can easily enter the blood vessel of human body. Further, the conventional winding process can be simplified.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: March 27, 2018
    Inventor: Hua Shang
  • Patent number: 9915799
    Abstract: The present invention relates to central loose optical-fiber cables. An exemplary optical-fiber cable includes a central buffer tube that encloses loose optical fibers. Stranded strength yarns surround the central buffer tube and the optical fibers positioned within the central buffer tube's annular space, and a cable jacket surrounds the stranded strength yarns.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: March 13, 2018
    Assignee: Prysmian S.p.A.
    Inventors: Brian G. Risch, Denise Collado
  • Patent number: 9869838
    Abstract: An optical fiber cable is provided. The cable includes: an optical fiber core having a central axis; a presser winding covering the optical fiber core; a sheath covering the presser winding; two tension members in the sheath and facing each other with the central axis therebetween; and two rip cords facing each other with the central axis therebetween and being in direct contact with the sheath and the presser winding. The optical fiber core includes a plurality of optical fiber tapes arranged around the central axis and having mutually different stripe ring marks applied thereon. Each optical fiber tapes includes a plurality of optical fibers intermittently adhered to each other.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: January 16, 2018
    Assignee: FUJIKURA LTD.
    Inventors: Tomoaki Kaji, Masatoshi Ohno, Daiki Takeda, Ken Osato, Masayoshi Yamanaka, Naoki Okada
  • Patent number: 9846105
    Abstract: A high-durability and long-scale-distance fiber grating sensor and a manufacturing method therefor, which relate to the technical field of fiber grating sensors. A fiber grating is disposed on the middle segment of a commercial optical fiber. A bushing, a woven fiber jacket layer, and a packaging structure are disposed on the periphery of the commercial optical fiber. The commercial optical fiber and the bushing therebetween are fixed by using fixing points in the bushing. Anchoring segments are disposed between the fixing points in the bushing and the woven fiber jacket layer. Two ends of the commercial optical fiber are sequentially connected to optical fibers on the anchoring segments and connecting optical fibers. Tail ends of the connecting optical fibers are connected to a transmission cable by using connecting flanges.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: December 19, 2017
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Zhishen Wu, Caiqian Yang, An Sun, Wan Hong, Yongsheng Tang
  • Patent number: 9669592
    Abstract: A method of manufacturing a fiber optic cable includes manufacturing a subunit and manufacturing an outer portion. Manufacturing the subunit includes extruding a subunit jacket over a first reinforcement material constraining an optical fiber. Manufacturing the outer portion of the fiber optic cable includes extruding an outer jacket over a second reinforcement material between the outer jacket and the subunit jacket. Hoop stress is applied to the second reinforcement material by the outer jacket, which constrains the second reinforcement material such that it is positioned and oriented to provide anti-buckling support to the fiber optic cable and mitigate effects on the optical fiber of jacket shrinkage due to low temperatures.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: June 6, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Andrew S Dodd, Dieter Erwin Kundis, Sebastian Olszewski
  • Patent number: 9547096
    Abstract: The present disclosure provides an optical fiber cable. The optical fiber cable includes a buffer tube substantially present along a longitudinal axis. Further, the optical fiber cable includes a first layer. The first layer surrounds the buffer tube. Furthermore, the optical fiber cable includes a second layer. The second layer surrounds the first layer. Moreover, the optical fiber cable includes one or more strength members embedded inside the second layer. Further, the buffer tube encloses a plurality of optical fibers. Moreover, each of the plurality of optical fibers is color coded from a set of standard fiber colors and wherein the set of standard fiber colors comprises twelve colors. The first layer and the second layer provide a kink resistance, a crush resistance and flexibility to the optical fiber cable. Each of the one or more strength members is coated with a layer of ethylene acrylic acid.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: January 17, 2017
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Sravan Kumar, Roshan Kumar, Kishore Sahoo, Liu Buyong, Shivam Srivastava, Phill Coppin
  • Patent number: 9488793
    Abstract: A combined low attenuation optical communication and power cable is provided. The cable includes a cable body having an inner surface defining a channel within the cable body. The cable includes an optical transmission element located within the channel and a copper electrical conducting element located within the channel. The cable includes a plurality of tensile strength yarn stands located within the channel.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: November 8, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventor: James Arthur Register, III
  • Patent number: 9453979
    Abstract: A multi-core optical fiber ribbon easily optically connected to another optical component is provided. A multi-core optical fiber ribbon 1 includes a plurality of multi-core optical fibers 10 arranged parallel to one another and a common resin 20, with which the plurality of multi-core optical fibers 10 are collectively coated. A core arrangement direction in which plurality of cores in each of the plurality of multi-core optical fibers 10 are arranged is parallel to or perpendicular to the fiber arrangement direction in which the plurality of multi-core optical fibers 10 are arranged at least at both ends of the multi-core optical fiber ribbon 1.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: September 27, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takuji Nagashima, Toshiki Taru, Eisuke Sasaoka
  • Patent number: 9421140
    Abstract: A patient lift for transporting patients having a hoist assembly, a lift assembly and an integrated flexible load-bearing supporting member. The flexible load-bearing supporting member is retractable into the hoist assembly and has integrated load-bearing, data communications, and power components to transmit data and/or power to/from the hoist assembly and lift assembly.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: August 23, 2016
    Assignee: ARJOHUNTLEIGH MAGOG INC.
    Inventors: Martin Faucher, Denis-Alexandre Brulotte
  • Patent number: 9354414
    Abstract: A drop cable assembly has a drop cable and an outer sheath formed around the drop cable that encloses and reinforces the drop cable. The drop cable is accommodated within a cavity of the outer sheath and includes strength members.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: May 31, 2016
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: Benjamin Roberts Blackwell, Stephen Robert Horan, Jr.
  • Patent number: 9269401
    Abstract: An apparatus for storing data and supplying stored data. The apparatus comprises a support unit having a plurality of connectors for connecting to a plurality of data storage elements, and a plurality of data storage elements. Each data storage element is connected to one of the connectors. The apparatus also comprises a cable having a first end connected to the support unit and a second end connected to a main part. The main part defining a first space containing a portion of the cable, and a second space for containing the support unit. The support unit is movable between (i) a first position providing access to the data storage elements and (ii) a second position in which the data storage elements are located within the second space. The cable is a ribbon cable comprising power wires having a relatively large gauge and signal wires having a relatively small gauge.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: February 23, 2016
    Assignee: Nexsan Technologies Limited
    Inventors: Andrew Paul George Randall, Alan Jeffery, David Ian Belcher, Alastair Bryers, Stephen Freeman
  • Patent number: 9256043
    Abstract: A fiber optic cable includes a strength member, a layer of polyethylene contacting the exterior of the strength member, and a yarn wound around the strength member. The yarn is between the strength member and the layer of polyethylene.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: February 9, 2016
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventor: Daniel P. Haymore
  • Patent number: 9207418
    Abstract: Fiber bundles (10) comprise loose fibers (11) encased within a fiber/resin composite (12). The bundles are useful as strength members for fiber optic cables. In one embodiment the bundles are prepared by a method comprising the steps of (A) bundling fibers together such that a portion of the fibers form an interior part of the bundle and a portion of the fibers form an exterior part of the bundle, and (B) impregnating the exterior part of the bundle with a resin such that (1) the fibers that form the exterior part of the bundle and the resin form a fiber/resin composite that encases the fibers that for the interior part of the bundle, and (2) the fibers that form the interior part of the bundle are not impregnated with the resin.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 8, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Buo Chen, Jeroen Van Poucke
  • Patent number: 9188756
    Abstract: A hybrid cable includes a cable jacket, elements stranded within the cable jacket, and armor between the elements and the cable jacket. The armor is configured to provide electro-magnetic interference shielding and grounding as well as crush and impact resistance for the hybrid cable. The elements include electrical-conductor elements and one or more fiber-optic elements. The electrical-conductor elements include a metallic conductor jacketed in a polymer, where the electrical-conductor elements are each within the range of 10 American wire gauge (AWG) to 1\0 AWG. The one or more fiber-optic elements include optical fibers within a polymeric tube. At least six of the elements are stranded side-by-side with one another around a central element, which is one of the electrical-conductor elements or one of the one or more fiber-optic elements.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: November 17, 2015
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: James Arthur Register, III, David Henry Smith
  • Patent number: 9088372
    Abstract: A fiber optic security system is provided. The fiber optic security system includes at least one length of fiber optic cable affixed to at least one item to be monitored using the fiber optic security system. The fiber optic security system also includes at least one local control node, the at least one local control node including at least one light source for generating and transmitting light through the at least one length of fiber optic cable, and the at least one local control node monitoring a status of the light. The fiber optic security system also includes a remote control unit for receiving information from the at least one local control node regarding the status of the light.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: July 21, 2015
    Assignee: US Seismic Systems, Inc.
    Inventors: Eric Lee Goldner, Gerald Robert Baker, James Kengo Andersen, Agop Hygasov Cherbettchian
  • Patent number: 9086117
    Abstract: A termination for a circular cross section elongate member comprises a gripping member defining a non-circular passage for receiving a portion of an elongate member. The gripping member is configurable to reduce a dimension of the passage and clamp the portion of the elongate member within the gripping member.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 21, 2015
    Assignee: Paradigm Oilfield Technologies, B.V.
    Inventor: Andre Martin Van der Ende
  • Patent number: 9074462
    Abstract: Integrated fiber optic monitoring techniques for a wellsite are provided. A fiber optic cable is provided with a tubular housing having a channel and a plurality of slots, a plurality of optical fibers may be floatingly positionable in the channel for measuring at least one first wellsite parameter and a plurality of optical fibers fixedly may be positionable in each of the slots for measuring at least one second wellsite parameter. The tubular housing is positionable into a wellbore adjacent a tubing therein. Pairs of the fixed and floating optical fibers may be spliced together to perform Stimulated Brillouin measurements.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 7, 2015
    Assignee: Shell Oil Company
    Inventor: Jeremiah Glen Pearce
  • Patent number: 9064621
    Abstract: A parallel foamed coaxial cable includes one or more pairs of inner conductors aligned in parallel, a foamed insulation covering together the inner conductors and having a cross sectional shape including an elliptical shape, a rounded-rectangular shape or a quasi-elliptical shape formed by combining a plurality of curved lines, a non-foamed skin layer covering the foamed insulation and having a maximum thickness in a major axis direction of the cross sectional shape of the foamed insulation and a minimum thickness in a minor axis direction of the cross sectional shape of the foamed insulation, an outer conductor covering the non-foamed skin layer, and an insulation jacket covering the outer conductor. The maximum thickness of the non-foamed skin layer is not less than 1% of a major axis of the cross sectional shape of the foamed insulation.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 23, 2015
    Assignee: HITACHI METALS, LTD.
    Inventors: Sohei Kodama, Masafumi Kaga, Akinari Nakayama
  • Patent number: 9046658
    Abstract: A fiber optic cable assembly includes a fiber optic cable and a connector assembly. The fiber optic cable includes an optical fiber, having a core surrounded by a cladding, and a jacket, which surrounds the optical fiber. The jacket includes a plurality of reinforcement members integrated into a matrix material of the jacket. The connector assembly includes a rear housing having a connector end that is directly engaged with an end portion of the jacket. A fiber optic cable includes an optical fiber with a core surrounded by a cladding. The fiber optic cable also includes a jacket that surrounds the optical fiber. The jacket includes about 40% to about 70% by weight of a plurality of reinforcement members integrated into a matrix material of the jacket.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 2, 2015
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 9042693
    Abstract: The present invention provides optical-fiber communication cables with an improved water-blocking element that reduces or eliminates microbending caused by water-swellable particulate powders. In one embodiment, such water-swellable powders may be employed in conjunction with a smooth water-soluble carrier tape. In another embodiment, such water-swellable powders may embedded within a water-soluble binder. The water-blocking element is deployed within optical-fiber buffer tubes to water-block the buffer tubes and to minimize microbending that can occur when water-swellable particulate powders press against optical fibers.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: May 26, 2015
    Assignee: Draka Comteq, B.V.
    Inventor: Don Parris
  • Patent number: 9020314
    Abstract: An optical fiber unit (1) includes a tube (2) having stretchability in the axial direction, an optical fiber (4) movably housed in the tube (2), and a linear body (3) formed of a material having less stretchability than the tube (2). Both ends of the linear body (3) are fixed to both end portions of the tube (2) in a state where the tube (2) has been previously shrunk in the axial direction.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: April 28, 2015
    Assignee: Mori Seiki Co., Ltd.
    Inventor: Masayuki Niiya
  • Publication number: 20150093084
    Abstract: Fiber management structures for fan-out assemblies that are used to furcate a fiber optic cable are disclosed, as are fiber optic assemblies with fiber management structures and related methods. The fiber management structures each include channels extending between opposed first and second ends. A plurality of fan-out tubes are received in the plurality of channels such that the fiber management structure organizes the fan-out tubes, thereby allowing a compact furcation body to be formed even when furcating high fiber count cables.
    Type: Application
    Filed: January 17, 2014
    Publication date: April 2, 2015
    Applicant: Corning Cable Systems LLC
    Inventors: Terry Lee Cooke, Paula De La Rosa Moyeda, Christopher Shawn Houser, Norberto Marquez Cayetano, Francisco Luna Pina, Roberto Valderrabano Berrones
  • Patent number: 8995810
    Abstract: This invention relates to a fiber reinforced plastic material with improved flexibility and high tensile strength for use in optic cables. The strength member composition comprises a polypropylene based thermoplastic resin, a continuous fiber having a modulus greater than 80 PGa, and talc.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 31, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Buo Chen, Bharat I. Chaudhary, Chester J. Kmiec, Jeffrey M. Cogen
  • Patent number: 8992098
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: March 31, 2015
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 8989543
    Abstract: An optical cable comprises an optical fiber ribbon, a tension member and a sheath. The optical fiber ribbon is constructed by integrating a plurality of optical fibers arranged in parallel. The sheath is provided so as to surround the optical fiber ribbon. The sheath is used for protecting the optical cable. One optical fiber ribbon is arranged twistably within an inner space surrounded by the sheath.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: March 24, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yuya Homma, Itaru Sakabe, Kazuyuki Sohma
  • Publication number: 20150055921
    Abstract: A fiber optic cable includes one or more optical fibers, a jacket, strength members, and water-swellable powder. The jacket is formed from a polymer and has a cavity defined therein. The one or more optical fibers extend through the cavity. Further, the jacket is non-round in cross-section and the strength members are encapsulated in the jacket on opposite sides of the cavity. The water-swellable powder is at least partially mechanically attached to an inner surface of the cavity, where the mechanical attachment of the water-swellable powder allows a portion of particles of the water-swellable powder to protrude beyond the surface and not be completely embedded therein.
    Type: Application
    Filed: April 29, 2014
    Publication date: February 26, 2015
    Applicant: Corning Optical Communications LLC
    Inventors: Anne Germaine Bringuier, Rodney Maurice Burns, John Arthur Rowe, Catharina Lemckert Tedder, Brian Smith Witz
  • Patent number: 8965158
    Abstract: A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 3 mm?DO?5 mm.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: February 24, 2015
    Assignee: Corning Cable Systems LLC
    Inventor: James Arthur Register, III
  • Patent number: 8942528
    Abstract: A fiber optic cable sub-assembly comprises a fiber optic cable including at least one optical fiber, a cable jacket that houses the optical fiber and at least one metal strength member. A collar is attached to an end portion of the metal strength member, wherein the optical fiber extends beyond an outer axial end of the collar. In another example a fiber optic cable assembly is fabricated from the fiber optic cable sub-assembly wherein a connector housing is attached to the collar, and an interface operably connects an end portion of the optical fiber to an active optical component within the connector housing. In further examples, methods of assembly for a fiber optic cable sub-assembly are provided along with using the sub-assembly for making a fiber optic cable assembly.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: January 27, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Thomas Theuerkorn, Martin Eugene Norris
  • Patent number: 8942526
    Abstract: A fiber optic cable includes first and second optical fibers. A fiber section surrounds the fibers and is formed of a first material. First and second strength members are adjacent to the fiber section on opposite sides thereof. A jacket surrounds the first and second strength members and fiber section. The jacket is formed of a second material, stronger than the first material and which does not adhere to the first material. The jacket may be manually torn open to access the fiber section. The fiber section may be manually pinched and stripped cleanly from the fibers. The fiber section acts as a cocoon to protect the fibers when the jacket is opened and cleanly pulls off of the fibers by manual force.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: January 27, 2015
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Joseph J. Lichtenwalner, Jarrett S. Shinoski, Vo Loc, Shawn L. Burch
  • Patent number: 8938144
    Abstract: An optical fiber cable including, in a radial direction outward, a central strength member, a first layer of loose buffer tubes stranded around the central strength member, at least one of the loose buffer tubes of the first layer containing at least one light waveguide, an intermediate layer, a second layer of loose buffer tubes stranded around the intermediate layer, at least one of the loose buffer tubes of the second layer containing at least one light waveguide, and a jacket surrounding the second layer of loose buffer tubes, wherein the intermediate layer is formed of a material having a high coefficient of friction.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: January 20, 2015
    Assignee: Draka Comteq B.V.
    Inventors: Jan Hennink, Jean-Pierre Bonicel, Pascal Maria Willem Bindels
  • Publication number: 20150016790
    Abstract: A cable includes a jacket defining an exterior of the cable and a rigid tube. The cable further includes densely-packed strength members on the outside of the rigid tube, compressed between the rigid tube and the jacket, and loosely-packed strength members on the inside of the rigid tube. Further the cable includes a core that is interior to the tube.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 15, 2015
    Inventors: H. Edward Hudson, William Carl Hurley
  • Patent number: 8934747
    Abstract: A breakout cable includes a polymer jacket and a plurality of micromodules enclosed within the jacket. Each micromodule has a plurality of bend resistant optical fibers and a polymer sheath comprising PVC surrounding the bend resistant optical fibers. Each of the plurality of bend resistant optical fibers is a multimode optical fiber including a glass cladding region surrounding and directly adjacent to a glass core region. The core region is a graded-index glass core region, where the refractive index of the core region has a profile having a parabolic or substantially curved shape. The cladding includes a first annular portion having a lesser refractive index relative to a second annular portion of the cladding. The first annular portion is interior to the second annular portion. The cladding is surrounded by a low modulus primary coating and a high modulus secondary coating.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: January 13, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Craig Miller Conrad, William Carl Hurley, David Henry Smith
  • Patent number: 8923677
    Abstract: A fiber optic jumper cable having a central axis includes a bend-resistant optical fiber generally arranged along the central axis. A tensile-strength layer surrounds the bend-resistant optical fiber. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 1.6 mm?DO?4 mm.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: December 30, 2014
    Assignee: Corning Cable Systems LLC
    Inventor: James Arthur Register, III
  • Patent number: 8923676
    Abstract: An armored cable having a polymer covering where the bond between the armor and the covering is controlled by introducing particulate matter at the interface of the armor and covering. A filler material is applied to the exterior surfaces of the cable strength elements in order to inhibit the formation of voids in the polymer covering that would otherwise promote water migration along the cable.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: December 30, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Bradley J. Blazer, Jason C. Lail
  • Publication number: 20140369656
    Abstract: A fiber optic cable includes a jacket, an element of the cable interior to the jacket, and first and second powders. The element includes a first surface and a second surface. The cable further includes a third surface interior to the jacket and facing the first surface at a first interface and a fourth surface interior to the jacket and facing the second surface at a second interface. At least one of the third and fourth surfaces is spaced apart from the jacket. The first powder is integrated with at least one of the first and third surfaces at the first interface and the second powder integrated with at least one of the second and fourth surfaces at the second interface. The first interface has greater coupling than the second interface at least in part due to differences in the first and second powders.
    Type: Application
    Filed: December 7, 2013
    Publication date: December 18, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: Michael John Gimblet, Jason Clay Lail, Warren Welborn McAlpine, David Alan Seddon, Catharina Lemckert Tedder
  • Patent number: 8913863
    Abstract: A hydrocarbon application cable of reduced nylon with increased flexibility and useful life. The cable may be of a hose or solid configuration and particularly beneficial for use in marine operations. A power and data communicative core of the cable may be surrounded by a lightweight intermediate polymer layer of a given hardness which is ultimately then surrounded by an outer polymer jacket having a hardness that is greater than the given hardness. Thus, a lighter weight polymer is provided interior of the outer polymer jacket, which may be of nylon or other suitably hard material. As such, the overall weight and cost of the cable may be substantially reduced.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 16, 2014
    Assignee: WesternGeco L.L.C.
    Inventors: Joseph Varkey, Jushik Yun, Byong Jun Kim
  • Patent number: 8909015
    Abstract: Disclosed is a composition for a high strength loose tube type fiber optic cable with excellent flexibility and excellent impact resistance, which includes a polypropylene-polyethylene copolymer having a melt flow index (MFI) of 1.1 g/10 minutes to 3.0 g/10 minutes at 230° C. and a flexural modulus of 10,000 to 23,000 kg/cm2. A fiber optic cable including a loose tube formed with the composition for a high strength loose tube type fiber optic cable has excellent flexibility and impact resistance as well as excellent appearance.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: December 9, 2014
    Assignee: LS Cable & System Ltd.
    Inventors: Jeong-Eun Lim, Yu-Hyoung Lee, Gi-Joon Nam
  • Patent number: 8909014
    Abstract: A fiber optic cable includes a cable jacket and a core. The cable jacket is tubular, having exterior and interior surfaces, and is formed mostly from a first polymeric material. The jacket includes access features formed from a second polymeric material at least partially embedded in the first polymeric material and extending lengthwise along the jacket. Two of the access features are spaced apart from one another with a section of the jacket formed from the first polymeric material extending laterally therebetween, such that the section may be peeled apart from the rest of the cable lengthwise along the jacket by separation of the jacket about the access features. The core has an outermost surface and includes optical fibers and a strength member. The outermost surface of the core is at least partially bonded to the interior surface of the jacket, which enhances coupling between the jacket and core.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: December 9, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Michael J. Gimblet, Julian L. Greenwood, III
  • Patent number: 8903212
    Abstract: A fiber optic cable includes an optical fiber, a strength layer surrounding the optical fiber, and an outer jacket surrounding the strength layer. The strength layer includes a matrix material in which is integrated a plurality of reinforcing fibers. A fiber optic cable includes an optical fiber, a strength layer, a first electrical conductor affixed to an outer surface of the strength layer, a second electrical conductor affixed to the outer surface of the strength layer, and an outer jacket. The strength layer includes a polymeric material in which is embedded a plurality of reinforcing fibers. A method of manufacturing a fiber optic cable includes mixing a base material in an extruder. A strength layer is formed about an optical fiber. The strength layer includes a polymeric film with embedded reinforcing fibers disposed in the film. The base material is extruded through an extrusion die to form an outer jacket.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: December 2, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8897613
    Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: November 25, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8855454
    Abstract: The present invention relates to a bundled cable suitable for installation in multiple dwelling unit (MDU) applications. The bundled cable includes two or more binders stranded around multiple stranded cable units. The bundled cable not only maintains its integrity on a reel and during installation, but also reduces installation time.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: October 7, 2014
    Assignee: Draka Comteq, B.V.
    Inventors: Justin Elisha Quinn, Thomas Andrew Rasmussen, III
  • Publication number: 20140241678
    Abstract: A fiber optic cable assembly includes a distribution cable and a tether cable. The distribution cable includes a jacket having a generally flat profile such that the periphery of the distribution cable, when viewed in cross-section, includes two major surfaces of the jacket that are generally flat and are connected by arcuate end surfaces of the jacket. The jacket defines a cavity therein. Further, the distribution cable includes strength members embedded in the jacket and positioned on opposing sides of the cavity. The distribution cable includes a plurality of optical fibers extending through the cavity. The tether cable includes an optical fiber that is fusion spliced to one of the optical fibers of the distribution cable by way of an opening in a side of the jacket of the distribution cable.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: Corning Optical Communications LLC
    Inventors: Anne Germaine Bringuier, Julian Latelle Greenwood, III, David Alan Seddon, Kimberly Dawn Slan, Kenneth Darrell Temple, JR.
  • Publication number: 20140226940
    Abstract: A multi-tube optical fiber cable has a core with a first set of one or more optical fiber tubes, each having one or more optical fibers loosely arranged therein. The first set of tubes is constructed of a polymer having a low Young's constant modulus. The core also includes at least two strength members with a first binder arranged around the first set of optical fiber tubes and the strength members, where the first binder is substantially flat in shape such that there is no deformation of the first set of tubes, and where the strength members are offset from a central axis of the cable. The cable maintains a second set of a plurality of optical fiber tubes, each having one or more optical fibers loosely arranged therein, arranged around the outer circumference of the core.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: NEXANS
    Inventor: NEXANS