Optical Waveguide Sensor Patents (Class 385/12)
  • Patent number: 11061184
    Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber), a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), a center wavelength (?0) of the in-band range (wherein 950 nm<?0<1700 nm), and a figure of merit (FOM) in the in-band range. The FOM>1, with the FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: July 13, 2021
    Assignee: OFS FITEL, LLC
    Inventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
  • Patent number: 11022467
    Abstract: An improved optical fiber distributed acoustic sensor system uses an optical fiber having reflector portions distributed along its length in at least a first portion. The reflector portions are positioned along the fiber separated by a distance that is equivalent to twice the distance an optical pulse travels along the fiber in a single sampling period of the data acquisition opto-electronics within the sensor system. No oversampling of the reflections of the optical pulses from the reflector portions is undertaken. The sampling points for data acquisition in the sensor system are aligned with the reflections that arrive at the sensor system from along the sensing fiber. Adaptive delay componentry adaptively aligns the reflected optical signals (or their electrical analogues) with the sampling points. Control over the sampling points can re-synchronise the sampling points with the returning reflections. Reflection equalisation componentry may reduce the dynamic range of the returning reflections.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: June 1, 2021
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Sergey Shatalin, Julian Dajczgewand, Mahmoud Farhadiroushan, Tom Parker
  • Patent number: 11009658
    Abstract: Light detectors that combine field emission with light focusing by surface plasmon polaritons. Methods and devices that allow detection and measurement of light at high frequencies in the THz range are described. The disclosed devices include plasmonic metal contacts with a narrow nanometer-sized gap to couple an optical waveguide mode into a plasmonic mode thereby generating filed emission currents by biasing the contacts.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: May 18, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: William M. Jones, Lucia B. De Rose, Axel Scherer
  • Patent number: 10989663
    Abstract: A device for optically exciting fluorescence is disclosed. The device comprises transparent substrate having first and second opposite faces and a multilayer stack disposed on the second face of the substrate. The multilayer stack comprises a first layer having first and second opposite faces and a first refractive index and a second layer having first and second opposite faces and a second refractive index. The first face of the first layer is disposed on the second face of the substrate. The first face of the second layer is disposed on the second face of the first layer such that the first layer is interposed between the second layer and the substrate. The substrate has a third refractive index. The first refractive index is less than the second refractive index and the third refractive index. The device comprises a light source carried by the first face of the substrate and arranged to emit light towards the first face of the first layer.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: April 27, 2021
    Assignees: Cambridge Display Technology Limited, Sumitomo Chemical Company Limited
    Inventors: Matthew Roberts, May Wheeler
  • Patent number: 10987037
    Abstract: The invention relates generally to in vivo collection of circulating molecules, tumor cells and other biological markers using a collecting probe. The probe is configured for placement within a living organism for an extended period of time to provide sufficient yield of biological marker for analysis.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: April 27, 2021
    Assignee: JOHN WAYNE CANCER INSTITUTE
    Inventors: David Hoon, Bret Taback, Samuel Shaolian
  • Patent number: 10989865
    Abstract: The present disclosure relates to a stretchable fiber optic sensor that can measure tension, bending, and torsion direction of an object. The fiber optic sensor includes an optical fiber with a fiber Bragg grating (FBG) embedded in a sinusoidal configuration at an off-center position of a deformable substrate.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: April 27, 2021
    Assignee: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC
    Inventors: Mable P. Fok, Xiangiao Wang, Li Xu
  • Patent number: 10983115
    Abstract: The present invention relates to a reusable optical fiber aptasensor using a photo-thermal effect, and more particularly, to a reusable optical fiber aptasensor using white light and a laser. The aptasensor includes a light emitting unit for selectively emitting one of white light and a laser, a sensor unit including a plurality of aptamers, a plurality of gold nanorods, and a silver mirror, a detector for analyzing a wavelength of inputted light, and an optical fiber for connecting the light emitting unit with the sensor unit, and connecting the detector with the sensor unit, wherein the light emitted from the light emitting unit is totally reflected in the optical fiber and irradiated to the sensor unit, and light reflected from the silver mirror of the sensor unit is irradiated to the detector. Accordingly, the aptasensor easily measures concentration of a target material in a sample using the optical fiber.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: April 20, 2021
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Min Gon Kim, Bo Bin Lee, Jin Ho Park, Ju Young Byun
  • Patent number: 10983018
    Abstract: Disclosed herein is an optical cable comprising a support; flexible protective tubes helically wound around the support, each flexible protective tube comprising an optical fiber comprising an optical core; a cladding disposed on the core; and a primary coating external to the cladding; and a deformable material surrounding the optical fiber; an outer jacket surrounding the flexible protective tubes; wherein each optical fiber is about 0.5% to about 1.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 20, 2021
    Assignee: OFS Fitel, LLC
    Inventors: Robert S Dyer, Jie Li, John E Pacini, Brian Violette
  • Patent number: 10969445
    Abstract: An ODMR member is arranged in a measurement target AC magnetic field. A coil applies a magnetic field of a microwave to the ODMR member. A high frequency power supply causes the coil to conduct a current of the microwave. An irradiating device irradiates the ODMR member with light. A light receiving device detects light that the ODMR member emits. A measurement control unit performs a predetermined DC magnetic field measurement sequence at a predetermined phase of the measurement target AC magnetic field, and in the DC magnetic field measurement sequence, controls the high frequency power supply and the irradiating device and thereby determines a detection light intensity of the light detected by the light receiving device. A magnetic field calculation unit calculates an intensity of the measurement target AC magnetic field on the basis of the predetermined phase and the detection light intensity.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 6, 2021
    Assignee: SUMIDA CORPORATION
    Inventors: Yoshiharu Yoshii, Norikazu Mizuochi
  • Patent number: 10969541
    Abstract: A method for determining a curvature and/or torsion of an optical waveguide of a fibre-optic sensor, comprising at least two Bragg gratings introduced into the optical waveguide and extending through a common cross-sectional plane, situated in a radial direction, through the optical waveguide, wherein the Bragg gratings are introduced in the core and/or on the boundary between the core and the cladding and/or in an inner edge region of the cladding within an evanescence region of the light, the method comprising: providing reference data of intensities of reflected light portions of light coupled into the optical waveguide, in particular depending on known reference deformations of the optical waveguide, measuring at least one light intensity of reflected light portions of light coupled into the optical waveguide, wherein the optical waveguide has a deformation to be determined, and determining the deformation by comparing the light intensity with the reference data.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 6, 2021
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Photonik Inkubator GmbH
    Inventors: Wolfgang Schade, Martin Angelmahr, Christian Waltermann
  • Patent number: 10961844
    Abstract: Distributed The disclosed embodiments include distributed acoustic sensing (DAS) systems, methods to improve DAS properties of optical fibers, and optical fibers having improved DAS properties. In one embodiment, the system includes an optoelectronic device operable to generate optical pulses. The system also includes an optical fiber having a first end and a second end. The optical fiber is formed from a material having a Rayleigh back-scattering coefficient, and is operable to transmit optical pulses from the first end towards the second end and to reflect a first portion of the optical pulses towards the first end. The system further includes perturbations that are selectively imprinted on the optical fiber, where the perturbations are compatible with a range of wavelengths and are operable to reflect a second portion of the optical pulses towards the first end of the optical fiber if a wavelength of the optical pulses is within the range.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 30, 2021
    Assignee: Halliburton Energy Services, lnc.
    Inventors: Mikko Jaaskelainen, Ira Jeffrey Bush
  • Patent number: 10955233
    Abstract: A thickness measuring apparatus including a thickness measuring unit for measuring the thickness of a plate-shaped workpiece. The thickness measuring unit includes a white light source for emitting white light, a dispersing mechanism for producing time differences corresponding to wavelengths of light components of the white light to thereby generate spectral light, a two-dimensional image sensor having a photodetecting area for detecting the return light, the photodetecting area including a plurality of pixels, a storing section for storing the intensity of the return light detected by the plural pixels according to wavelength with time difference, a waveform table previously storing a plurality of kinds of sample spectral interference waveforms respectively corresponding to different thicknesses of the workpiece, and a thickness deciding section for deciding the thickness at an X-Y coordinate position in a two-dimensional area of the workpiece.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 23, 2021
    Assignee: DISCO CORPORATION
    Inventors: Nobuyuki Kimura, Keiji Nomaru
  • Patent number: 10948397
    Abstract: Characteristics of polarizable particles in a fluid are detected using an optical cavity comprising opposed optical reflectors containing the fluid. A particle is introduced through the fluid into the optical cavity. The particle may be transiently in the cavity or optically trapped. The optical cavity containing the particle is illuminated with light that excites resonance of an optical mode of the optical cavity that is affected by the particle. A measurement of a parameter of the excited resonance is derived, for example while tuning through the resonance. Repeated measurements may be used to derive a measure of a characteristic of the particle that is dependent on the motion of the particle in the optical cavity.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: March 16, 2021
    Assignee: Oxford University Innovation Limited
    Inventors: Aurélien Trichet, Jason Michael Smith, Claire Vallance
  • Patent number: 10951316
    Abstract: Fronthaul monitoring systems and methods include a performing protocol testing, via a protocol layer acquisition module, of a protocol layer signal for analysis thereof to identify issues; performing optical physical layer monitoring via an optical physical layer acquisition module to identify optical physical layer issues; and configuring an optical switch to switch an input port connected to the protocol layer acquisition module and the optical physical layer acquisition module over different links of the plurality of links wherein a test coordinator software module is configured to manage the optical switch to coordinate the optical protocol layer analysis of a link and the optical physical layer testing of the link.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 16, 2021
    Assignee: EXFO Inc.
    Inventors: Jean-Sébastien Martel, Stéphane Perron
  • Patent number: 10942378
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: March 9, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Patent number: 10921117
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: February 16, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 10914897
    Abstract: A probe device is configured to insert optical fiber probes directly into a v-groove coupler on an optical integrated circuit (IC) device. The probe device may include a probe holder comprising with a slot. A fiber holder may insert into the slot. The fiber holder may comprise a body with a first portion and second portion disposed at an angle relative to one another so that the first portion is shorter than the second portion. The body may have a bottom with grooves disposed therein, the grooves having dimensions to receive part of an optical fiber probes therein. In use, the fiber holder can arrange the optical fiber probes to extend into the v-grooves of the v-groove coupler of an optical IC on a wafer. The device may incorporate an alignment mechanism that permits the fiber holder to move or “self-align” in response to contact between the optical fiber probes and structure of the v-groove coupler of an optical IC on a wafer.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: February 9, 2021
    Assignee: GlobalFoundries Inc.
    Inventors: Hanyi Ding, John Ferrario, John Joseph Cartier, Benjamin Michael Cadieux
  • Patent number: 10914646
    Abstract: An optical-based system for sensing parameters of a structure or machine for monitoring the health of the structure or machine. The optical-based system includes a set of optical fibers, each optical fiber including a set of fiber Bragg grating (FBG) sensors for sensing a set of parameters of the object; a set of interrogators configured to generate a set of incident optical signals for transmission via the set of optical fibers, respectively, receive a set of reflected optical signals from each of the optical fibers of the set, and generate a set of data related to sensed parameters of the object based on the set of reflected optical signals; and a controller configured to control the set of interrogators. Via a user interface or a remote computer on a cloud, sensing instructions may be provided to the controller, and sensed data and other information may be received from the controller.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: February 9, 2021
    Assignee: Optilab, LLC
    Inventors: Henry Hung, Leijun Yun, Andre Brewer
  • Patent number: 10866327
    Abstract: A radio-opaque plastic scintillator detector (PSD) for use in various medical applications and methods of making and using the PSD. The method requires coating a plastic scintillator fiber with a radio-opaque material; cutting the scintillator fiber; stripping the end of a plastic fiber optic fiber; cutting the naked end of a plastic fiber optic fiber; inserting a closely fitting guide tube over the naked end and inserting the cut scintillating fiber into the guide tube; coating the detector end of the cable with a light opaque polymer or jacket and adding a connector to the other end.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: December 15, 2020
    Assignee: AngioDynamics, Inc.
    Inventors: John Isham, Eric Hyman, Adam Hoch
  • Patent number: 10866125
    Abstract: Provided is an optical waveguide with an inscribed Bragg grating, where the Bragg grating is stable at high temperature, has low scattering loss and high reflectivity. Also provided is a method for inscribing a Bragg grating in an optical waveguide, the method comprising irradiating the optical waveguide with electromagnetic radiation from an ultrashort pulse duration laser of sufficient intensity to cause a permanent change in an index of refraction within a core of the optical waveguide, where the irradiating step is terminated prior to erasure of a Bragg resonance, and heating the optical waveguide to a temperature and for a duration sufficient to substantially remove a non-permanent grating formed in the optical waveguide by the irradiating step.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 15, 2020
    Assignee: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Dan Grobnic, Stephen Mihailov, Robert Walker, Ping Lu, Huimin Ding, David Coulas, Cyril Hnatovsky
  • Patent number: 10843290
    Abstract: Methods and apparatus to control the acoustic properties of optical cables used as in-well oil and gas probes for acoustic monitoring, such as distributed acoustic sensing (DAS). One example aspect provides a solid path for the acoustic wave to propagate from an outside armor layer of the cable to the sensing optical waveguide embedded therein. Another example aspect offers ways to spatially dispose the optical sensing elements to create response delays indicative of the propagation speed and/or direction of an acoustic wave. Yet another example aspect provides ways to utilize additional spectral interrogation to increase ultimate spatial resolution. Yet another example aspect provides ways to locally vary the acoustic properties along the length of the cable.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: November 24, 2020
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Andre R. Vincelette, Christopher S. Baldwin, Paul Lefebvre, Hongbo Li, Domino Taverner, James R. Dunphy
  • Patent number: 10842367
    Abstract: An illumination apparatus includes an optical apparatus configured to optically process laser light to produce illumination light such that speckle noise in the illumination light is reduced. The optical apparatus includes at least one collimator (130) configured to collimate the laser light and a diffuser (140) configured to diffuse the laser light.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: November 24, 2020
    Assignee: Sony Corporation
    Inventors: Goh Matsunobu, Takashi Yamaguchi, Akio Furukawa
  • Patent number: 10837806
    Abstract: Distributed optical fibre sensor measures vibration, as a concurrent function of position along each of a plurality of sensing optical fibres, from properties of probe light backscattered within the sensing optical fibres. The sensor includes a light-pulse-generating probe light source, a detector, an optical switch. The sensor is arranged to control the optical switch such that all of the sensing optical fibres can be used concurrently to detect acoustic vibration, and an analyser is arranged to determine vibration, as a concurrent function of position along each of the sensing optical fibres, from the detected backscattered probe light.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: November 17, 2020
    Assignee: Fortech Group Limited
    Inventor: Vincent Handerek
  • Patent number: 10831082
    Abstract: Provided is an apparatus for controlling a laser light propagation direction, including: a substrate configured to transmit at least a wavelength range of a laser light incident on the apparatus and deflected; and a metasurface disposed on the substrate, and comprising a plurality of nano-antennas, wherein each of the plurality of nano-antennas may include: a first contact and a second contact that are disposed apart from each other, and comprise an electrically conductive material to transmit at least the wavelength range of the laser light; and a semiconductor p-i-n heterostructure that disposed between the first contact and the second contact and comprises a p-region, an i-region and an n-region, which are disposed in parallel to the substrate.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: November 10, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Alexander Sergeevich Shorokhov, Maksim Vladimirovich Riabko, Kirill Igorevich Okhlopkov, Alexandr Igorevich Musorin
  • Patent number: 10830661
    Abstract: A scour monitoring system may provide a housing that is separated into multiple segments that are fluidically isolated from each other. The scour monitoring system may be position adjacent to a structure to be monitored for bridge scouring. Each of the segments may provide a water-swellable material positioned near or in contact with a fiber Bragg grating (FBG) cable. If water penetrates a segment, the water-swellable material may expand to deform the FBG cable. The wavelength of the FBG cable may be monitored periodically for changes, thereby providing moisture detection when a change in wavelength is detected.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: November 10, 2020
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Gangbing Song, Xuan Kong, Siu Chun Michael Ho
  • Patent number: 10809215
    Abstract: A molecularly imprinted polymer sensor for sensing a target molecule includes (a) a porous polymer film that is molecularly imprinted with a homolog of the target molecule and includes a conductive polymer having resistance sensitive to binding with the target molecule and a structural polymer providing porosity to the polymer film, and (b) interdigitated electrodes, located on a surface of the polymer film, for measuring a change in the resistance to sense said binding.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: October 20, 2020
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventor: Joseph J. BelBruno
  • Patent number: 10794175
    Abstract: Many monitoring systems, including distributed fiber optic sensing systems, are deployed to measure temperature, strain, acoustic, pressure, and electromagnetic data in a multi-well hydrocarbon field. By coupling disparate fiber optic cables together for strain sensing, a tubular cable is created that can be spooled and deployed as a single unit while allowing for multi-parameter sensing. Multiple tubular cables can measure and transmit sensing data from wellbores and geological formations. The data can be used to continually update a reservoir model and optimize production efficiency while also managing and mitigating subsidence by controlling injection and production rates.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: October 6, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mikko Jaaskelainen, Harold Grayson Walters, Ronald Glen Dusterhoft
  • Patent number: 10794825
    Abstract: A method and system for measuring a sample property (X) by means of photonic circuit (10). The photonic circuit (10) comprises at least two photonic sensors (11, 12) configured to modulate the light according to respective output signals (S1,S2) with periodically recurring signal values (V1, V2). The photonic sensors (11, 12) comprise a low range sensor (11) with a relatively low range or high sensitivity for measuring a change (?X) of the sample property (X) and a high range sensor (12) with a relatively high range or low sensitivity to measure the change (?X) of the sample property (X). The sample property (X) is calculated by combining the output signals (S1, S2) of the sensors (11, 12). Particularly, the second output signal (S2) of the high range sensor (12) is used to distinguish between recurring signal values (V1) in the first output signal (S1) of the low range sensor (11).
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: October 6, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Peter Johan Harmsma, Bart Michiel de Boer
  • Patent number: 10782282
    Abstract: A microorganism detection system is provided for being disposed on a device to be detected which is closed, including a flow channel and a detection module. A fluid to be detected in the device to be detected flows in the flow channel. The detection module is disposed within the flow channel, including two slides, a microscopic module and at least one telescopic mechanism, each of the at least one telescopic mechanism is connected to one of the two slides and the flow channel. When the two slides approach each other, the fluid to be detected in a gap between the two slides is observable through the microscopic module.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 22, 2020
    Inventors: Chin-Hsing Chuo, Chih-Meng Wang, Chin-Yen Wang
  • Patent number: 10775230
    Abstract: A distributed acoustic sensing method that includes sending a sequence of optical pulses along an optical fiber, of at least two different widths, demodulating backscattered light from the optical fiber to obtain interferometric phase measurements as a function of position, combining the interferometric phase measurements to obtain a set of fade-resistant phase measurements, and storing or displaying the set of fade-resistant phase measurements. A distributed acoustic sensing system that includes a transmitter that sends a sequence of optical pulses along an optical fiber, of at least two different widths, a receiver that demodulates backscattered light from the optical fiber to obtain interferometric phase measurements as a function of position and combines interferometric phase measurements to obtain a set of fade-resistant phase measurements, and a storage or display device.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: September 15, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Kwang Suh
  • Patent number: 10768362
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 8, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Patent number: 10768023
    Abstract: A method of monitoring mechanical behavior of an undersea pipe (2) transporting fluid under pressure and made by assembling a plurality of unit pipe elements (4). A calibration step is performed consisting of using a measurement cable having an optical fiber sensor to measure deformations experienced by each pipe element while it is subjected on land to various mechanical stresses in predetermined directions and magnitudes, and, on the basis of the measurements, establishing the mechanical signature of each pipe element. A monitoring step is performed consisting of using a measurement cable (18) having an optical fiber sensor that makes uses Brillouin backscattering and is helically positioned at constant pitch (p) on each pipe element with the handedness of the helical pitch alternating for two adjacent pipe elements to recover variations in optical signal injected into the sensors while the pipe is in service.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: September 8, 2020
    Assignee: Saipem S.A.
    Inventors: Francois-Regis Pionetti, Jalil Agoumi, Axel Sundermann, Jean-Baptiste Paris, Vincent Lamour
  • Patent number: 10768024
    Abstract: A method of monitoring thermomechanical behavior of an undersea pipe (2) transporting fluid under pressure and made by assembling unit pipe elements (4), comprising determining a mechanical signature specific to each unit pipe element, using a measurement cable (16) having an optical fiber sensor using Brillouin backscattering to measure deformation of the pipe element while it is subjected on land to various mechanical stresses in predetermined directions and magnitudes, and establishing a stiffness matrix associated with the mechanical signature of each pipe element, a step of determining a thermal signature specific to each unit pipe element, which step consists in measuring the temperature changes of the unit pipe element while it is being subjected on land to various different electrical heating powers, and in establishing a thermal transfer function associated with the thermal signature of each pipe element, and a monitoring step consisting of recovering.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: September 8, 2020
    Assignee: Saipem S.A.
    Inventors: Francois-Regis Pionetti, Jalil Agoumi, Axel Sundermann, Damien Maraval, Vincent Lamour
  • Patent number: 10759884
    Abstract: Film-forming compositions are provided comprising: (a) a zwitterionic-functional polymer; and (b) an organometallic compound. Also provided are methods of reducing adhesion of an organic substance to a substrate and methods of treating a siliceous or metal (M) oxide-containing subterranean formation penetrated by a well using the film-forming compositions described above.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 1, 2020
    Assignee: ACULON INC.
    Inventors: Eric L. Hanson, Eric L. Bruner, Edward W. Hughes
  • Patent number: 10753774
    Abstract: A fiber optic sensor device comprising an optical fiber with a multilayer coating on the optical fiber at least in a fiber section of the optical fiber. The multilayer coating comprises a chrome layer on the optical fiber, a metal layer such as a copper layer on the chrome layer and an indium or lead layer on the metal layer. The indium or lead layer having a thickness larger than thicknesses of the chrome and metal layers, preferably with a thickness about equal to the radius of the optical fiber.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: August 25, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Lun Kai Cheng, Hendrik Rendering, Oana Elena Van Der Togt
  • Patent number: 10741308
    Abstract: An electrical cable includes a conductor assembly having a first conductor, a second conductor and an insulator surrounding the first conductor and the second conductor. The insulator has an outer surface. The conductor assembly extends along a longitudinal axis for a length of the electrical cable. The first conductor has a first core and a first conductive layer on the first core. The second conductor has a second core and a second conductive layer on the second core. The first and second cores are dielectric. The electrical cable includes a cable shield around the conductor assembly engaging the outer surface of the insulator and providing electrical shielding for the first and second conductors. The cable shield extends along the longitudinal axis.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: August 11, 2020
    Assignee: TE CONNECTIVITY CORPORATION
    Inventors: Craig Warren Hornung, Chad William Morgan
  • Patent number: 10724922
    Abstract: Devices, systems and techniques for measuring optical polarization-related parameters in optical materials and devices such as polarization maintaining (PM) fiber links based on polarization crosstalks that spatially distribute over a length of a material such as a PM fiber link.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: July 28, 2020
    Assignees: General Photonics Corporation, Suzhou Optoring Technology Co. Ltd.
    Inventors: Xiaotian Steve Yao, Xiaojun Chen
  • Patent number: 10718711
    Abstract: A sensing apparatus, system, and use method for selective detection of a target molecule in a gaseous medium with a limit of detection of less than 50 ppm are provided. The sensing apparatus comprises an optical fiber having a core with a tilted grating, and a coating assembly that is both active to surface plasmon resonance (SPR) and reversibly reactive to the target molecule to allow for repeated detection. Upon a compatible light propagating in the optical fiber, surface plasmon waves at an interface between the coating assembly and the medium can be generated to thereby derive information of the target molecule. Signals from core mode optical waves can additionally be used as inherent reference to remove influences of fluctuations from environmental factors and input power level. There is at least one range of concentrations for the target molecule allowing for linear measurement. Multiplexing of a plurality of sensing apparatuses is also disclosed.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: July 21, 2020
    Assignee: JINAN UNIVERSITY
    Inventors: Tuan Guo, Christophe Caucheteur, Fu Liu, Xuejun Zhang, Shunshuo Cai
  • Patent number: 10705353
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 7, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Patent number: 10659178
    Abstract: Fronthaul monitoring systems and methods include a Radio Frequency (RF) analysis module configured to receive an optical RF signal for RF testing thereof; a fiber monitoring module configured to perform fiber monitoring testing; an optical switch configured to switch a port connected to the RF analysis module and the fiber monitoring module between one or more Remote Radio Heads (RRH); and a test coordinator software module configured to coordinate the RF testing and the fiber monitoring testing. The optical RF signal is at different wavelengths than a fiber test signal for the fiber monitoring testing, such that the RF testing and the fiber monitoring testing can be performed concurrently.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 19, 2020
    Assignee: EXFO Inc.
    Inventors: Jean-Sébastien Martel, Stéphane Perron
  • Patent number: 10648876
    Abstract: Disclosed herein is an optical cable comprising a plurality of cable sensors helically wound around a support; and an outer jacket that is disposed on the plurality of cable sensors and surrounds the plurality of cable sensors; where each cable sensor comprises an optical fiber; where the optical fiber comprises an optical core upon which is disposed a cladding; a primary coating; a deformable material surrounding the optical fiber; and an outer tube surrounding the deformable material; where the optical fiber is of equal length to the outer tube; and where an allowable strain on the optical cable with zero stress on the optical fiber is determined by equations (1) and (2) below: ? = ? 2 ? ( D + d 2 ) 2 + p 2 p - ? 2 ? ( D - d 2 ) 2 + p 2 p = ? 2 ? dD p 2 = 10 ? ? dD p 2 ( 1 ) ? × 100 = Percent ? ? elongation ? ? or ? ? contraction ; ( 2 ) where d is the amount of optical fiber clearance for free movement
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 12, 2020
    Assignee: OFS FITEL, LLC
    Inventors: Robert S Dyer, Jie Li, John E Pacini, Brian Violette
  • Patent number: 10622786
    Abstract: To realize a reservoir computing system with a small size and reduced learning cost, provided is a laser apparatus including a laser; a feedback waveguide that is operable to feed light output from the laser back to the laser; an optical splitter that is provided in a path of the feedback waveguide and is operable to output a portion of light propagated in the feedback waveguide to outside; and a first ring resonator that is operable to be optically connected to the feedback waveguide, as well as a reservoir computing system including this laser apparatus.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daiju Nakano, Seiji Takeda, Toshiyuki Yamane
  • Patent number: 10613033
    Abstract: A chemical sensor, including a porous optical waveguide. The loss or index of refraction, or both, of the porous waveguide is affected by the presence of one or more chemicals of interest.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 7, 2020
    Assignee: Rockley Photonics Limited
    Inventors: Yi Zhang, Aaron John Zilkie, Haydn Frederick Jones, Adam Scofield
  • Patent number: 10598544
    Abstract: Embodiments of the present disclosure include a low crosstalk, optical fiber based disturbance detection system that includes single-mode optical fiber (SMF) arranged into dual ring Sagnac interferometer wherein both rings share a common sensing section of optical fiber path length. Certain embodiments further include fiber Bragg gratings (FBG's), circulators and couplers to be able to separate the optical signals of the two rings of the dual ring Sagnac interferometer and to perform processing of their individual signals. Embodiments are also disclosed that enable the position of a physical disturbance, the magnitude of the physical disturbance and the frequency of the physical disturbance to be known.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: March 24, 2020
    Inventors: Yi Yang, Trevor MacDougall
  • Patent number: 10600266
    Abstract: The invention relates to a mounted module (20) for a motor vehicle (1), comprising an optical sensor system (3) that is suitable for a) monitoring a detection area (21) located outside the vehicle (1), b) triggering a signal for starting an authentication process between an ID generator (13) and the motor vehicle (1) if a user (10) is detected in the detection area (21), c) monitoring an actuation area (22) which is located outside the vehicle (1) and differs from the detection area (21), d) providing an operating signal for the vehicle (1) if a user is detected in the actuation area (22).
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: March 24, 2020
    Assignee: Huf Hülsbeck & Fürst GmbH & Co. KG
    Inventors: Alexander Ziegler, Helmut Schumacher, Norbert Heller, Oliver Müller, Bernd Ette, Nadine Sticherling, Mirko Schindler, Jean Malabo Yomkil, Stefan Mönig, Iko Lindic, Christof Hache
  • Patent number: 10595816
    Abstract: A system for tracking an instrument including an intraoperative transducer array configured to generate signals from array positions to generate real-time images of an area of interest. The instrument can be a penetrating instrument having a sensor mounted at a position of interest and being responsive to the signals from the array positions. A signal processing module can be provided and configured to determine a position and orientation of the instrument in accordance with the signals and to classify media of the position of interest based upon a response of the sensor to the signals from the array positions. An overlay module can be provided and configured to generate an overlay image registered to the real-time images to identify a position of the position of interest and provide feedback on the media in which the position of interest is positioned. A display can be provided and configured to provide visual feedback of the overlay image on the real-time images.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: March 24, 2020
    Assignee: KONONKLIJKE PHILIPS N.V.
    Inventors: Amir Mohammad Tahmasebi Maraghoosh, Guy Gerard Marie Vignon, Ameet Kumar Jain
  • Patent number: 10588703
    Abstract: A system comprises a first cannula comprising a proximal end and a cannula opening at the proximal end. The system further comprises a teleoperated surgical instrument, and a manually operated surgical instrument configured to be inserted into the cannula opening. The system further comprises a teleoperated manipulator, a controller, and a first position sensor coupled to the teleoperated surgical instrument, the first position sensor configured to provide a first sensor input to the controller. The system further comprises a second position sensor coupled to the manually operated surgical instrument, the second position sensor configured to provide a second sensor input to the controller, the second sensor input comprising an insertion depth of the manually operated surgical instrument into the first cannula.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: March 17, 2020
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Giuseppe Maria Prisco, Theodore W. Rogers, Vincent Duindam, Myriam J. Curet, Catherine J. Mohr, Katherine D. Stoy
  • Patent number: 10578738
    Abstract: A laser radar system using collocated laser beams to unambiguously detects a range of a target and a range rate at which the target is moving relative to the laser radar system. Another aspect of various embodiments of the invention may relate to a laser radar system that uses multiple laser radar sections to obtain multiple simultaneous measurements (or substantially so), whereby both range and range rate can be determined without various temporal effects introduced by systems employing single laser sections taking sequential measurements. In addition, other aspects of various embodiments of the invention may enable faster determination of the range and rate of the target, a more accurate determination of the range and rate of the target, and/or may provide other advantages.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: March 3, 2020
    Assignee: StereoVision Imaging, Inc.
    Inventors: Richard Lee Sebastian, Kendall L. Belsley
  • Patent number: 10578464
    Abstract: A distributed temperature sensing (DTS) system is connected to a buried fiber optic cable that is used to monitor a structure. The DTS system is operated to obtain temperature measurements along the length of the fiber cable. The temperature measurements are then used to calculate a measure of diurnal temperature variability at each point along the cable. This calculation is used to identify points at which the diurnal temperature variability changes rapidly over a short length of the cable. These points can be identified with features along the cable, such as splice chambers, where the cable burial conditions change. The known geographic location of these features can then be identified with specific distances along the fiber.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: March 3, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Maxwell Richard Hadley
  • Patent number: 10564092
    Abstract: The invention is an electromechanical resonator, comprising a fixed portion and an oscillator oscillating at a resonant frequency and comprising a fluidic channel. The channel defines a fluidic circuit, can receive a fluid, and can be deformed at the resonant frequency. The resonator includes a waveguide, defining a photonic circuit, guiding a light wave between an input and an output of the waveguide and being able to be deformed at the resonant frequency. The waveguide input can be connected to a light source and the waveguide output can be connected to a photodetector able to form a signal representative of the light wave propagated by the waveguide towards the photodetector, the light wave being modulated at a frequency dependent on the resonant frequency. A variation in a mass of the fluid, inducing a variation in the resonant frequency, may be detected via the signal formed by the photodetector.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: February 18, 2020
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Leopold Virot, Vincent Agache, Jean-Marc Fedeli, Sebastien Hentz