For Fiber Scope (endoscope) Patents (Class 385/117)
  • Patent number: 9448395
    Abstract: A microscope has a light source for generating a light beam having a wavelength, ?, and beam-forming optics configured for receiving the light beam and generating a Bessel-like beam that is directed into a sample. The beam-forming optics include an excitation objective having an axis oriented in a first direction. Imaging optics are configured for receiving light from a position within the sample that is illuminated by the Bessel-like beam and for imaging the received light on a detector. The imaging optics include a detection objective having an axis oriented in a second direction that is non-parallel to the first direction. A detector is configured for detecting signal light received by the imaging optics, and an aperture mask is positioned.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: September 20, 2016
    Assignee: Howard Hughes Medical Institute
    Inventor: Robert E. Betzig
  • Patent number: 9380929
    Abstract: An endoscope includes a lens, a lens frame that holds the lens, and a bonding member that water-tightly fixes the lens to the lens frame, the bonding member composed of Sn-alloy solder containing at least one of Zn, Sb, Al and In, having a melting point not higher than 200° C. and forming a chemical bond via oxygen, and the lens, the lens frame and the bonding member are provided at a distal end portion of an insertion portion.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: July 5, 2016
    Assignee: Olympus Corporation
    Inventors: Atsushi Goto, Hiroaki Kinoshita
  • Patent number: 9308051
    Abstract: An illuminated medical tubing set that provides visual indications of characteristics relating to the type and operating status of the tubing. An illuminated tubing set system generally comprises an optical element, a fluid conduit, and a power source. In general, the fluid conduit is used to transmit fluid in a critical care environment. The power source interfaces with the optical element. The optical element is configured to illuminate the tubing set after being powered by the power source. Optionally, the illuminated tubing set can further comprise a pressure sensor and a microcontroller. Additional sensors, such as to monitor other characteristics of the tubing, fluid, or surrounding environment, can also be included. For example, an occlusion sensor, temperature sensor, or flow sensor, or any combination thereof, can be included.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: April 12, 2016
    Assignee: SMITHS MEDICAL ASD, INC.
    Inventors: Grant Adams, Eric Wilkowske
  • Patent number: 9204787
    Abstract: A panning stereo endoscope which maintains an up-down orientation as the stereo endoscope pans an operative field, the panning stereo endoscope including a shaft having an axis; first and second optical channels extending along the shaft, each of the first and second optical channels having an off-axis direction of view; and an actuating mechanism carried by the shaft and adapted to (i) synchronously rotate the first and second optical channels about their respective axes, and (ii) synchronously, inversely piston the first and second optical channels along their respective axes.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: December 8, 2015
    Assignee: ConMed Corporation
    Inventors: Yuri Kazakevich, Douglas D. Sjostrom
  • Patent number: 9097845
    Abstract: An optoelectronic chip, and/or a method of manufacturing the same, include a substrate; a coupler region surrounded by the substrate. The coupler region includes a total reflection surface. The total reflection surface is configured to totally reflect a first light incident through a surface of the substrate such that the reflected first light travels within the substrate, or the total reflection surface is configured to totally reflect a second light guided in the substrate and incident on the total reflecting surface such that the reflected second light travels through the surface of the substrate.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 4, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Seong-ho Cho
  • Patent number: 9007696
    Abstract: In part, the invention relates to a lens assembly. The lens assembly includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. In addition, the film surrounds a portion of the beam director.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 14, 2015
    Assignee: Lightlab Imaging, Inc.
    Inventors: Christopher Petersen, Stephen M. McCartin, Joseph M. Schmitt, Joel M. Friedman
  • Patent number: 8983257
    Abstract: An optical delivery apparatus is disclosed including: an optical fiber extending between a distal end having a distal end face and a proximal end having a proximal end face, an optical element positioned to receive the light emitted from the distal end face and direct the light to an illumination region; and a non-metallic housing containing the optical fiber and the optical element and maintaining the relative position of the optical fiber and the optical element.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: March 17, 2015
    Assignee: Nomir Medical Technologies, Inc.
    Inventors: Eric Bornstein, Edward Sinofsky
  • Patent number: 8970685
    Abstract: An endoscope apparatus is provided for which a user does not need to adjust irradiation light quantity intentionally while confirming a captured image. A captured image which is bright and has stable tint can be obtained without being limited by an imaging distance with respect to the observation of the structure or components of living bodies. The endoscope apparatus includes a first light source section, a second light source section, a light source control unit which controls the irradiation and irradiation light quantity, an imaging unit which obtains a captured image, luminance value calculating unit which calculates the luminance value, a light source light quantity changing unit which changes the irradiation light quantity according to the luminance value, a white balance adjustment value calculating unit which calculates a white balance adjustment value, and a gain adjusting unit which adjusts the gain of the imaging unit.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: March 3, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Yasuhiro Minetoma, Hiroshi Yamaguchi
  • Patent number: 8942523
    Abstract: Optical probe having, independently, an irradiation light guide path for irradiation light and a received light guide path for acquiring radiated light. A first optical fiber configures the irradiation light guide path, and a second optical fiber configures the received light guide path. A condensing lens receives on one surface irradiation light from the first optical fiber and emits same on the other surface, and receives radiated light radiated from the other surface and concentrates same on the side of the first and second optical fibers. The central axis of the exit end of the first optical fiber is deviated relative to the optical axis of the condensing lens, moving reflected light at the condensing lens surface away from, and moving radiated light concentrated by the condensing lens closer to, the center of the light-receiving end of the second optical fiber.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: January 27, 2015
    Assignee: Konica Minolta, Inc.
    Inventors: Junichi Jono, Toshinori Takimura, Shoichi Tao
  • Patent number: 8942530
    Abstract: An exemplary embodiment providing one or more improvements includes an endoscope connector for connecting any given one of a plurality of working assemblies to an imaging assembly.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 27, 2015
    Assignee: San Marino Capital, Inc.
    Inventors: Joseph R. Demers, Marek Sekowski
  • Patent number: 8911432
    Abstract: An apparatus for medical treatment by means of laser light includes an optical conducting fiber which has a curved light emission end and includes a core, a cladding arranged above the core for conducting laser light coupled into the optical conducting fiber, and capillaries arranged in the cladding, wherein the capillaries run in a longitudinal direction of the optical conducting fiber at a radial distance from a longitudinal axis of the optical conducting fiber and form a capillary ring when viewed in cross-section, wherein the capillaries have cavities which are separated by bridges which have a width which is smaller than a wavelength of the laser light, wherein the laser light emerges from a forward surface of the light emission end and is transmitted in a direction which runs transverse to a substantially straight longitudinal section located directly in front of a curvature which defines the curved light emission end.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: December 16, 2014
    Assignee: Adavanced Fiber Tools GmbH
    Inventors: Georg Kuka, Naim Ashraf, Torsten Hähnel
  • Patent number: 8896664
    Abstract: The disclosed method for processing a broadcast signal for 3D (3-Dimensional) broadcast service comprises encoding 2D (2-Dimensional) video stream including a 2D video frame, encoding depth information including depth of a 3D image relative to a plane of a display, encoding signaling information for signaling the encoded 2D video stream and the depth information, wherein the signaling information includes a 3D service location descriptor including codec type information specifying encoding type of the encoded depth information, generating the broadcast signal including the encoded 2D video stream, depth information and signaling information, and transmitting the generated broadcast signal.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: November 25, 2014
    Assignee: LG Electronics Inc.
    Inventors: Joonhui Lee, Jee Hyun Choe, Jongyeul Suh, Jeonghyu Yang
  • Patent number: 8891924
    Abstract: A surgical system includes an external anchor, an internal anchor and an instrument. The external anchor is adapted to be positioned outside a body. The internal anchor is adapted to be inserted into the body via a single entrance port, positioned inside the body and magnetically coupled with the external anchor. The instrument is adapted to be inserted into the body via the single entrance port and secured to the internal anchor. The instrument includes an end-effector that has multiple degrees of movement via multiple axes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 18, 2014
    Assignee: Bio-Medical Engineering (HK) Limited
    Inventors: Chung Kwong Yeung, Kai Leung Yung
  • Patent number: 8861907
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: October 14, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Publication number: 20140301705
    Abstract: An optical system for inspecting an area includes an optical housing and an optical element housed within the optical housing. The optical housing houses one or more optical fibers. The optical element housed within the optical housing focuses light onto the one or more optical fibers. A sealing member seals the optical element with respect to the optical housing. The sealing member includes a solidified glass frit material. In one example, the sealing member is disposed annularly between the optical housing and the optical element. A method of forming the optical system is also provided.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: General Electric Company
    Inventors: Manuel Kenneth Bueno, Eugene Carl Schiefer
  • Patent number: 8842953
    Abstract: An apparatus for applying energy to an object and/or sensing the object. The apparatus includes an optical device for applying and/or sensing light energy and an electrical device for applying and/or sensing electrical energy. At least one optical fiber is provided for applying light energy to the object and/or sensing the object. The at least one optical fiber is connected to the optical device and includes a conductive coating forming an electrical conductor for applying electrical energy to the object and/or sensing the object. The electrical conductor is connected to the electrical device.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: September 23, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Nenad Mihajlovic, Szabolcs Deladi, Joachim Kahlert
  • Patent number: 8818149
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can include a ball lens, and be configured to focus and provide there through the first electro-magnetic radiation to generate the focused electro-magnetic radiation. Further, the exemplary apparatus can include at least at least one dispersive third arrangement which can receive a particular radiation (e.g., the first electro-magnetic radiation(s) and/or the focused electro-magnetic radiation), and forward a dispersed radiation thereof to at least one section of the structure.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 26, 2014
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Patent number: 8788021
    Abstract: Analysis of live beings is facilitated. According to an example embodiment of the present invention, a light-directing arrangement such as an endoscope is mounted to a live being. Optics in the light-directing arrangement are implemented to pass source light (e.g., laser excitation light) into the live being, and to pass light from the live being for detection thereof. The light from the live being may include, for example, photons emitted in response to the laser excitation light (i.e., fluoresced). The detected light is then used to detect a characteristic of the live being.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: July 22, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior Univerity
    Inventors: Benjamin A. Flusberg, Eric David Cocker, Juergen Claus Jung, Mark Jacob Schnitzer
  • Publication number: 20140133814
    Abstract: An apparatus for treating a hollow anatomical structure can include a light delivery device. The light delivery device comprises an optical fiber that is located in a lumen of a shaft suitable for insertion into the hollow anatomical structure and has a fiber tip located proximal of a distal end of the shaft during treatment of the hollow anatomical structure. The apparatus can further include a liquid source for providing a liquid flow over the optical fiber at a predetermined liquid flow rate.
    Type: Application
    Filed: April 15, 2013
    Publication date: May 15, 2014
    Applicant: Covidien LP
    Inventors: Walter J. Stevens, Stephen W. Lee, Michael S. Mirizzi, Hoa D. Nguyen
  • Patent number: 8687928
    Abstract: Provided is an optical characteristic measuring probe which can detect the position and the direction of the leading end of the probe without affecting a monitoring image. The bendable optical characteristic measuring probe is provided with a light guide body (71), which transmits light emitted from a light source and irradiates a subject to be measured with light, and a guide tube (70), which holds the light guide body (71) such that the light guide body freely rotates about the axis and is freely displaced in the axis direction. The light guide body (71) guides at least two types of light, i.e., measuring light for measuring the optical characteristics of the subject to be measured, and position determining light for measuring the position of the light guide body. On the side surface of the guide tube (70), a mark (M) having the characteristics of transmitting the measuring light and returning only the position determining light to the light guide body is provided.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 1, 2014
    Assignee: Konica Minolta Opto, Inc.
    Inventor: Soh Ohzawa
  • Patent number: 8659842
    Abstract: An image capturing device and an assembling method thereof are provided. The assembling method includes the following steps. Firstly, a lens holder, a lens module and a casing are provided, wherein the lens holder includes a containing cavity. Next, the lens module is disposed in the containing cavity of the lens holder. Then, the casing is disposed on the lens holder and the lens module, wherein the casing covers a part of the lens module. Finally, an Ultrasonic Welding is applied on the lens holder and the casing for forming a melting interface between the lens holder and the casing so as to fix the casing to the lens holder.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 25, 2014
    Assignee: Himax Technologies Limited
    Inventor: Yin-Dong Lu
  • Patent number: 8644663
    Abstract: An imaging device including an illumination module including at least one emitter for emitting at least one excitation beam, a scanning and injection module including an image guide, a proximal end and a distal end of which are linked by a plurality of optical fibers, and a scanning and injection optical system configured to alternately inject the at least one excitation beam into an optical fiber of the image guide from the proximal end of the image guide, and a detection module including at least one detector for detecting at least one luminous flux collected at the distal end of the image guide. At least one of the illumination module and the detection module is optically conjugated with the scanning and injection module by a conjugating optical fiber.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: February 4, 2014
    Assignee: Mauna Kea Technologies
    Inventors: Bertrand Viellerobe, Francois Lacombe, Nicolas Boularot, Francois Doussoux, Nicolas Lavillonniere
  • Patent number: 8639078
    Abstract: Provided is a method for manufacturing an optical fiber that is inserted into an insertion portion of an endoscope and guides light, wherein inside an upright fiber drawing furnace, inside a hollow clad tube including a clad glass having a viscosity ?1 of 5.0<Log ?1<7.0 at a temperature at which a viscosity ?2 of a core glass becomes Log ?2=3.5, the core glass in a fluidized state runs down by gravity, whereby the core glass and the clad glass are integrated.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: January 28, 2014
    Assignee: Olympus Corporation
    Inventors: Makoto Tanabe, Hiroki Takagi
  • Publication number: 20130259436
    Abstract: Provided is a method for manufacturing an optical fiber that is inserted into an insertion portion of an endoscope and guides light, wherein inside an upright fiber drawing furnace, inside a hollow clad tube including a clad glass having a viscosity ?1 of 5.0<Log ?1<7.0 at a temperature at which a viscosity ?2 of a core glass becomes Log ?2=3.5, the core glass in a fluidized state runs down by gravity, whereby the core glass and the clad glass are integrated.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 3, 2013
    Applicant: OLYMPUS CORPORATION
    Inventors: Makoto TANABE, Hiroki TAKAGI
  • Patent number: 8542272
    Abstract: An image generating apparatus according to the present invention includes: a first light source unit that emits light in a first wavelength band to a subject; a second light source unit that emits light in a second wavelength band, which is a part of the first wavelength band, to the subject; an image pickup unit that picks up an image of the subject and outputs the image as an image pickup signal; a light cut filter unit that cuts light in the second wavelength band reflected from the subject; and a complementary processing unit that applies complementary processing to a component equivalent to the second wavelength band cut by the light cut filter unit in the image of the subject picked up by the image pickup unit in a state in which the subject is illuminated by the light in the first wavelength band.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: September 24, 2013
    Assignee: Olympus Medical Systems Corp.
    Inventors: Shunji Takei, Nobuyuki Doguchi, Kenji Yamazaki
  • Patent number: 8514278
    Abstract: An inspection apparatus can comprise at least one light source for illuminating a target. The at least one light source can be disposed and/or controlled in such manner as to reduce a heat generation by the at least one light source and in such manner as to reduce a power consumption of the at least one light source.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 20, 2013
    Assignee: GE Inspection Technologies LP
    Inventors: Thomas W. Karpen, Bradford Morse, James Jonathon Delmonico
  • Patent number: 8503844
    Abstract: In part, the invention relates to a lens assembly. The lens assembly includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. In addition, the film surrounds a portion of the beam director.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: August 6, 2013
    Assignee: Lightlab Imaging, Inc.
    Inventors: Christopher L. Petersen, Stephen M. McCartin, Joseph M. Schmitt, Joel M. Friedman
  • Patent number: 8466956
    Abstract: A scanning endoscope processor, comprising a photoelectric converter and a controller, is provided. The scanning endoscope processor controls a scanning endoscope having first and second transmitters and an actuator. The photoelectric converter receives light transmitted from the second transmitter and generates a pixel signal according to the amount of light received. The second transmitter transmits reflected light and/or fluorescence from a point within an observation area illuminated by the light emitted from a first emission end. The first transmitter emits the light as a beam from the first emission end. The actuator moves the first emission end along a spiral course. The controller adjusts at least one of a first angular velocity and a generation cycle so that the product of the first angular velocity, the generation cycle, and a first distance is within a predetermined range.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 18, 2013
    Assignee: Hoya Corporation
    Inventors: Hideo Sugimoto, Kohei Iketani
  • Patent number: 8414480
    Abstract: The present disclosure is generally directed towards methods and devices for reducing or eliminating reflection-illuminated artifacts. The methods and devices in several embodiments can include providing a transparent lens cover with a blocking member for reflecting or absorbing internally-reflected light. The lens cover can be attached at the distal end of an endoscope, cannula, and/or lumen in some embodiments. Alternatively, the lens cover can be a permanent part of the endoscope, lumen, and/or cannula.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: April 9, 2013
    Assignee: MAQUET Cardiovascular LLC
    Inventors: Amar Kendale, John Tamkin, Ethan Post
  • Patent number: 8409081
    Abstract: An illumination light application structure provided for irradiating an observation object with illumination light in an observation optical apparatus provided with an objective optical system inside a lens barrel whose top is configured into a slender shape, includes a wavelength converting element located in the proximity of a position of an entrance pupil of the objective optical system; a light source emitting light whose wavelength is converted by the wavelength converting element; and an irradiation device irradiating the wavelength converting element with the light emitted from the light source through the objective optical system.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: April 2, 2013
    Assignee: Olympus Medical Systems Corp.
    Inventor: Susumu Takahashi
  • Publication number: 20130071077
    Abstract: An exemplary embodiment providing one or more improvements includes an endoscope connector for connecting any given one of a plurality of working assemblies to an imaging assembly.
    Type: Application
    Filed: August 27, 2012
    Publication date: March 21, 2013
    Inventors: Joseph R. Demers, Marek Sekowski
  • Patent number: 8390924
    Abstract: An endoscope includes: a first illumination optical system which emits illuminating light in a first linear polarization direction to an object from a distal end face of an insertion portion; and a first objective optical system which allows return light from the object to enter through an objective window provided in the distal end face; wherein the first illumination optical system and the first objective optical system are placed in a positional relationship such that on the distal end face, a line segment connecting an optical axis of the first illumination optical system and an optical axis of the first objective optical system is parallel or perpendicular to a polarization direction which results when the illuminating light emitted from the first illumination optical system is projected to the distal end face, and no polarizing element is provided between the object and the objective window.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 5, 2013
    Assignee: Olympus Medical Systems Corp.
    Inventors: Daisuke Akiyama, Takeshi Suga, Satoshi Takekoshi, Kazuhiro Gono
  • Patent number: 8386023
    Abstract: A catheter tip apparatus arranged in a catheter for the delivery and collection of a light-energy signal to permit subsequent computerized analysis of body tissue by the collected signal. The apparatus comprises an elongated housing supporting a first reflective surface and a second reflective surface. The first reflective surface and the second reflective surface are longitudinally spaced apart from one another. A first flexible, elongated energy bearing delivery fiber has a distalmost end arranged adjacent the first reflective surface. A second flexible, elongated energy bearing collection fiber has a distalmost end arranged adjacent the second reflective surface. The housing is rotatably supported on a flexible catheter sheath for insertion of the catheter into a mammalian body for tissue analysis thereof.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 26, 2013
    Assignee: InfraReDx, Inc.
    Inventor: Simon M. Furnish
  • Patent number: 8358890
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: January 22, 2013
    Assignees: Boston Scientific Scimed, Inc., Coherent, Inc.
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Patent number: 8348524
    Abstract: A plug in which the base end portions of an image guide comprise an image guide fiber and an image guide rod. A light guide comprising a light guide fiber and a light guide rod are fixed to a plug main body in a parallel state. The plug and a socket can be connected. The diameter of a position-aligning hole portion into which the base end of the image guide rod is inserted is set to be substantially the same as the outer diameter of the image guide rod, while the diameter of a position-aligning hole portion into which the base end of the light guide rod is inserted is set to be greater than the outer diameter of the light guide rod.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: January 8, 2013
    Assignee: Covidien LP
    Inventors: Keita Iwamizu, Masatoshi Yokoyama
  • Patent number: 8285097
    Abstract: An annular side fire optical device for laterally redirecting electromagnetic radiation comprises a tapered section of silica, a conical section of silica adjoining the tapered section and an annular beveled end surface. The tapered section of silica has a diameter that increases with distance along a longitudinal axis in a direction toward a transmitting end. The conical section of silica comprises a wall of silica surrounding a conical bore. The conical bore has a diameter that increases with distance along the longitudinal axis in a direction toward the transmitting end. The annular beveled end surface is formed in the wall of silica at the transmitting end and is angled relative the longitudinal axis such that electromagnetic radiation propagating along the longitudinal axis through the conical section is reflected by the beveled end surface at an angle that is transverse to the longitudinal axis.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: October 9, 2012
    Assignee: AMS Research Corporation
    Inventor: Stephen E. Griffin
  • Patent number: 8275226
    Abstract: A multi-mode optical fiber delivers light from a radiation source to a multi-focal confocal microscope with reasonable efficiency. A core diameter of the multi-mode fiber is selected such that an etendue of light emitted from the fiber is not substantially greater than a total etendue of light passing through a plurality of pinholes in a pinhole array of the multi-focal confocal microscope. The core diameter may be selected taking into account a specific optical geometry of the multi-focal confocal microscope, including pinhole diameter and focal lengths of relevant optical elements. For coherent radiation sources, phase randomization may be included. A multi-mode fiber enables the use of a variety of radiation sources and wavelengths in a multi-focal confocal microscope, since the coupling of the radiation source to the multi-mode fiber is less sensitive to mechanical and temperature influences than coupling the radiation source to a single mode fiber.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 25, 2012
    Assignee: Spectral Applied Research Ltd.
    Inventor: Richard Berman
  • Patent number: 8273015
    Abstract: A method for viewing a portion of a patient's anatomy that comprises placing a scanner assembly including an oscillating reflector in the anatomy, securing the scanner assembly to an anatomical structure, scanning the anatomy with the scanner assembly secured to the anatomical structure, collecting radiation returned from the scanned anatomy, and generating a displayable image of the anatomy.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: September 25, 2012
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: David C. Youmans, Jane A. Sheetz, Gary L. Long, Paul G. Ritchie, Michael S. Cropper, Jere J. Brophy, Bradley E. White
  • Patent number: 8270794
    Abstract: The amount of heat generated at a light input portion of a light guide for endoscopes constituted by a plurality of bundled optical fibers is suppressed. The light guide for endoscopes is constituted by a plurality of bundled optical fibers, for propagating an illuminating light beam, which is focused and caused to enter a light input end facet thereof, to a light output end facet thereof, to emit the illuminating light beam onto a portion to be observed. A transparent member having a sectional shape which is at least as large as the focused spot of the illuminating light beam is provided in close contact with the light input end facets of the optical fibers. The optical fibers are connected to the transparent member in a maximally densely packed state.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 18, 2012
    Assignee: Fujifilm Corporation
    Inventor: Shinichi Shimotsu
  • Patent number: 8229264
    Abstract: The amount of heat generated at a light input portion of a light guide for endoscopes constituted by a plurality of bundled optical fibers is suppressed. The light guide for endoscopes is constituted by a plurality of bundled optical fibers, for propagating an illuminating light beam, which is focused and caused to enter a light input end facet thereof, to a light output end facet thereof, to emit the illuminating light beam onto a portion to be observed. A transparent member having a sectional shape which is at least as large as the focused spot of the illuminating light beam is provided in close contact with the light input end facets of the optical fibers. The optical fibers are connected to the transparent member in a maximally densely packed state.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: July 24, 2012
    Assignee: Fujifilm Corporation
    Inventor: Shinichi Shimotsu
  • Patent number: 8218927
    Abstract: A scanning optical head for a catheter is locally controlled by a motor at an insertion end of the catheter uses a hollow motor through which a longitudinal optical path of the catheter passes. This permits the motor to be positioned between a control base of the catheter and avoids rotating the whole fiber, and therefore makes the beam scanning stable and accurate. In addition, because there is no coupling component, it also eliminates the light reflection between additional surfaces as well as varying fiber birefringence, which becomes a cause of noise when imaging the deep structure.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: July 10, 2012
    Assignee: National Research Council of Canada
    Inventors: Shoude Chang, Erroll Murdock, Costel Flueraru, Youxin Mao
  • Patent number: 8189976
    Abstract: An endoscope system of the present invention includes: an image fiber with an image fiber main body made of a plurality of cores for forming pixels and a cladding common thereto; and an optical system connected to an eyepiece side of the image fiber for causing laser light to enter the image fiber and for taking in an image from the image fiber, in which the image fiber has the cores arranged substantially uniformly over a cross-section of the image fiber main body, the cross-section being perpendicular to a longitudinal direction of the image fiber main body.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: May 29, 2012
    Assignee: Fujikura Ltd.
    Inventors: Tomoaki Toriya, Takashi Tsumanuma, Keiji Kaneda, Kenichi Nakatate
  • Patent number: 8145018
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, first optical fiber arrangement(s) can be provided which transceives at least one first electro-magnetic radiation, and can include at least one fiber. Second focusing arrangement(s) can be provided in optical communication with the optical fiber arrangement. The second arrangement can be configured to focus and provide there through the first electro-magnetic radiation. Third dispersive arrangement(s) can receive a particular radiation which is the first electro-magnetic radiation and/or the focused electro-magnetic radiation, and forward a dispersed radiation thereof to at least one section of the structure. At least one end of the fiber can be directly connected to the second focusing arrangement and/or the third dispersive arrangement.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 27, 2012
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Patent number: 8116605
    Abstract: In part, the invention relates to a lens assembly. The lens assembly includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. In addition, the film surrounds a portion of the beam director.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 14, 2012
    Assignee: LightLab Imaging, Inc.
    Inventors: Christopher L. Petersen, Stephen M. McCartin, Joseph M. Schmitt, Joel M. Friedman
  • Patent number: 8094301
    Abstract: A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: January 10, 2012
    Assignees: Gas Technology Institute, The Board of Trustees of the University of Illinois
    Inventors: Alexei V. Saveliev, Serguei A. Zelepouga, David M. Rue
  • Patent number: 8002699
    Abstract: An endoscope has a shaft, a head disposed at a proximal end of said shaft and a light connection disposed at said head. Optical fibers extend from said proximal light connection to a distal end of said shaft. A sleeve in which a proximal end section of said light fibers is fixed is designed in such a way that it can be introduced in a linear movement without turning it into the light connection. Said sleeve is axially movable in said connecting piece.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: August 23, 2011
    Assignee: Karl Storz GmbH & Co. KG
    Inventor: Siegfried Hoefig
  • Patent number: 7991260
    Abstract: A light-diffusing safety cap for use with a light cable that couples an endoscope to a high intensity light source. The light-diffusing safety cap can be detachably or releasably coupled, in lieu of the endoscope, to the light cable, such that when the high intensity light source emits a high intensity light and the endoscope is not connected to the light cable, the light-diffusing safety cap reduces the intensity of the high intensity light emitted to the environment and provides an indication that the high intensity light source is activated when the endoscope is not connected to the light cable.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 2, 2011
    Assignee: SensorMed, Inc.
    Inventors: Michael C. Doody, William T. Milam
  • Patent number: 7990587
    Abstract: An electronic endoscope has a video-scope with an image sensor, a light source, a signal reading processor, a shading member, a driver, and a driving controller. The signal reading processor alternately reads odd-line image-pixel signals and even-line image-pixel signals over one-frame reading interval, when forming a still image on the basis of one frame worth of image-pixel signals generated by a one-time exposure. The shading member blocks the illuminating light. The driver selectively arranges the shading member at a non-shading position that enable the illuminating light to pass and at a shading position that blocks the light. The driving controller controls the driver by a sequence of pulse signals so as to position the shading member at the shading position for a shading-interval in the one-frame reading interval, and so as to position the shading member at the non-shading position for a remaining reading-interval.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: August 2, 2011
    Assignee: Hoya Corporation
    Inventor: Yasuharu Watanabe
  • Patent number: 7986861
    Abstract: An optical fiber connector has a first ferrule holding an end of a first optical fiber, a first fiber stub connected to the first ferrule, a second ferrule holding an end of a second optical fiber, and a second fiber stub connected to the second ferrule. The first fiber stub enlarges the beam diameter of light transmitted through the first optical fiber, and produces the collimated light. The second fiber stub reduces the beam diameter of the collimated light, and leads the converging light into the second optical fiber. The first and second fiber stubs are detachably connected inside a connection sleeve across a predetermined gap. First and second GI fibers contained in the first and second fiber stubs satisfy L1?L2 and L1+L2?½ pitch, wherein L1 and L2 represent the lengths of the first and second GI fibers, and one pitch is a sinusoidal period of the light transmitted therethrough.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: July 26, 2011
    Assignee: Fujifilm Corporation
    Inventor: Shinichi Shimotsu
  • Patent number: 7916990
    Abstract: A plurality of optical fibers are bundled, and the fiber bundle is cut at a part of a mouthpiece which is fixed on an intermediate part of the fiber bundle. Thus, the fiber bundle is divided into a first optical fiber bundle and a second optical fiber bundle. Division surfaces of the first and second optical fiber bundles have the same properties and condition since the first and second optical fiber bundles are formed of the fiber bundle that is obtained by bundling the same optical fibers. The first optical fiber bundle is assembled in an insertion section of an endoscope and the second optical fiber bundle is assembled in a flexible tube, and a first light guide in the insertion section of the endoscope and a second light guide in the flexible tube are formed. Thereby, a separable light transmission path of the light guide is formed.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: March 29, 2011
    Assignee: Olympus Medical Systems Corp.
    Inventors: Toshio Tanaka, Noboru Yamada