Including Physical Deformation Or Movement Of Waveguide Patents (Class 385/13)
  • Patent number: 11067386
    Abstract: An instrument system that includes an elongate instrument body and an optical fiber sensor is provided. The optical fiber sensor includes an elongate optical fiber that is coupled to the elongate instrument body, wherein a portion of the optical fiber is coupled to the elongate instrument body in a manner to provide slack in the fiber to allow for axial extension of the elongate instrument body relative to the optical fiber.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 20, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bhaskar S. Ramamurthy, Neal A. Tanner, Robert G. Younge, Randall L. Schlesinger
  • Patent number: 11047874
    Abstract: Systems and associated methods for utilizing an artificial hair sensor to gather fluid flow data sensed on a surface. The artificial hair sensors are disposed on a surface to acquire flow sensory data in approximately real-time and for a plurality of dynamic flow parameters on the surface. The sensory data is based on a quantity of the artificial hair sensors that can be configured in an array of sensors. A mapping module, such as a neural network, is operatively coupled to the artificial hair sensor array and receives the sensory data acquired by the artificial hair sensors and generates a time-varying signal, which is based on the quantity of dynamic parameters. A real-time representation of the time-varying signal is generated.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: June 29, 2021
    Assignee: Government of the United States as represented by the Secretary of the Air Force
    Inventors: Gregory W. Reich, Kaman Thapa Magar, Keith Slinker, Corey R. Kondash, Benjamin T. Dickinson, Jeffrey W. Baur, Alexander M. Pankonien
  • Patent number: 11035699
    Abstract: Example embodiments include an optical interrogation system with a sensing fiber having a single core, the single core having multiple light propagating modes. Interferometric apparatus probes the single core multimode sensing fiber over a range of predetermined wavelengths and detects measurement interferometric data associated with the multiple light propagating modes of the single core for each predetermined wavelength in the range. Data processing circuitry processes the measurement interferometric data associated with the multiple light propagating modes of the single core to determine one or more shape-sensing parameters of the sensing fiber from which the shape of the fiber in three dimensions can be determined.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: June 15, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Dawn K. Gifford, Eric E. Sanborn, Alexander K. Sang
  • Patent number: 10996101
    Abstract: A distributed acoustic sensing (DAS) system based on space-division multiplexing with multi-core fiber (MCF) is proposed. It relates to a technical field of distributed optical fiber sensing. The present invention maintains the advantage of single-ended measurement in the standard DAS system, and realizes the intensity accumulation of the Rayleigh backscattering light within each core of the MCF, which can greatly improve the strain resolution of DAS systems. Moreover, the introduction of optical switch can make different code sequences transmit in the different core of the MCF simultaneously, which can make the single-pulse response with coding gain demodulated without sacrificing the frequency responding bandwidth. Furthermore, the utilization of space-division multiplexing can make multiple pulses with precious time delay transmit in the MCF simultaneously, which can greatly improve the frequency responding bandwidth of DAS system.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: May 4, 2021
    Assignee: University of Electronic Science and Technology of China
    Inventors: Yunjiang Rao, Yun Fu
  • Patent number: 10914641
    Abstract: A smart part comprising: a body, manufactured by a three-dimensional (3D) additive manufacturing (AM) process, having high-stress and low-stress sections, wherein when the smart part is in operational use the high-stress section is subjected to higher stress than the low-stress section; and wherein the body comprises a void having a predefined geometry intentionally created within the high-stress section of the body during the AM process, such that the void is completely embedded within the body and is configured to provide quality assurance information.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: February 9, 2021
    Assignee: United States of America as Represented by the Secretary of the Navy
    Inventor: Stephen Charles Cox
  • Patent number: 10900344
    Abstract: Techniques to determine wellbore leak crossflow rate between formations in an injection well are described. The techniques repurpose well performance principles to achieve the objective of cross flow rate quantification without the need to run a flowmeter.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: January 26, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Nasser Mubarak Al-Hajri, Mohammed D. Al-Ajmi
  • Patent number: 10830944
    Abstract: An opening and closing detection sensor of the present invention includes a fixed base, a moving base, an optical fiber, and a moving member. The moving base is disposed so as to be movable relative to the fixed base. The optical fiber includes an FBG part where a Bragg wavelength varies responding to an interval between the fixed base and the moving base. The moving member moves between a first position corresponding to either one of an opened state or a closed state of an object and a second position corresponding to the other state. The moving member includes a locking part. The locking part abuts on the moving base between a third position located between the first position and the second position, and the second position, thereby moving the moving base together with the moving member, and moving the moving base in a direction separated from the fixed base.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: November 10, 2020
    Assignee: CMIWS CO., LTD.
    Inventor: Masahito Wakahara
  • Patent number: 10830698
    Abstract: A method for measuring a concentration of at least one target species includes generating first and second laser beams having respective first and second wavelengths each corresponding to respective absorption lines of the at least one target species. The method includes coupling the first and second laser beams to proximal ends of first and second fundamental modes of first and second optical waveguides, respectively. The method includes transmitting through a measurement zone, for a distal end of the first and second optical waveguides, a probe signal including the first and second laser beam. The method includes determining a first signal strength of the probe signal at the first wavelength and a second signal strength of the probe signal at the second wavelength, and determining, from the first signal strength and the second signal strength, a concentration of the at least one target species.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 10, 2020
    Assignee: OnPoint Technologies, LLC
    Inventors: Andrew D. Sappey, Bernard Patrick Masterson
  • Patent number: 10800044
    Abstract: A conveyor employs electrostatic force to selectively adhere packages to an inclined conveying surface and selectively release packages from the inclined conveying surface to separate the packages from each other. A pair of electrodes embedded in the body of a conveyor belt module are selectively energized via electrically conductive hinge rods used to connect conveyor belt modules together to generate the electrostatic force.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: October 13, 2020
    Assignee: Laitram, L.L.C.
    Inventor: Matthew L. Fourney
  • Patent number: 10712214
    Abstract: A method of monitoring variation in the thrust exerted by at least one buoy exerting traction on an undersea pipe, wherein: 1) the deformation of at least one optical fiber is measured by measuring variation of an optical signal in said fiber extending on the surface or embedded securely in the bulk of at least one of the following support elements: a) the buoy; b) at least a portion of: b1) the length of the tubular wall of the pipe or b2) an anticorrosion coating or a thermally insulating material fastened on the surface of said pipe, on which said buoy exerts traction, and c) an abutment part secured to said pipe or buoy, and on which said buoy exerts said thrust; 2) a variation of said thrust exerted by said buoy is determined as a function of said variation of the optical signal.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 14, 2020
    Assignee: Saipem S.A.
    Inventors: Taoufik Majdoub, François-Régis Pionetti, Axel Sundermann, Jalil Agoumi
  • Patent number: 10705298
    Abstract: A core-stiffed composite structure includes a plurality of bonded layers forming the core-stiffened composite structure, a fiber optic conductor embedded between two of the plurality of bonded layers, the fiber optic conductor including a terminal end, and a protective box embedded in the core-stiffened composite structure and bonded to one or more of the plurality of bonded layers, wherein the terminal end of the fiber optic conductor projects into the protective box.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: July 7, 2020
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Matthew P. Harrigan, Nathaniel Dew, Eric C. Schenck
  • Patent number: 10670389
    Abstract: This patent document discloses fiber sensing techniques and devices for shape monitoring by using single- and multi-core optical fiber implementations and optical interferometry. Implementations can be made based on coherent optical time domain reflectometry (OTDR) or optical frequency domain reflectometry (OFDR).
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: June 2, 2020
    Assignee: General Photonics Corporation
    Inventors: Anton Khomenko, Xiaotian Steve Yao, Xiaojun James Chen
  • Patent number: 10663290
    Abstract: Disclosed herein are various implementations of a fiber optic shape-sensing system comprising a plurality of optical fibers helically twisted and rigidly bonded to form a linearly-running shape-sensing bundle for measuring position, bend, and twist of the shape-sensing bundle, wherein each optical fiber from among the plurality of optical fibers comprises a single core. Several such implementations of the systems further comprise an array of Fiber Bragg Gratings (FBGs) disposed within the core of each single-core optical fiber from among the plurality of single-core optical fibers.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: May 26, 2020
    Assignee: SENSURON LLC
    Inventors: Alex Tongue, Justin Braun
  • Patent number: 10622517
    Abstract: The present application achieves luminance uniformity of a light-emitting region substantially circular in shape, desired high contrast, and low power consumption. A lighting device (1) is configured such that assuming that L is an external diameter of a light-emitting region (E), Xmax is the number of divisions for concentrically dividing the light-emitting region (E), and d is a radial pitch between LEDs (11) which include a centered LED (11) and LEDs (11) arranged substantially concentrically around the centered LED, d=L/(2Xmax+1), and that, in each of the n-th ring regions (Xn), an 8n number of LEDs (11) are arranged at equal pitches in a circumferential direction and are positioned at a distance equivalent to a radius nd from the centered LED (11).
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: April 14, 2020
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hisashi Watanabe
  • Patent number: 10603124
    Abstract: Autonomous closed loop control of a flexible tendon-driven continuum manipulator having a sensor at a distal tip is performed by measuring spatial attributes of a sensor at the distal tip and estimating an orientation of a base of an articulating region of the flexible tendon-driven continuum manipulator from a kinematic model and the spatial attributes of the sensor. The manipulator control in a task space uses the estimated orientation, a desired trajectory in the task space, and the position of the sensor at the distal tip. The sensor at the distal tip may be a magnetic sensor, impedance sensor, or optical sensor.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: March 31, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David B. Camarillo, Jake A. Sganga
  • Patent number: 10596346
    Abstract: A fiber optic force sensing assembly for detecting forces imparted at a distal end of a catheter assembly. The structural member may include segments adjacent each other in a serial arrangement, with gaps located between adjacent segments that are bridged by flexures. Fiber optics are coupled to the structural member. In one embodiment, each fiber optic has a distal end disposed adjacent one of the gaps and oriented for emission of light onto and for collection of light reflected from a segment adjacent the gap. The optical fibers cooperate with the deformable structure to provide a change in the intensity of the reflected light, or alternatively to provide a variable gap interferometer for sensing deformation of the structural member. In another embodiment, the gaps are bridged by fiber Bragg gratings that reflect light back through the fiber optic at central wavelengths that vary with the strain imposed on the grating.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: March 24, 2020
    Assignee: St. Jude Medical International Holding S.à r.l.
    Inventors: Nicolas Aeby, Giovanni Leo
  • Patent number: 10571253
    Abstract: A shape estimation device includes an input circuit, a storage circuit and an arithmetic circuit. The input circuit receives light amount information being a relationship between a wavelength and a light amount. The light amount information is acquired by using a sensor configured such that the light amount to be detected with respect to the wavelength corresponding to each of sensing parts varies in accordance with a shape of each of the sensing parts. The storage circuit stores a relationship among the shape, the wavelength and the light amount with respect to each sensing part. The arithmetic circuit calculates the shape of each sensing part, based on the light amount information, and a light amount estimation value being a relationship between the wavelength and the light amount.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: February 25, 2020
    Assignee: OLYMPUS CORPORATION
    Inventors: Ken Sato, Hiromasa Fujita, Masanori Mitsui, Yusuke Yamamoto
  • Patent number: 10568519
    Abstract: The present disclosure relates to a terahertz imaging system for imaging a lumen of a human, such as an intravascular space. A system may include a catheter and a terahertz transceiver device coupled to the catheter. The terahertz transceiver device may be operative to output terahertz radiation through a lumen of a human and to receive reflection signals based on the terahertz radiation. A power source may be coupled to the terahertz transceiver device. The system may further include a controller in communication with the terahertz transceiver device. The controller is operative to obtain an image of the lumen based on the reflection signals.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: February 25, 2020
    Assignee: THE SPECTRANETICS CORPORATION
    Inventor: Matthew Spears
  • Patent number: 10561368
    Abstract: An ablation catheter system configured with a compact force sensor at a distal end for detection of contact forces exerted on an end effector. The force sensor includes fiber optics operatively coupled with reflecting members on a structural member. In one embodiment, the optical fibers and reflecting members cooperate with the deformable structure to provide a variable gap interferometer for sensing deformation of the structural member due to contact force. In another embodiment, a change in the intensity of the reflected light is detected to measure the deformation. The measured deformations are then used to compute a contact force vector. In some embodiments, the force sensor is configured to passively compensate for temperature changes that otherwise lead to erroneous force indications. In other embodiments, the system actively compensates for errant force indications caused by temperature changes by measuring certain local temperatures of the structural member.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: February 18, 2020
    Assignee: St. Jude Medical International Holding S.à r.l.
    Inventors: Giovanni Leo, Nicolas Aeby, Stuart J. Olstad, Axel Bertholds, Pere Llosas
  • Patent number: 10555790
    Abstract: Methods of manufacturing a flexible force sensor include forming a first sensor part providing a plurality of spaced first electrode plates in an electrically non-conductive material. A second sensor part is also formed and includes a plurality of second electrode plates in an electrically non-conductive material. The second electrode plates are identical to the first electrode plates at least in terms of spacing. The first part is assembled to the second part such that each of the first electrode plates are aligned with and parallel to, yet spaced from, respective ones of the second electrode plates, establishing a plurality of capacitive sensing components. The first electrode plates are movable relative to the corresponding second electrode plates, establishing a variable gap therebetween. The sensor parts can be ring-shaped. The sensor parts can be formed via MEMS techniques, with the non-conductive material being a polymer.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: February 11, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Saurav Paul, Troy T. Tegg, John P. Gerhart, Tianhong Cui, Miao Lu
  • Patent number: 10498447
    Abstract: This disclosure describes circuit boards configured for optical data transmission using fibers of the reinforcing material of the circuit board substrate as optical fibers. The disclosure is directed to circuit boards that include a plurality of fibers and a dielectric matrix material. Each fiber of the plurality of fibers includes a core material substantially transparent to a wavelength range of interest and a cladding material. The refractive index of the cladding material is less than a refractive index of the core material. The plurality of fibers are interwoven in a weave. The weave is at least partially encapsulated by the dielectric matrix material. The weave provides structural support for the circuit board and a plurality of optical paths for optical signals.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: December 3, 2019
    Assignee: Rolls-Royce Corporation
    Inventor: Robert Richard Somaduroff
  • Patent number: 10494905
    Abstract: An exemplary method of controlling an artificial lift system may include monitoring, via a downhole phase change sensor, for an indication of steam breakthrough, determining the occurrence of a steam breakthrough event based on the indication of steam breakthrough, and adjusting one or more parameters of the artificial lift system based on the determination. One example system for controlling an artificial lift system may include a downhole phase change sensor configured to monitor for an indication of steam breakthrough and a processing system configured to determine the occurrence of a steam breakthrough event based on the indication of steam breakthrough and adjust one or more parameters of the artificial lift system based on the determination.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: December 3, 2019
    Assignee: OILFIELD DEVELOPMENT CENTER LIMITED
    Inventors: Darren Part, Phil Fouillard, Daniel Ugricic
  • Patent number: 10488296
    Abstract: A method of determining stress variations over time in an undersea pipe for transporting fluids, the method comprising: installing along the entire length of the pipe (1) at least one distributed optical fiber sensor (2-1 to 2-4) using Rayleigh backscattering, the sensor being dedicated to measuring at least one degree of freedom of movement variation over time in the pipe at each cross section of the pipe; continuously measuring movement variation of the optical fiber sensor over time; and determining stress variations over time at each point in the pipe by time integration of the measured movement variation of the optical fiber sensor.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 26, 2019
    Assignee: Saipem S.A.
    Inventor: Axel Sundermann
  • Patent number: 10473539
    Abstract: A force sensor for measuring force and/or pressures disclosed. In some embodiments, the sensor includes first and second layers, each layer having one or more electrodes arranged in a repeating, undulating pattern. Such an undulating pattern may include a serpentine pattern or a repeating v-shaped pattern. When arranged, the one or more electrodes on the first layer are placed in facing relationship and cross the one or more electrodes on the second layer to form a plurality of electrode intersections. When stretched, the one or more electrodes on the first layer move relative to the one or more electrodes on the second layer while creating new electrode intersections.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: November 12, 2019
    Assignee: Tekscan, Inc.
    Inventor: Robert M. Podoloff
  • Patent number: 10466412
    Abstract: A multi-mode optical fiber includes a glass center for conducting fundamental and high order modes of light waves, the high order modes including a first desired group of high order modes and a second undesired group of high order modes. A cladding surrounds the glass center, the glass center and cladding forming a core. A trench within the cladding surrounds the glass center reflecting the first and second groups of high order modes into the core. An acrylic layer surrounds the core. A buffer coating of polymer surrounds the acrylic layer and the core. The buffer coating is a pressure extruded polymer, where the buffer coating retains at least some of the pressure from the pressure extrusion and applies continuous pressure to the acrylic layer and the core therein, along the length of the fiber, such that the at least the first group of desired high order modes are permitted to be transmitted through the core and where the second group of undesired high order modes are suppressed.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: November 5, 2019
    Assignee: NEXANS
    Inventors: Paul Michael Good, Rakesh Sambaraju
  • Patent number: 10436656
    Abstract: An impact sensor for a vehicle. The impact sensor includes at least one strain-sensitive sensor element which comprises a sensor material, and at least two terminals, between which the sensor material is electrically connected. The sensor material is a metal-containing carbon material.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: October 8, 2019
    Assignee: IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A.
    Inventors: Thomas Pelt, Christian Bour
  • Patent number: 10408995
    Abstract: Method for creating an optical sensing fiber having a reflective structure integrally disposed therein, comprising: providing an optical fiber having a core and a cladding layer disposed in optical contact with the core, and having a polymer coating layer disposed in contact with and surrounding the cladding layer, the coating layer at least partially transparent in the wavelengths of 390-600 nm; providing a source of electromagnetic radiation having a wavelength in the range of 390-600 nm; and delivering a selected wavelength of the electromagnetic radiation through the coating layer to a selected location within the fiber core or cladding such that the delivered electromagnetic radiation alters the core or cladding to create at least one reflective structure in the core or cladding at the selected location.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: September 10, 2019
    Assignee: SENTEK INSTRUMENT, LLC
    Inventors: Bo Dong, Anbo Wang
  • Patent number: 10281498
    Abstract: A fiber optic sensor for measuring voltage in direct current and alternating current systems is disclosed. The sensor may include an optical fiber probe containing transmitting and receiving fibers, fixed conductor elements, and a dynamic conductor element with a reflective surface or material. The reflector may be attached to a dynamic conductor. The two fixed conductors may be placed parallel to one another and coupled to a static voltage source. The dynamic conductor may bisect the fixed conductors and be coupled to a voltage source. The dynamic conductor may be spaced apart from the ends of the fibers in the fiber probe, and positioned so that light transmitted through the transmitting fiber is reflected by that surface into a receiving fiber. A light sensing means may be coupled to the receiving fiber, so light from a light reflected by the reflector body back into the receiving fibers is detected.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 7, 2019
    Inventors: Patrick Hernandez, Victor Kaybulkin, Nicholas Lagakos, Christopher Vizas
  • Patent number: 10220956
    Abstract: An apparatus for determining the position of an object having one or more magnetic elements. The apparatus includes magnetostrictive optical sensors, each arranged to produce a signal which is indicative of a proximity of the sensor to the one or more magnetic elements. The apparatus is arranged to determine the position of the object based on a plurality of such proximity signals.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: March 5, 2019
    Assignees: AIRBUS OPERATIONS LIMITED, AIRBUS OPERATIONS GMBH
    Inventors: Christopher Wood, Alan Sharp, Carsten Heuer
  • Patent number: 10191154
    Abstract: In some implementations, scene depth is extracted from dual frequency of a cross-correlation signal. A camera may illuminate a scene with amplitude-modulated light, sweeping the modulation frequency. For each modulation frequency in the sweep, each camera pixel may measure a cross-correlation of incident light and of a reference electrical signal. Each pixel may output a vector of cross-correlation measurements acquired by the pixel during a sweep. A computer may perform an FFT on this vector, identify a dual frequency at the second largest peak in the resulting power spectrum, and calculate scene depth as equal to a fraction, where the numerator is the speed of light times this dual frequency and the denominator is four times pi. In some cases, the two signals being cross-correlated have the same phase as each other during each cross-correlation measurement.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: January 29, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Achuta Kadambi, James Schiel, Ayush Bhandari, Ramesh Raskar, Vage Taamazyan
  • Patent number: 10132995
    Abstract: A sensing system that includes an optical fiber disposed helically around an outer surface of a structure along a longitudinal axis of the structure is provided. The optical fiber is disposed such that at least one complete helical turn of the optical fiber covers the length of the structure. Further, the sensing system also includes a fiber Bragg grating (FBG) set comprising a plurality of FBGs in the optical fiber. Each FBG in the set is configured to generate reflected light that is indicative of strain values at a location of each respective FBG on the optical fiber. Furthermore, the system also includes a processing system coupled to the optical fiber. The processing system is configured to determine location coordinates of each FBG and values of one or more of bending moment, tensile force, and torsional moment acting at each FBG location on the optical fiber.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: November 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Mahadevan Balasubramaniam
  • Patent number: 9965078
    Abstract: A pressure-sensing touch system for recognition of a touch event caused by a pressure applied at a touch position is disclosed which includes a light guide plate, a light output plate, a light source subsystem, a plurality of interference plates, a plurality of detectors and a controller. Upon application of the pressure at the touch position, a change in an intensity distribution of output light exiting from two through-openings of the interference plate occurs. The plurality of detectors are configured to detect the change. The controller is configured to recognize the touch event based on the detecting by the plurality of detectors. Also disclosed are a pressure-sensing touch method and a display system.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: May 8, 2018
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Zhiqiang Xu, Xiangxiang Zou, Xuefei Wang
  • Patent number: 9921098
    Abstract: An optical unit includes an optical element serving as a light guide path, which includes an incident entrance, an emitter, a light coupler which is arranged in the case where a plurality of incident entrances are arranged, and which couples a primary light, and a light separator which is arranged in the case where a plurality of emitters are arranged, and which separates the primary light to each of the emitters. The optical unit further includes a detector which directly or indirectly detects a leakage light leaking outside of the light guide path from the light guide path.
    Type: Grant
    Filed: September 17, 2016
    Date of Patent: March 20, 2018
    Assignee: OLYMPUS CORPORATION
    Inventors: Yoshinori Tanaka, Satoshi Ohara
  • Patent number: 9897761
    Abstract: The invention relates to an optical fiber mounted photonic integrated circuit device where the tolerance in the positioning of the coupling between a single mode optical fiber and an optical waveguide provided in the photonic integrated circuit device is increased. A second optical waveguide of which the cross-section of the core is in the form of a slab having a width that is greater than the mode diameter of the single mode optical fiber, and which is tapered in such a manner that the thickness of the core is reduced as the location is closer to the connection portion with the single mode optical fiber, is provided on the input/output end side of the first optical waveguide through which light propagates in such a manner that the inclined connection end surface of the single mode optical fiber is coupled to the upper surface of the second optical waveguide.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 20, 2018
    Assignees: FUJITSU LIMITED, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Tomoyuki Akiyama, Tsuyoshi Aoki
  • Patent number: 9857249
    Abstract: A load and stress of a tensioner may be determined from the change in the strain of the tensioner. The strain of the tensioner may be detected by an optical device having a Fiber Bragg Grating (FBG) that is attached to the tensioner. An electrical signal may be generated in response to the detected change in the mechanical strain of the tensioner by processing the light reflected from an optical fiber coupled to the optical device. The electrical signal may be processed to calculate a load on the tensioner. The calculated load may be stored and analyzed, along with previously-stored values for the load, to determine the condition of the tensioner system, and whether the tensioner system requires maintenance.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 2, 2018
    Assignee: Transocean Sedco Forex Ventures Limited
    Inventor: Aaron Barr
  • Patent number: 9817189
    Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: November 14, 2017
    Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
  • Patent number: 9737198
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: August 22, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Keith P. Laby, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley, Amir Belson
  • Patent number: 9709747
    Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: July 18, 2017
    Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
  • Patent number: 9588293
    Abstract: Various particular embodiments include a primary waveguide including an end section; cantilevered waveguides, each cantilevered waveguide including an end section disposed adjacent the end section of the primary waveguide; and control pins for applying an electrical bias to the cantilevered waveguides to selectively displace the end sections of the cantilevered waveguides away from the end section of the primary waveguide.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: March 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Brendan S. Harris, Vibhor Jain, Thomas Kessler, Yves T. Ngu, Sebastian T. Ventrone
  • Patent number: 9575254
    Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: February 21, 2017
    Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
  • Patent number: 9528893
    Abstract: An optical fiber sensor (100) can be used to measure pressure with high sensitivity and fine resolution. As a (108) at the end of the sensor expands or contracts, the spectrum of a beam reflected from the end of fiber shifts, producing a change linked to pressure exerted on the sensor. Novel aspects of the present inventive sensor include the direct bonding of a silica thin film diaphragm (110) to the optical fiber with localized or confined heating and a uniform thickness of the diaphragm. The resulting sensor has a diameter that matches the diameter of the optical fiber. Because the sensor is all silica, it does not from temperature-induced error. In addition, the sensor can be very sensitive because the diaphragm can be very thin; it can also make highly repeatable measurements due to its very uniform thickness.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: December 27, 2016
    Assignee: University of Massachusetts
    Inventors: Wenhui Wang, Xingwei Vivian Wang, Kai Sun, Nan Wu
  • Patent number: 9494416
    Abstract: Disclosed herein is a method for sensing one or more selected parameters related to a structure of interest, for example, the shape of an isolated structure. A cable is attached to the structure of interest at one or more attachment points. The cable contains one or more optical fibers. One or more light signals are transmitted into the one or more optical fibers and then detected to form a data set. The data set is compared with information known about the one or more attachment points to determine error values. The error values are then combined with the data set to determine the selected parameters associated with the structure.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: November 15, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Roger Glen Duncan, Matthew Thomas Raum, Christopher H. Lambert
  • Patent number: 9484146
    Abstract: The invention relates to a high voltage transformer (6) having a sensor system (30) for monitoring physical characteristic variables. In particular, said sensor system has at least one sensor (1) that comprises a glass fiber (3) with a sensor head (2). Said sensor head supports a plurality of Bragg gratings (7, 8, 9). An evaluation unit (10) is associated with the sensor system and is connected to the at least one sensor head via said glass fiber. The invention is based on the general inventive concept of arranging the sensors of the sensor system between successive windings (4, 5) of the high voltage transformer using spacers. In addition, the use of a plurality of Bragg gratings in the sensor head ensures that at least one of the Bragg gratings determines the actual physical characteristic variables such as temperature or contact force (A).
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: November 1, 2016
    Assignee: MASCHINENFABRIK REINHAUSEN GMBH
    Inventors: Ansgar Hinz, Frank Micksch
  • Patent number: 9459164
    Abstract: The present disclosure provides an optical sensing apparatus for measuring a change in a first property. The optical sensing apparatus comprises first and second optical fibre portions and a sensing region for exposing both the first and second optical fibre portions to a change in an applied force. The force is, or is related to, the first property and has a component that is transversal to the optical fibre portions. The apparatus further comprises a holder for holding the first and second optical fibre portions in the sensing region. The first and second optical fibre portions are arranged relative to each other such that the change in the force results in a first change of an optical property of the first optical fibre portion and in a second change of the optical property of the second optical fibre portion and wherein the first change differs from the second change.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 4, 2016
    Assignee: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: John William Arkwright, Simon Adam Maunder, Hsiao-Chuan Wang
  • Patent number: 9453770
    Abstract: A strain measurement device is provided. The strain measurement device includes at least one filiform strain sensor and a support of longilinear shape on which the filiform strain sensor is positioned. The strain measurement device also includes a stiffener.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 27, 2016
    Assignee: AIRBUS OPERATIONS S.A.S.
    Inventors: Marc Sartor, Patricia Morgue, Manuel Paredes
  • Patent number: 9389070
    Abstract: A monitoring device is provided that is used for the monitoring of an area of building or land, including an optical strand used as a sensor, one optical source for emitting an optical emission signal transmitted in the optical strand, and one optical analogue detector for detecting an intensity of an optical return signal corresponding to the optical emission signal returning from the optical strand. The monitoring device is arranged as a compact unit and includes a controller for alternately activating and deactivating the emission of the optical source so that a ratio between the non-emission duration and the emission duration is greater than 5000. A monitoring system is also provided including such a monitoring device, and a monitoring method carried out in the monitoring device.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: July 12, 2016
    Assignee: OSMOS SA
    Inventor: Bernard Hodac
  • Patent number: 9360388
    Abstract: A pressure sensing system includes a pressure sensor, an optical fiber in operable communication with the pressure sensor, and a body having a diaphragm integrally formed therein and separated a distance from the optical fiber.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: June 7, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Carl W. Stoesz, Sydnee Marie Hammond
  • Patent number: 9329203
    Abstract: Methods for fabricating ultra-sharp nanoprobes can include the steps of providing a wafer, and patterning a silicon layer on the wafer with a plurality of geometric structures. The geometric structures can be patterned using electron-beam lithography or photolithography, and can have circular, triangular or other geometric shapes when viewed in top plan. The methods can further include the step of depositing a non-uniform cladding on the geometric structures using plasma enhanced chemical vapor deposition (PECVD) techniques, and then wet-etching the wafer. The non-uniform nature of the cladding can result in more complete etching in the areas where the cladding has lower density and incomplete etching in the areas of higher density of the non-uniform cladding. The different etching rates in the proximity of at least adjacent two geometric structures can result in the formation of ultra-sharp nanoprobes.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: May 3, 2016
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Joanna Ptasinski, Stephen D. Russell
  • Patent number: 9304018
    Abstract: A measurement apparatus includes a body suit for a body that includes an appendage having a pivotable joint, the body suit comprising a sleeve to cover the appendage, wherein a first portion of the sleeve is configured to cover the pivotable joint. One or more multi-core optical fiber sensors is/are within or on the sleeve in a routing pattern that is substantially aligned with a longitudinal axis of the sleeve except within the first portion and that is at least partially transverse to the longitudinal axis within the first portion. An optical shape sensing system coupled to the one or more multi-core optical fiber sensors sends light into the one or more multi-core optical fiber sensors and determines a position of each of the multiple appendages based on reflected optical signal measurements detected from one or more multi-core optical fiber sensors.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: April 5, 2016
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Matthew A. Davis, Eugene Malinowski, Jason L. Chevalier, Alaina M. McGregor, Matthew Reaves
  • Patent number: 9297710
    Abstract: A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: March 29, 2016
    Assignee: U.S. Department of Energy
    Inventor: Ross E. Pies