Ribbon Cable Patents (Class 385/114)
  • Patent number: 8238706
    Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a bowtie shape. The outer jacket defines at least first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The fiber optic cable includes a plurality of optical fibers positioned within the first passage and a tensile strength member positioned within the second passage. The tensile strength member has a highly flexible construction and a transverse cross-sectional profile that is elongated in the orientation extending along the major axis.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: August 7, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20120189257
    Abstract: According to the present invention, there is provided an optical fiber, an optical fiber ribbon and an optical fiber cable that reduce both the increase in transmission loss and the decrease in strength. According to an embodiment of the present invention, there is provided an optical fiber in which an outer circumferential surface of an optical fiber is coated with a primary coating layer. In the optical fiber, the primary coating layer includes a ultraviolet curable resin, and the ultraviolet curable resin contains 0.05 or more and 0.75 or less parts by weight of a reactive silane coupling agent and 0.05 or more and 0.75 or less parts by weight of an unreactive silane coupling agent.
    Type: Application
    Filed: February 15, 2012
    Publication date: July 26, 2012
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Minoru KASAHARA, Minoru Saito, Yasuo Nakajima, Hiroki Tanaka
  • Patent number: 8229263
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material that is capable of releasably and intermittently coupling the optical fibers to the buffer tube in various orientations. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer and yet permits localized movement the optical fibers relative to the buffer tube to account for disparate thermal expansion and to accommodate optical fiber placement.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: July 24, 2012
    Assignee: Draka Comiteq, B.V.
    Inventors: Don Parris, Greg DeChristopher, Justin Elisha Quinn
  • Patent number: 8208773
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material and features a number of raised members projecting toward the optical fibers. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer. This arrangement distributes the compressive force applied to discrete points along the outer perimeter of the optical fiber element.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 26, 2012
    Assignee: Draka Comteq, B.V.
    Inventor: Don Parris
  • Patent number: 8184935
    Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first, second and third separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The third passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The first, second and third passages are generally aligned along the major axis with the third passage being positioned between the first and second passages.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: May 22, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20120121225
    Abstract: Cables have reduced freespace, reduced tube diameters, and reduced strength member diameters. The cables are designed to pass robustness testing such as GR-20 while using smaller amounts of raw materials to produce.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 17, 2012
    Inventors: Scott A. McDowell, Julian L. Greenwood, III, Reginald Roberts, David A. Seddon
  • Publication number: 20120106907
    Abstract: Fiber optic ribbon matrix materials having low oligomer content and fiber optic ribbons that contain a matrix prepared from such compositions are disclosed.
    Type: Application
    Filed: January 12, 2012
    Publication date: May 3, 2012
    Inventors: Michelle D. Fabian, Kevin R. McCarthy
  • Patent number: 8145021
    Abstract: Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 27, 2012
    Assignee: Atomic Energy Council-Institute of Nuclear Research
    Inventors: Yi-Ping Liang, Kuo-Hsin Lin, Hwen-Fen Hong, Hwa-Yuh Shin, Cherng-Tsong Kuo
  • Publication number: 20120027366
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material that is capable of releasably and intermittently coupling the optical fibers to the buffer tube in various orientations. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer and yet permits localized movement the optical fibers relative to the buffer tube to account for disparate thermal expansion and to accommodate optical fiber placement.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 2, 2012
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Don Parris, Greg DeChristopher, Justin Elisha Quinn
  • Publication number: 20120027367
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material and features a number of raised members projecting toward the optical fibers. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer. This arrangement distributes the compressive force applied to discrete points along the outer perimeter of the optical fiber element.
    Type: Application
    Filed: October 7, 2011
    Publication date: February 2, 2012
    Applicant: DRAKA COMTEQ B.V.
    Inventor: Don Parris
  • Patent number: 8107781
    Abstract: A fiber optic cable assembly includes an optical fiber, a strength layer surrounding the optical fiber and an outer jacket surrounding the strength layer. The outer jacket includes a base material having a Shore D Hardness of at least 85 and liquid crystal polymer embedded in the base material. The liquid crystal polymer constitutes less than 2% of the outer jacket by weight.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 31, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Publication number: 20120020632
    Abstract: An optical fiber cable includes an elongated optical element portion having an optical fiber, a pair of tensile strength members and an outer jacket. The optical fiber is composed of one or more plastic coated optical fibers, tight-buffered optical fibers or optical ribbon fibers. The pair of tensile strength members is arranged in parallel at both sides of the optical fiber in a width direction of the optical fiber. The outer jacket covers outer circumferences of the optical fiber and the pair of tensile strength members. A frictional coefficient of the outer jacket is equal to or less than 0.20. Shore D hardness of the outer jacket is equal to or more than 60.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 26, 2012
    Applicants: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, FUJIKURA LTD.
    Inventors: Satoru SHIOBARA, Shimei TANAKA, Tadayoshi SAYAMA, Daiki TAKEDA, Masashi OHNO, Naoki OKADA, Keiichiro SUGIMOTO, Shinichi NIWA
  • Publication number: 20120020673
    Abstract: The invention relates to an optical backplane, comprising a plurality of component connectors and at least two interconnections configurations interconnecting the component connectors. The at least two interconnections configurations allow a dynamical selection of an interconnections configuration interconnecting the component connectors.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 26, 2012
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Martin Julien, Robert Brunner
  • Publication number: 20110317969
    Abstract: A method and spacer for assembling flexible optical waveguide ribbons and assembled stack of such ribbons. The method includes the steps of: providing at least two optical waveguide ribbons and a spacer, which includes at least two calibrated spaces; positioning a ribbon stack in the spacer, where the ribbon stack includes the at least two optical waveguide ribbons stacked on top of each other; constraining positioned ribbon stack in one of the calibrated spaces; and fixing constrained ribbon stack in the calibrated spaces.
    Type: Application
    Filed: March 3, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATION BUSINESS MACHINES CORPORATION
    Inventors: Roger F Dangel, Daniel S. Jubin, Tobias P. Lamprecht, Bert Jan Offrein
  • Patent number: 8081853
    Abstract: Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The improved coating system provides optical fibers that offer significant advantages to single-fiber drop cables, such as those employed for Multiple Dwelling Unit (MDU) applications.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 20, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Bob J. Overton
  • Publication number: 20110305035
    Abstract: An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
    Type: Application
    Filed: August 19, 2011
    Publication date: December 15, 2011
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Edward John Fewkes, Stephan Lvovich Logunov
  • Patent number: 8073298
    Abstract: A process for fabricating a fiber composite underbody panel for a vehicle begins by laying-up a first fiber composite sheet on a suitable form or tool. Current carrying wiring that is normally carried by the floor is laid in place on the first sheet, with the ends of the wires extending beyond the edges of the sheet. The wires are shielded to prevent the radiation of fields therefrom into the interior of the vehicle. Fiber optic cable is used to carry signals. A second fiber composite sheet is then laid-up on the first sheet. The two sheets with the embedded wires are placed in a heated mold to form the sheets into the desired finished shape and configuration. The ends of the copper wires and the fiber optic cables are then terminated by connectors so that they may be later coupled to the circuitry of the vehicle.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: December 6, 2011
    Assignee: Mag IAS, LLC
    Inventor: Moshe I. Meidar
  • Publication number: 20110286708
    Abstract: A telecommunications cable including a main cable having a central buffer tube enclosed within a cable jacket and a ribbon stack positioned within the buffer tube. The main cable includes a cut region where a slot has been cut through the cable jacket and the buffer tube to provide access to the ribbon stack during manufacture of the telecommunication cable. A tether branches from the main cable at the cut region. The tether includes an optical fiber that is optically coupled to an optical fiber of the ribbon stack.
    Type: Application
    Filed: November 23, 2010
    Publication date: November 24, 2011
    Applicant: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Erik Gronvall
  • Publication number: 20110274396
    Abstract: The present invention provides an optical fiber in which the transmission loss increase is suppressed even under a high-humidity condition or under a water-immersed condition. A colored optical fiber (22) according to an embodiment of the present invention is a colored optical fiber (22) formed by applying a colored layer to an optical fiber (14) including a glass optical fiber coated with at least a double-layered coating layer of a soft layer and a hard layer, and the ratio of thermal expansion coefficient between the coating layer after the colored layer of the colored optical fiber (22) is applied and the coating layer of the optical fiber (14) before the colored layer is applied is 0.87 or more.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 10, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yasuo NAKAJIMA, Kouji Mochizuki, Hiroki Tanaka, Yoshihiro Arashitani
  • Publication number: 20110262148
    Abstract: Embodiments of the present invention include an optical fiber cable for use in a plenum. The cable comprises a tube, at least one optical fiber ribbon positioned within the tube, the optical fiber ribbon having a width (W), a jacket around the tube, the jacket having an outer diameter (D) and a limited oxygen index (LOI) of approximately at least 65%, at least two longitudinal strength members positioned between the tube and an outer surface of the jacket; and a yarn positioned between the tube and the jacket, wherein the ratio of the width (W) of the optical fiber ribbon and the outer diameter (D) of the jacket is approximately at least 0.25.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 27, 2011
    Applicant: OFS Fitel, LLC
    Inventor: Peter A. Weimann
  • Patent number: 8041166
    Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 18, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8041167
    Abstract: Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The improved coating system provides optical fibers that are useful in buffer tubes and cables having relatively high filling coefficients and fiber counts.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: October 18, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Bob J. Overton
  • Patent number: 8041168
    Abstract: Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The secondary coating provides improved ribbon characteristics for structures that are robust, yet easily entered (i.e., separated and stripped). The optional dual coating is specifically balanced for superior heat stripping in fiber ribbons, with virtually no residue left behind on the glass. This facilitates fast splicing and terminations.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: October 18, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Bob J. Overton
  • Patent number: 8036510
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material and features a number of raised members projecting toward the optical fibers. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer. This arrangement distributes the compressive force applied to discrete points along the outer perimeter of the optical fiber element.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 11, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Don Parris
  • Patent number: 8036509
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material that is capable of releasably and intermittently coupling the optical fibers to the buffer tube in various orientations. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer and yet permits localized movement the optical fibers relative to the buffer tube to account for disparate thermal expansion and to accommodate optical fiber placement.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 11, 2011
    Assignee: Draka Comteq, B.V.
    Inventors: Don Parris, Greg DeChristopher, Justin Elisha Quinn
  • Patent number: 8031998
    Abstract: An illumination fiber optic ribbon includes optically-transmissive fibers which are adjacent to each other. At least two of the optically-transmissive fibers are twisted together to form a twisted segment. Where the two optically-transmissive fibers are not twisted forms a non-twisted segment. The twisted segments and non-twisted segments alternate along the length of the ribbon. Bends are disposed along the twisted segment and are formed by twisting adjacent optically-transmissive fibers. A light source is connected to one or both ends of the optically-transmissive fibers. The light source emits a light flux into the ribbon so that light emits from the bends in the twisted segment.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: October 4, 2011
    Assignee: Amphenol Corporation
    Inventors: Carl S. Booth, Albert Michael Ermer, Jr., Gregory Fitts, Mark Wayne Grover, William Hunt Pendleton
  • Patent number: 8023786
    Abstract: In order to improve a cable, comprising an inner cable body, in which at least one conductor strand of an optical and/or electrical conductor runs in the longitudinal direction of the cable, an outer cable sheath, enclosing the inner cable body and lying between an outer sheath surface of the cable and the inner cable body, and at least one information carrier unit, disposed within the outer sheath surface of the cable such that the cable also comprises a shielding, the invention proposes that the information carrier unit having an antenna unit lying in an antenna surface running approximately parallel to the longitudinal direction of the cable, by the antenna surface running at a distance from an electrical shielding of the cable and by providing, between the antenna surface and the shielding, a spacing layer, in which the electromagnetic field that couples to the antenna unit and passes through the antenna surface can extend between the antenna unit and the shielding.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Lapp Engineering & Co.
    Inventor: Siegbert Lapp
  • Patent number: 8005430
    Abstract: Signals propagating on an aggressor communication channel can cause interference in a victim communication channel. A sensor coupled to the aggressor channel can obtain a sample of the aggressor signal. The sensor can be integrated with or embedded in a system, such as a flex circuit or a circuit board, that comprises the aggressor channel. The sensor can comprise a dedicated conductor or circuit trace that is near an aggressor conductor, a victim conductor, or an EM field associated with the interference. An interference compensation circuit can receive the sample from the sensor. The interference compensation circuit can have at least two operational modes of operation. In the first mode, the circuit can actively generate or output a compensation signal that cancels, corrects, or suppresses the interference. The second mode can be a standby, idle, power-saving, passive, or sleep mode.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 23, 2011
    Assignee: Quellan Inc.
    Inventors: Edward Gebara, Andrew Joo Kim, Joy Laskar, Anthony Stelliga, Emmanouil M. Tentzeris
  • Patent number: 8000573
    Abstract: Generic tow lead-in for streamers providing communication between the seismic systems and the streamers, consisting of at least four wire power quad, at least four multimode optical fibers and at least one signal pair, where the at least one signal line do not utilize a screen.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: August 16, 2011
    Inventor: Phil Roscoe
  • Patent number: 7995887
    Abstract: The viewing angle dependence of the ? characteristic in a CPA mode liquid crystal display device is reduced in a desired direction. The liquid crystal display device is usable for a use in which a viewing angle characteristic in direction D1 parallel to a display plane needs to be higher than a viewing angle characteristic in another direction D2 parallel to the display plane. An electrode of the liquid crystal display device includes a solid area formed of a conductive film and a non-solid area with no conductive film. The solid area of the electrode includes a plurality of unit solid areas, above each of which a liquid crystal domain exhibiting a radially inclined orientation state is formed.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: August 9, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masumi Kubo
  • Patent number: 7983520
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber and a water-swellable powder within a tube and/or cavity and methods for making the same. Fiber optic assemblies of the present invention use relatively low-levels of water-swellable powder while still effectively blocking the migration of tap water and/or saline solutions of 3% by weight along the tube and/or cavity. Furthermore, cleaning of the optical fibers is not necessary before connectorization like with conventional fiber optic cables that use a gel or grease. Generally speaking, at least some of the water-swellable powder is transferred to the inside surface of the tube, cavity, optical fiber or the like; rather, than being a loose powder that is able to migrate within the tube or cavity. Moreover, the existence of water-swellable powder within the fiber optic assembly or cable is nearly transparent to the craft since relatively low-levels are possible.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 19, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Anne G. Bringuier, Warren W. McAlpine, Christopher M. Quinn, John A. Rowe, Dave A. Seddon, Catharina L. Tedder, Gilbert D. Tugman, Brian S. Witz, George Ndayizeye
  • Patent number: 7970247
    Abstract: Disclosed is a buffer tube that possesses a higher buffer-tube filling coefficient. Optical fibers enclosed within the buffer tube demonstrate improved attenuation performance when subjected to temperature variations between about ?40° C. and 70° C. The buffer tube is suitable for deployments requiring mid-span access.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: June 28, 2011
    Assignee: Draka Comteq B.V.
    Inventor: Jeffrey Scott Barker
  • Patent number: 7945133
    Abstract: A fiber optic cable assembly with a floating tap is disclosed, wherein the assembly comprises a fiber optic cable having a cable fiber assembly, such as in the form of a ribbon stack. The assembly includes at least one network access point (NAP) for accessing at least one cable fiber in the cable fiber assembly and at least one strength area for example a strength member. At least one cable fiber is extracted from the cable fiber assembly and held by a transition assembly. A buffer conduit loosely contains the at least one cable fiber and guides it to an intermediate buffer conduit, which in turn guides the at least one cable fiber to a splice tube. The intermediate buffer conduit can translate relative to the splice tube. At least one tether fiber is spliced to the at least one cable fiber. Alternatively, the at least one cable fiber has sufficient length to serve as the at least one tether fiber so that splicing to another fiber is not required. Each strength member is covered by a movable member.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph T. Cody, Dennis M. Knecht, Christopher P. Lewallen, James P. Luther
  • Publication number: 20110110635
    Abstract: Amono-coated optical fiber that has a bending loss characteristic in which an optical loss increase at a bending radius 13 mm is 0.2 dB/10 turn or less, an optical fiber ribbon that includes two-dimensionally disposed resin portions for bonding the adjacent 2-fiber mono-coated optical fibers in plural places, the resin portions being disposed apart from each other in the longitudinal direction of the optical fiber ribbon and an optical fiber cable that includes a cable core portion that stores twisting of plural units where the mono-coated optical fibers constituting the optical fiber ribbon are collected.
    Type: Application
    Filed: May 18, 2009
    Publication date: May 12, 2011
    Inventors: Kunihiro Toge, Yusuke Yamada, Kazuo Hogari
  • Patent number: 7941021
    Abstract: The present disclosure is generally directed to a fiber optic distribution cable assembly having an interior portion and an exterior portion. A distribution cable includes a plurality of optical fibers disposed within the interior portion and at least one predetermined mid-span access location positioned along a length of the distribution cable to provide access from the exterior portion to the interior portion. At least one optical fiber of the distribution cable is accessed and terminated from the distribution cable within the interior portion of the distribution cable. A tether having a first end is attached to the distribution cable through the mid-span access location. The tether has at least one optical fiber optically connected to the at least one terminated optical fiber of the distribution cable at a location within the interior portion of the distribution cable.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 10, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph Todd Cody, Julian Latelle Greenwood, III, Kenneth Darrell Temple, Jr.
  • Patent number: 7936958
    Abstract: An optical fiber coil and a production method therefor reduce the likelihood of optical transmission loss due to stress or temperature changes at low cost. Plural single optical fibers are arranged in parallel and are integrally covered with a covering portion so as to form an optical fiber ribbon, and the optical fiber ribbon is wound into a coiled state.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: May 3, 2011
    Assignee: Tomoegawa Co., Ltd.
    Inventors: Masayoshi Suzuki, Tadao Matsunaga, Tomoki Furue, Ken Sukegawa
  • Patent number: 7927025
    Abstract: An optical fiber branch cable is provided that comprises a branch portion disposed stably with respect to a multi-core optical fiber cable of a trunk line from which branching is performed, that is excellent in handleability as a cable, and that exhibits high workability. In the optical fiber branch cable of the invention, in a middle of a multi-core optical fiber cable 2 of a trunk line, a branch portion 11 is disposed. The branch portion 11 has: a base member 16 which is attached so as to cover a tensile-strength wire 9 in a portion where a cable jacket 10 of the multi-core optical fiber cable 2 is removed away; a multi-core optical connector 30 which is connected to the tip end of a tape unit 4 drawn out from the multi-core optical fiber cable 2; an extra-length housing portion 18 which houses an extra length of the tape unit 4 to which the multi-core optical connector 30 is connected; and a connector attaching portion 19 to which the multi-core optical connector 30 is attachable in a plural number.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: April 19, 2011
    Assignees: Sumitomo Electric Industries, Ltd., Toyokuni Electric Cable Co., Ltd.
    Inventors: Kenichiro Ohtsuka, Katsuyuki Aihara, Keisuke Okada, Masaji Yahagi, Hiroshi Nagai, Hideaki Tajima, Kimio Ito, Toshiyuki Igarashi
  • Publication number: 20110058779
    Abstract: A splittable optical fiber ribbon has a decreased propensity for fiber fallout along a longitudinal split. Fibers adjacent to a split location, called border fibers, have increased bond strength between their ink-coating and a surrounding matrix material. The bond strength is increased by first partially curing an ink that covers the border fibers, coating the partially-cured fibers with a matrix material, and then substantially fully curing the ink and the matrix material substantially simultaneously. The ribbon may include one or more grooves to enhance splitting the ribbon into subsets.
    Type: Application
    Filed: December 11, 2007
    Publication date: March 10, 2011
    Inventors: Ben H. Wells, Grant M. Davidson, John Sach
  • Patent number: 7899290
    Abstract: The present invention enables putting much more optic fibers per cable, such as for example even 1,000 or 10,000 times more than the prior art, with an increase in cost that is orders of magnitude smaller. One of the most important variations is using multi-fiber flexible flat jackets that can move freely within the cable's pipe, preferably only in one direction. Preferably at certain intervals (for example every few dozen centimeters or more or 1 or 2 meters or more) the flat jackets are preferably stitched together to each other and/or for example glued and/or otherwise coupled to each other in a way that preferably does not apply pressure to the optic fibers, and preferably are also coupled, preferably at the stitch position, also to the cable, in order to prevent undesired sliding movement of the jackets against each other and/or against the pipe and/or rotating out of orientation.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: March 1, 2011
    Inventors: Yaron Mayer, Al J. C. Baur
  • Patent number: 7899291
    Abstract: Polymer-coated transmission media having water-blocking material embedded in the outer surface of the transmission media prevents water penetration into the transmission media and reduces the overall diameter of a cable made from the transmission media by eliminating a water-blocking tape layer in the cable. The outer surface of the transmission media is a polymer whose outer surface is embedded with a water-blocking material. The water-blocking material is applied before the polymer is cured. The transmission media may be any known type of optical media, which guides a light within the optical media. In various embodiments, optical fibers, buffered optical fibers and fiber ribbons are used as the transmission media.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: March 1, 2011
    Assignee: OFS Fitel, LLC
    Inventors: Daniel Bardroff, Stefan Jost, Georg Koebler, Jason Pedder, Karl Uhl, Peter A. Weimann
  • Patent number: 7885502
    Abstract: A disclosed waveguide film cable includes a waveguide formed on a film. The waveguide film cable includes a coating film made of a material having a Young's modulus smaller than or equal to the Young's modulus of a material that forms the film and/or the waveguide and coats partially or entirely the film and/or the waveguide.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: February 8, 2011
    Assignee: Mitsumi Electric Co., Ltd.
    Inventor: Tadashi Ono
  • Patent number: 7848605
    Abstract: An optical probe for non-invasively measuring an analyte property in a biological sample of a subject, comprises a plurality of illumination fibers that deliver source light from an optical probe input to a sample interface, a plurality of collection fibers that deliver light returned from the sample interface to an optical probe output, and wherein the illumination and collection fibers are oriented substantially perpendicular to the sample interface and the illumination and collection fibers are stacked in a plurality of linear rows to provide a stack of fibers arranged in a rectangular pattern. The optical probe is amenable to manufacturing on a scale consistent with a commercial product. Methods of making such probes are described.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: December 7, 2010
    Assignee: TruTouch Technologies, Inc.
    Inventors: Trent Ridder, Ben ver Steeg, Mike Mills
  • Publication number: 20100296780
    Abstract: A process for manufacturing an optical fiber includes: drawing an optical waveguide from a glass preform; applying a layer of a first coating material on the optical waveguide; curing the first coating layer material to obtain a first coating layer; applying a layer of a second coating material onto the first coating layer; applying a layer of colored coating material onto the second coating layer; curing the second coating material and the colored coating material in a single step to obtain a second coating layer superposed on the first coating layer and a colored coating layer superposed on the second coating material layer, the obtained second coating layer having an elastic modulus higher than that of the first coating layer and lower than that of the colored coating layer. An optical fiber and an apparatus for producing it are also provided.
    Type: Application
    Filed: November 6, 2007
    Publication date: November 25, 2010
    Inventors: Antonio Schiaffo, Franco Cocchini, Nicola Scafuro, Giuseppe Galasso
  • Publication number: 20100296781
    Abstract: An optical fiber ribbon is capable of branching by means of any tool. The optical fiber ribbon is comprised of a plurality of optical fibers running in parallel, each of the optical fibers having an allowable radius of curvature; a blanket sheath totally covering the plurality of the optical fibers; one or more concavities formed at any one or more intermediates among the optical fibers; and slits respectively arranged in series at a regular interval along the concavities, the slits penetrating the blanket sheath and allowing the tool to be inserted and the blanket sheath to split by means of movement of the tool along the concavities. The length of each slit prior to insertion of the tool is so determined that flexures of the optical fibers induced by the tool widening the slits do not exceed the allowable radius of curvature.
    Type: Application
    Filed: December 25, 2008
    Publication date: November 25, 2010
    Applicant: FUJIKURA LTD.
    Inventors: Yukiko Sato, Keiko Sano, Naoki Okada
  • Patent number: 7840109
    Abstract: A telecommunications cable including a main cable having a central buffer tube enclosed within a cable jacket and a ribbon stack positioned within the buffer tube. The main cable includes a cut region where a slot has been cut through the cable jacket and the buffer tube to provide access to the ribbon stack during manufacture of the telecommunication cable. A tether branches from the main cable at the cut region. The tether includes an optical fiber that is optically coupled to an optical fiber of the ribbon stack.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: November 23, 2010
    Assignee: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Erik Gronvall
  • Publication number: 20100290747
    Abstract: A fiber optic cable includes at least one optical fiber, at least one strength member, armor components, and a cable jacket. The cable jacket has a cavity with a generally rectangular cross-section with the armor components disposed on opposite sides of the cavity.
    Type: Application
    Filed: July 26, 2010
    Publication date: November 18, 2010
    Inventors: Anne G. Bringuier, Julian L. Greenwood, III, David A. Seddon, Kimberly D. Slan, Kenneth D. Temple, JR.
  • Publication number: 20100290748
    Abstract: A composite cable that is able to prevent both the unfastening of the cable end from the connector and the occurrence of the bending distortion of the optical fiber, to both of which the expansion and shrinkage of the overall sheath is responsible, is provided. The composite cable comprises a stranded wire that is a strand of a plurality of insulated conductors each of which is a conductor with insulation covering thereon, an optical fiber ribbon that has a plurality of optical fibers parallelly-arranged in a row, and an overall sheath that covers the stranded wire and the optical fiber ribbon in a bundle, wherein the composite cable has a deterrent positioned on outer side of the stranded wire and the optical fiber ribbon parallelly-arranged in a row along the width direction of the overall sheath for deterring expansion and shrinkage of the overall sheath.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 18, 2010
    Applicant: Hitachi Cable, Ltd.
    Inventors: Seiji KOJIMA, Kanako SUZUKI, Yoshikazu NAMEKAWA
  • Publication number: 20100278495
    Abstract: A fiber optic cable assembly with a floating tap is disclosed, wherein the assembly comprises a fiber optic cable having a cable fiber assembly, such as in the form of a ribbon stack. The assembly includes at least one network access point (NAP) for accessing at least one cable fiber in the cable fiber assembly and at least one strength area for example a strength member. At least one cable fiber is extracted from the cable fiber assembly and held by a transition assembly. A buffer conduit loosely contains the at least one cable fiber and guides it to an intermediate buffer conduit, which in turn guides the at least one cable fiber to a splice tube. The intermediate buffer conduit can translate relative to the splice tube. At least one tether fiber is spliced to the at least one cable fiber. Alternatively, the at least one cable fiber has sufficient length to serve as the at least one tether fiber so that splicing to another fiber is not required. Each strength member is covered by a movable member.
    Type: Application
    Filed: July 8, 2010
    Publication date: November 4, 2010
    Inventors: Joseph T. Cody, Dennis M. Knecht, Christopher P. Lewallen, James P. Luther
  • Patent number: 7822307
    Abstract: When a glass fiber and an inner fiber coating layer are to be attached to a connector by removing an outer fiber coating layer while leaving the inner fiber coating layer as it is, a collective coating and the outer fiber coating layer can be removed at a stretch so that the inner fiber coating layer can easily and satisfactorily be exposed. In the ultraviolet curable resin coating layer of a coated optical fiber 17 of an optical fiber ribbon 11 for wiring of equipment, the inner fiber coating layer 15 has a Young's modulus of 600 MPa to 1000 MPa, and the outer fiber coating layer 16 has a Young's modulus of 10 MPa to 300 MPa. The material of the outer fiber coating layer 16 is made by mixing 100 weight parts of base resin, 1-30 weight parts of silicone-based additive, and 0.5 to 40 weight parts of long chain fatty acid ester compound, wherein the base resin is a material made of a urethane metha acrylate oligomer, a mono-functional or multi-functional reactive dilution monomer, and an optical initiator.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: October 26, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazunori Tanaka, Kazumasa Oishi, Tomoyuki Hattori, Tetsuya Haruna, Wataru Sakurai, Mitsuaki Tamura, Kazuto Saito
  • Publication number: 20100254658
    Abstract: When a glass fiber and an inner fiber coating layer are to be attached to a connector by removing an outer fiber coating layer while leaving the inner fiber coating layer as it is, a collective coating and the outer fiber coating layer can be removed at a stretch so that the inner fiber coating layer can easily and satisfactorily be exposed. In the ultraviolet curable resin coating layer of a coated optical fiber 17 of an optical fiber ribbon 11 for wiring of equipment, the inner fiber coating layer 15 has a Young's modulus of 600 MPa to 1000 MPa, and the outer fiber coating layer 16 has a Young's modulus of 10 MPa to 300 MPa. The material of the outer fiber coating layer 16 is made by mixing 100 weight parts of base resin, 1-30 weight parts of silicone-based additive, and 0.5 to 40 weight parts of long chain fatty acid ester compound, wherein the base resin is a material made of a urethane metha acrylate oligomer, a mono-functional or multi-functional reactive dilution monomer, and an optical initiator.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 7, 2010
    Inventors: Kazunori Tanaka, Kazumasa Oishi, Tomoyuki Hattori, Tetsuya Haruna, Wataru Sakurai, Mitsuaki Tamura, Kazuto Saito