Phase Modulation Type Patents (Class 385/3)
  • Publication number: 20130322809
    Abstract: An optical modulator that supports a plurality of modulation formats is provided. The optical modulator includes: a distribution part including an optical demultiplexing/variable-branching switchable circuit; an optical modulator array; and an aggregation part including a combining ratio variable combining circuit and/or an optical multiplexing/variable-combining switchable circuit. The distribution part forms any or a combination of a variable 1×M demultiplexer/brancher, a combination of one or more fixed ILFs and an optical switch and a combination of a plurality of variable optical couplers and an optical switch; the optical modulator array includes a plurality of optical modulators; the aggregation part includes a structure of any or a combination of one or more variable optical couplers, a combination of a plurality of variable attenuators, an M×1 variable coupler, a variable M×1 demultiplexer/brancher and a combination of one or more fixed ILFs and an optical switch.
    Type: Application
    Filed: February 24, 2012
    Publication date: December 5, 2013
    Inventors: Takashi Goh, Hiroshi Yamazaki
  • Publication number: 20130322807
    Abstract: An integrated optical linewidth reduction system detects/estimates the phase noise of an incoming optical signal and subtracts the detected phase noise from the phase noise of the incoming signal. A first coupler/splitter of the linewidth reduction system may split the incoming signal into first and second optical signals travelling through first and second optical paths. A second coupler/splitter may split the second optical signal into third and fourth optical signals travelling through third and fourth optical paths. The third optical path has a longer propagation delay than the fourth optical path. Two different coupling ratios of the third and fourth optical signals are used to generate an electrical signal representative of the phase noise of the incoming signal. A phase detector/estimator estimates the phase noise from the electrical signal. A phase modulator subtracts the detected/estimated phase noise from the phase noise of the incoming signal.
    Type: Application
    Filed: November 21, 2012
    Publication date: December 5, 2013
    Applicant: California Institute of Technology
    Inventor: California Institute of Technology
  • Patent number: 8600197
    Abstract: In a light control element comprising a thin plate having a thickness of 10 [mu]m or less and exhibiting electro optic effect, an optical waveguide formed on the thin plate, and a control electrode for controlling light passing through the optical waveguide, the control electrode includes a first electrode and a second electrode so arranged as to sandwich the thin plate, and the first electrode has a coplanar electrode consisting of a first signal electrode and a ground electrode, while the second electrode has a second signal electrode. Modulation signals having mutually inverted amplitudes are inputted to the first signal electrode of the first electrode and the second signal electrode of the second electrode such that the modulation signals cooperate to apply an electric field to the optical waveguide.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: December 3, 2013
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Satoshi Oikawa, Junichiro Ichikawa, Yuhki Kinpara
  • Patent number: 8600199
    Abstract: An optical modulator includes a modulator that modulates an input light of light by using an input signal. The optical modulator further includes a compensation circuit that compensates the phase of a signal light in accordance with an input current, the signal light being the input light modulated by the modulator. The optical modulator further includes a detector that detects the difference between the phase of the signal light compensated by the compensation circuit and the phase of an input signal that is input to the modulator. The optical modulator further includes an adjustment circuit that adjusts, in accordance with the phase difference detected by the detector, the input current that is input to the compensation circuit.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: December 3, 2013
    Assignee: Fujitsu Optical Components Limited
    Inventor: Tsuyoshi Morishita
  • Publication number: 20130315524
    Abstract: An object of the present invention is to provide a temperature-independent optical frequency shifter for generating sub-carriers with a miniaturizable configuration, as well as to provide an all-optical OFDM modulator using the same that is compact, has low temperature dependence, and is even compatible with different frequency grids. Provided is an optical frequency shifter and an optical modulator using the same, the optical frequency shifter comprises one input optical port, a 1-input, 2-output optical coupler optically connected thereto, two Mach-Zehnder modulation units individually optically connected to the two outputs thereof, a 2-input, 2-output optical coupler optically connected to the individual outputs thereof, and two output optical ports optically connected to the outputs thereof, wherein the two Mach-Zehnder modulation units are driven by periodic waveforms at the same frequency whose phases differ from each other by (2p+1) ?/2 (p: integer).
    Type: Application
    Filed: February 15, 2012
    Publication date: November 28, 2013
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takashi Saida, Hiroshi Yamazaki, Takashi Goh, Ken Tsuzuki, Shinji Mino
  • Publication number: 20130308893
    Abstract: A driver circuit may include a first node (VA), and a first circuit to generate on the first node (VA) an inverted replica of an input signal (VIN) during driver switching between a first supply voltage (Vdd1) and ground, the inverted replica having a threshold voltage value based upon a reference voltage (Vref) greater than the first supply voltage (Vdd1). The driver circuit may include a cascode stage (M3) to be controlled by the reference voltage (Vref) and to be coupled between a second supply voltage (Vdd2) and the first node, a delay circuit (D) to generate a delayed replica of the input signal (VIN), an amplifier, and a switching network (M5, M6) to couple a control terminal of an active load transistor (M9) either to one of the reference voltage (Vref) or to ground, based upon the input signal (VIN).
    Type: Application
    Filed: December 1, 2011
    Publication date: November 21, 2013
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Maurizio Zuffada, Massimo Pozzoni, Angelo Contini
  • Patent number: 8588556
    Abstract: An apparatus, comprising a substrate with a planar surface an optical power splitter on the surface, and an optical power combiner on the surface. The apparatus also comprises pairs of optical waveguides located on the planar surface, each waveguide of the pairs connecting a corresponding output of the optical power splitter to a corresponding input of the optical power combiner. The apparatus also comprises a plurality of optical resonators located on the surface, each of the resonators of the plurality being evanescently coupled to a corresponding one of the waveguides. For each particular one of the pairs, resonant frequencies of the optical resonators coupled to the waveguides of the particular one of the pairs are about the same. Resonant frequencies of each pair of the optical resonators coupled to two of the waveguides in different ones of the pairs are different.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 19, 2013
    Assignee: Alcatel Lucent
    Inventor: Po Dong
  • Publication number: 20130301975
    Abstract: An optical modulator includes an input port, a first waveguide region comprising silicon and optically coupled to the input port, and a waveguide splitter optically coupled to the first waveguide region and having a first output and a second output. The optical modulator also includes a first phase adjustment section optically coupled to the first output and comprising a first III-V diode and a second phase adjustment section optically coupled to the second output and comprising a second III-V diode. The optical modulator further includes a waveguide coupler optically coupled to the first phase adjustment section and the second phase adjustment section, a second waveguide region comprising silicon and optically coupled to the waveguide coupler, and an output port optically coupled to the second waveguide region.
    Type: Application
    Filed: April 12, 2013
    Publication date: November 14, 2013
    Applicant: Skorpios Technologies, Inc.
    Inventor: Skorpios Technologies, Inc.
  • Patent number: 8582928
    Abstract: An optical waveguide device includes: a substrate which has an electro-optical effect; an optical waveguide which is formed on the substrate and/or inside the substrate; and an in-substrate electrode which is formed of a metal and provided inside the substrate.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Fujitsu Limited
    Inventors: Tetsuya Miyatake, Takashi Shiraishi, Masaharu Doi
  • Patent number: 8582931
    Abstract: An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 ?m.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 12, 2013
    Assignee: Sandia Corporation
    Inventor: G. Allen Vawter
  • Publication number: 20130287332
    Abstract: An electro-optic modulator includes a substrate comprising a first surface, a pair of transmission lines formed in the first surface and extending substantially in parallel with each other, and a pair of electrodes formed on the first surface and covering the respective transmission lines.
    Type: Application
    Filed: September 28, 2012
    Publication date: October 31, 2013
    Inventor: HSIN-SHUN HUANG
  • Patent number: 8571418
    Abstract: It is an object of the present invention to provide an optical waveform shaping device of high resolution. The above-mentioned problem is solved by an optical waveform shaping device (10) comprising a branching filter (11) for dividing the light beam from a light source into light beams of each frequency, a condensing part (12) for condensing a plurality of light beams divided by the branching filter (11), a polarization separation means (13) for adjusting the polarizing planes of the light beams having passed through the condensing part (12), and a spatial light modulator (14) having a phase modulation part and an intensity modulation part where the light beams having passed through the polarizing plate (13) are incident.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: October 29, 2013
    Assignees: National Institute of Information and Communications Technology, Optoquest Co., Ltd.
    Inventors: Naoya Wada, Seitetsu Boku, Takuya Yoda
  • Patent number: 8565559
    Abstract: To achieve high-speed optical modulation using a crystal having a complicated refractive index characteristic with respect to applied electric field, provided is an optical device comprising a substrate; a dielectric film that is formed on the substrate and includes a first optical waveguide and a second optical waveguide that run parallel to each other; a transmission line that is formed on the dielectric film and includes a signal line arranged between the first optical waveguide and the second optical waveguide, a first bias electrode, and a second bias electrode, the first bias electrode and the second bias electrode arranged respectively in a first region that is on a side of the first optical waveguide opposite the second optical waveguide and a second region on a side of the second optical waveguide opposite the first optical waveguide; and a drive circuit section that respectively applies a first bias voltage and a second bias voltage differing from each other to the first bias electrode and the secon
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: October 22, 2013
    Assignee: Advantest Corporation
    Inventor: Hideo Hara
  • Patent number: 8565614
    Abstract: A digital data transmission device is provided comprising optical waveguide architecture, a sideband generator, a modulation controller, an optical filter, a data mapping unit, and a phase controller. The optical waveguide architecture is configured to direct an optical signal through the sideband generator and the optical filter. The sideband generator comprises an electrooptic interferometer comprising first and second waveguide arms. The modulation controller is configured to generate an electrical drive signal to drive the sideband generator at a control voltage that is substantially larger than V? to generate optical frequency sidebands about a carrier frequency of the optical signal. The optical filter is configured to discriminate between the optical frequency sidebands and the optical carrier frequency such that optical sidebands of interest can be directed through the optical waveguide architecture as an optical millimeter wave signal.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: October 22, 2013
    Assignee: Battelle Memorial Institute
    Inventor: Richard W. Ridgway
  • Publication number: 20130272644
    Abstract: A multi-mode interference includes a core portion suitable, at any point, for propagating an optical signal having multiple spatial modes. The core portion includes a shifting section for shifting phases of the spatial modes of the optical signal.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Inventors: Keisuke Kojima, Bingnan Wang, Toshiaki Koike-Akino, Wangqing Yuan, Satoshi Nishikawa
  • Patent number: 8559769
    Abstract: A device includes a semiconductor waveguide and a control signal waveguide formed along a planar surface of a substrate. The control signal waveguide includes a segment located along and proximate a segment of the semiconductor waveguide. The control signal waveguide is configured to photo-excite charge carriers in said semiconductor waveguide.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 15, 2013
    Assignee: Alcatel Lucent
    Inventor: Mahmoud Rasras
  • Patent number: 8548281
    Abstract: Provided is an electro-optic modulating device. The electro-optic modulating device includes an optical waveguide with a vertical structure and sidewalls of the vertical structure are used to configure a junction.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: October 1, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Gyungock Kim, Jeong Woo Park, Jongbum You, Sang Gi Kim, Sanghoon Kim, In Gyoo Kim, Jiho Joo, Duk Jun Kim, Dongwoo Suh, Sahnggi Park, Ki Seok Jang, Junghyung Pyo, Kap-Joong Kim, Do Won Kim, Dae Seo Park
  • Publication number: 20130251303
    Abstract: An optical device includes first and second optical modulators formed on a substrate having electro-optical effect. The first optical modulator includes a first optical waveguide; a first signal electrode configured to provide a first data signal for the first optical waveguide; and a first DC electrode, arranged at an output side of the first signal electrode, and configured to provide first DC voltage for the first optical waveguide. The second optical modulator includes a second optical waveguide; a second signal electrode configured to provide a second data signal for the second optical waveguide; and a second DC electrode provided, arranged at an input side of the second signal electrode, and configured to provide second DC voltage for the second optical waveguide. Input portions of the first and second signal electrodes are arranged at a same side edge of the substrate.
    Type: Application
    Filed: May 21, 2013
    Publication date: September 26, 2013
    Applicant: Fujitsu Optical Components Limited
    Inventor: Masaki SUGIYAMA
  • Publication number: 20130251302
    Abstract: An apparatus comprising a cascaded set of deinterleavers. A first optical deinterleaver is configured to receive a first optical signal and a second optical signal. A second optical deinterleaver is configured to receive the second optical signal and a first optical output of the first optical deinterleaver. A third optical deinterleaver is configured to receive a second optical output of the first optical deinterleaver. The apparatus comprises an optical power splitter configured to provide the second optical signal received by the first optical deinterleaver and by the second optical deinterleaver.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 26, 2013
    Applicant: ALCATEL-LUCENT USA, INC.
    Inventor: Pietro Bernasconi
  • Publication number: 20130243365
    Abstract: An optical switching apparatus includes an optical switch element which includes an input port and an output port, and to which a switch control signal is supplied to modulate and output signal light which enters the input port depending on a level of the switch control signal; and an optical gate element which is connected to the output port of the optical switch element and to which a gate control signal is supplied to switch an output of the signal light depending on a level of the gate control signal, wherein the optical switch element varies intensity of the signal light which is output from the output port depending on the switch control signal controlled based on magnitude of a light intensity signal of the optical gate element.
    Type: Application
    Filed: January 31, 2013
    Publication date: September 19, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Shigeaki SEKIGUCHI
  • Patent number: 8532440
    Abstract: In an electro-optic device, a stack structure including a first silicon layer of a first conductivity type and a second silicon layer of a second conductivity type has a rib waveguide shape so as to form an optical confinement area, and a slab portion of a rib waveguide includes an area to which a metal electrode is connected. The slab portion in the area to which the metal electrode is connected is thicker than a surrounding slab portion. The area to which the metal electrode is connected is set so that a range of a distance from the rib waveguide to the area to which the metal electrode is connected is such that when the distance is changed, an effective refractive index of the rib waveguide in a zeroth-order mode does not change.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: September 10, 2013
    Assignee: NEC Corporation
    Inventors: Jun Ushida, Junichi Fujikata, Ming-Bin Yu, Liang Ding, ShiYang Zhu
  • Publication number: 20130230269
    Abstract: An optical module including a first optical coupler; a second optical coupler; a first optical waveguide; a second optical waveguide; a first electrode provided on the first optical waveguide; a second electrode provided on the second optical waveguide; a short electrode shorter than the first and second electrodes and provided on the second optical waveguide; and a first high-frequency connector and a second high-frequency connector; wherein, the short electrode provided on the second optical waveguide is coupled to the second high-frequency connector; and the first electrode provided on the first optical waveguide is coupled to the first high-frequency connector.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 5, 2013
    Applicant: Fujitsu Limited
    Inventor: Kazumasa TAKABAYASHI
  • Patent number: 8520984
    Abstract: A silicon-based optical modulator exhibiting improved modulation efficiency and control of “chirp” (i.e., time-varying optical phase) is provided by separately biasing a selected, first region of the modulating device (e.g., the polysilicon region, defined as the common node). In particular, the common node is biased to shift the voltage swing of the silicon-based optical modulator into its accumulation region, which exhibits a larger change in phase as a function of applied voltage (larger OMA) and improved extinction ratio. The response in the accumulation region is also relatively linear, allowing for the chirp to be more easily controlled. The electrical modulation input signal (and its inverse) are applied as separate inputs to the second region (e.g., the SOI region) of each arm of the modulator.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 27, 2013
    Assignee: Cisco Technology, Inc.
    Inventors: Mark Webster, Russell Romano, Kalpendu Shastri
  • Patent number: 8520985
    Abstract: Provided is a Mach-Zehnder modulator. The Mach-Zehnder modulator comprises an input wave guide and an output wave guide arranged on a substrate, a first branch wave guide and a second branch wave guide connected in parallel between the input and output wave guides, and a connecting region configured to connect the first branch wave guide and the second branch wave guide. Each of the first and second branch wave guides comprises first doped regions doped with a first dopant and second doped regions doped with a second dopant having different conductivity from the first dopant, and the connecting region is doped with the first dopant and arranged between the first regions of the first and second branch wave guides.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 27, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jeong Woo Park, Gyungock Kim
  • Publication number: 20130209023
    Abstract: A Mach-Zehnder optical modulator with a series push-pull traveling wave electrode uses a balanced coplanar stripline with lateral ground planes. Two signal electrodes extend along the center of the optical modulator adjacent and parallel to the optical waveguides in a series push-pull configuration. The ground planes run parallel to the signal electrodes, but are spaced laterally outward from the signal electrodes.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 15, 2013
    Applicant: COGO OPTRONICS, INC.
    Inventor: COGO OPTRONICS, INC.
  • Publication number: 20130209022
    Abstract: An integrated broadband optical isolator that operates over a wide bandwidth, wherein the optical isolator comprises sinusoidally driven phase modulators inside an interferometer. In one exemplary embodiment the optical isolator comprises: a 1×N input optical coupler, where N>2; a N×1 output optical coupler; N optical waveguides optically connecting the 1×N input optical coupler to the N×1 output optical coupler, each one of the N optical waveguides including two phase modulators, wherein each of the phase modulators are driven at a frequency f and wherein the time it takes an optical signal to travel from the center of one phase modulator in a particular waveguide to the center of the other phase modulator in that particular waveguide is substantially equal to ¼f.
    Type: Application
    Filed: January 2, 2013
    Publication date: August 15, 2013
    Applicant: ACACIA COMMUNICATIONS INC.
    Inventor: ACACIA COMMUNICATIONS INC.
  • Publication number: 20130202244
    Abstract: A digital integrated optical modulator, in particular for a fiber optical signal transmission or measuring device, having two waveguide arms and electrodes that are arranged along both waveguide arms in or on an optical substrate, wherein the arrangements of the electrodes along the two waveguide arms are different from each other.
    Type: Application
    Filed: August 10, 2011
    Publication date: August 8, 2013
    Inventor: Sven Voigt
  • Publication number: 20130195394
    Abstract: The optical modulator includes optical modulation units. The plurality of optical modulation units is disposed in parallel on the same substrate. One input waveguide branches off to be connected to the Mach-Zehnder type optical waveguide of each optical modulation unit, and an entire optical waveguide is formed such that outputs from the Mach-Zehnder type optical waveguides are combined and output through one output waveguide. A modulation signal with the same intensity is applied to a modulation electrode of each optical modulation unit. In at least some of the optical modulation units, mechanical structures including the modulation electrodes of the optical modulation units are configured such that an amplitude value of an optical output modulated by the modulation signal of the optical modulation unit is ½n (n is a natural number) of a maximum amplitude value in other optical modulation units.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 1, 2013
    Applicants: National Institute of Information and Communications Technology, Sumitomo Osaka Cement Co., Ltd.
    Inventors: Sumitomo Osaka Cement Co., Ltd., National Institute of Information and Communications Technology
  • Patent number: 8498502
    Abstract: A phase modulator may include a middle layer having a first refractive index, a first surrounding layer of material in contact with the middle layer and having a second refractive index, a second surrounding layer of material in contact with the middle layer and may having a third refractive index, a first electrode in electrical contact with the first surrounding layer, and a second electrode may be in electrical contact with the second surrounding layer. When no voltage is applied across the first electrode and the second electrode, the first refractive index may be greater than the second refractive index and the third refractive index. When a voltage is applied across the first electrode and the second electrode, the first refractive index may be less than the second refractive index within a portion of the phase modulator substantially within an electric field induced by such voltage.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: July 30, 2013
    Assignee: Fujitsu Limited
    Inventor: Alexander Umnov
  • Patent number: 8494311
    Abstract: Optical waveguides can extend alongside one another in sufficient proximity such that light couples between or among them as crosstalk. The electromagnetic field associated with light flowing in one optical waveguide can extend to an adjacent optical waveguide and induce unwanted light flow. The optical waveguide receiving the crosstalk can comprise a phase shifting capability, such as a longitudinal variation in refractive index, situated between two waveguide lengths. Crosstalk coupled onto the first waveguide length can flow through the refractive index variation, be phase shifted, and then flow onto the second waveguide length. The phase shifted crosstalk flowing on the second waveguide can meet other crosstalk that has coupled directly onto the second waveguide segment. The phase difference between the two crosstalks can suppress crosstalk via destructive interference.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: July 23, 2013
    Inventor: Michael L. Wach
  • Publication number: 20130182992
    Abstract: A Mach-Zehnder (MZ) modulator made of semiconductor material and a method to drive the MZ-modulator are disclosed. The MZ-modulator includes a pair of arms to vary the phase of the optical beam propagating therein. One of the arms further provides the phase presetter that varies the phase of the optical beam by ?. The arms are driven by modulation signals complementary to each other but with the DC bias equal to each other.
    Type: Application
    Filed: December 10, 2012
    Publication date: July 18, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: SUMITOMO ELECTRIC INDUSTRIES, LTD.
  • Patent number: 8488922
    Abstract: A multi-channel dispersion compensator comprising an optical signal waveguide that forms an input end for receiving an optical signal and an output end for providing a filtered optical signal. The multi-channel dispersion compensator also includes a series of closed-loop resonators providing frequency delay to at least one channel of the optical signal. The optical signal waveguide and each closed-loop resonator form a tunable coupler having a coupling value. The coupling value for each tunable coupler is selected to minimize constant dispersion and linear slope dispersion of the optical signal. Methods of fabrication and use are also described.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: July 16, 2013
    Assignee: Infinera Corporation
    Inventors: Brent E. Little, Wei Chen
  • Patent number: 8489369
    Abstract: An improved algorithm for calculating multimode fiber system bandwidth which addresses both modal dispersion and chromatic dispersion effects is provided. The radial dependence of a laser transmitter emission spectrum is taken into account to assist in designing more effective optical transmission systems.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: July 16, 2013
    Assignee: Panduit Corp.
    Inventors: Brett Lane, Jose M. Castro
  • Patent number: 8483520
    Abstract: An optical modulation structure includes a lower cladding layer (102), a first silicon layer (103) integrally formed from silicon of a first conductivity type on the lower cladding layer (102) while including a core (104) and slab regions (105) arranged on both sides of the core (104) and connected to the core, a concave portion (104a) formed in an upper surface of the core (104), and a second silicon layer (109) of a second conductivity type formed on a dielectric layer (108) in the concave portion (104a) so as to fill the concave portion (104a).
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: July 9, 2013
    Assignee: NEC Corporation
    Inventors: Junichi Fujikata, Jun Ushida, Akio Toda, Motofumi Saitoh
  • Patent number: 8483524
    Abstract: An electro-optic polymer semiconductor integrated circuit includes one or more doped regions configured to drive one or more electrodes, and the electrodes are configured to drive a juxtaposed electro-optic core. The assembly may include a planarization layer disposed at least partially coplanar with the electrodes. The circuit may include an integrated multiplexer, driver configured to receive a signal from the multiplexer, at least one high speed electrode configured to be driven by the driver and modulate light energy passed through a hyperpolarizable poled chromophore regions disposed near the high speed electrode. The circuit may include a calibration storage circuit. The circuit may include, during fabrication, structures to provide voltage to a buried electrode and a shield to prevent damage from the poling field.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: July 9, 2013
    Assignee: GigOptix, Inc.
    Inventors: Bing Li, Raluca Dinu, Eric Miller, Danliang Jin, Hui Chen, Christopher A. Wiklof
  • Publication number: 20130170784
    Abstract: A semiconductor device includes a single crystalline substrate, an electrical element and an optical element. The electrical element is disposed on the single crystalline substrate. The electrical element includes a gate electrode extending in a crystal orientation <110> and source and drain regions adjacent to the gate electrode. The source region and the drain region are arranged in a direction substantially perpendicular to a direction in which the gate electrode extends. The optical element is disposed on the single crystalline substrate. The optical element includes an optical waveguide extending in a crystal orientation <010>.
    Type: Application
    Filed: December 24, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130170782
    Abstract: Consistent with the present disclosure, both arms of an MZ interferometer are “double-folded” and are bent in at least two locations to define first and second acute inner angles. Accordingly, the arms of the MZ interferometer may have substantially the same length, and, further, the MZ interferometer has a more compact geometry. In one example, the arms parallel each other and have a serpentine shape, and, in a further embodiment, the arms parallel one another and have a Z-shape. Accordingly, since the temperature of a PIC upon which the MZ interferometer is provided does not vary significantly over such short distances, the temperatures of both arms is substantially the same.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Inventors: Peter W. Evans, Scott Corzine, Mehrdad Ziari, Pavel V. Studenkov, Masaki Kato, Charles H. Joyner
  • Publication number: 20130170783
    Abstract: Consistent with the present disclosure, MZ drive signal electrodes may be provided relatively close to and parallel to one another, such that the underlying waveguide arms may also be provided close to and parallel to one another. As a result, common mode performance of an MZ modulator may be obtained. In one example, an electrode wiring configuration consistent with the present disclosure may permit a waveguide arm separation of 40 microns or less.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Inventors: Peter W. Evans, Scott Corzine, Mehrdad Ziari, Charles H. Joyner
  • Publication number: 20130170781
    Abstract: The invention relates to Y-branch waveguide dual optical phase modulators with improved electro-optic (EO) frequency and step responses at frequencies below 1 Hz for use in low-frequency applications such fiber-optic gyroscopes. A Y-branch waveguide structure is formed in an EO substrate, with three or more electrodes used to form a waveguide phase modulator in each of two output waveguide arms. In one embodiment an insulating buffer layer is provided between at least a portion of the electrodes and the substrate for flattening the low-frequency EO response by reducing the modulation efficiency below 1 Hz. In one embodiment each of the waveguide phase modulators includes two ground electrodes extending along both sides of a signal electrode. A top portion of the substrate may be doped to reduce lateral variations of the substrate conductivity in the waveguide and non-waveguide portions thereof between corresponding signal and ground electrodes.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Inventors: Karl KISSA, Jason Jiazhan XU
  • Publication number: 20130163913
    Abstract: An electrical waveguide transmission device accepts a differential electrical input signal (e.g., S+ and S?) propagating along two separate signal conductors with grounded electrical return paths, and outputs the differential input signal to a series push-pull traveling wave electrode Mach-Zehnder optical modulator over a pair of output conductors that act as a return path for each other and provide a desired characteristic impedance matching that of the Mach-Zehnder optical modulator.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: COGO OPTRONICS, INC.
    Inventor: COGO OPTRONICS, INC.
  • Patent number: 8472759
    Abstract: An optical device includes a substrate having an electro-optical effect; a main waveguide provided on the substrate; a first Mach-Zehnder part having first waveguides provided on the substrate and coupled with the main waveguide, and first DC electrodes provided between the first waveguides and on the first waveguides and used to generate DC electric fields in the first waveguides; and second Mach-Zehnder parts respectively associated with the first waveguides and comprising second waveguides coupled with each of the first waveguides and second DC electrodes used to generate DC electric fields in the second waveguides, at least one of the second Mach-Zehnder parts being configured to have no second DC electrode provided between the second waveguides and have the second DC electrodes on the second waveguides.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: June 25, 2013
    Assignee: Fujitsu Optical Components Limited
    Inventor: Masaki Sugiyama
  • Patent number: 8467635
    Abstract: An optical modulator having a high stability is provided. In the optical modulator according to the present invention, a phase modulation by an electro-optic effect is made on an optical substrate of an electro-optic material while the setting of an operating point by a thermal-optic effect is made on a planar lightwave circuit (PLC) substrate of quartz, silicon, or the like. Such configuration can suppress the influence of thermal drift or the like because no heat is applied directly to the optical substrate of the electro-optic material. In addition, breakage and warpage of the substrate due to heat are also mitigated. Further, quartz used for the PLC has a low thermal conductivity, approximately one-fifth of that of the LN substrate (approximately 1 W/(m·K)), and therefore, a desired phase difference can be maintained with a low power consumption, and thus, the operating point becomes stabilized.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: June 18, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yoshiyuki Doi, Takashi Yamada, Yohei Sakamaki, Akimasa Kaneko
  • Patent number: 8467121
    Abstract: An optical signal processor may include an optical waveguide loop, and first and second phase modulator loops. Each of the first and second phase modulator loops may be in optical communication with the optical waveguide loop. The first and second phase modulator loops may include respective control signal input ports to control phase modulation applied by the first and second phase modulation loops. The optical waveguide loop may include two input ports to direct input signals in opposite directions in the optical waveguide loop and may further include an output port to output resulting signals.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 18, 2013
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Antonella Bogoni, Luca Poti, Emma Lazzeri, Gianluca Meloni, Filippo Ponzini
  • Publication number: 20130148921
    Abstract: The invention relates to an electro-optical phase modulator with a plurality of elements arranged between two substrates, which are produced from an optically isotropic material which becomes optically anisotropic when an electrical field is applied, wherein for each of the elements respectively one electrode is arranged on both substrates and the electrodes can be individually controlled at least on one of the substrates.
    Type: Application
    Filed: October 4, 2012
    Publication date: June 13, 2013
    Inventors: Patrick SCHALBERGER, Norbert Fruehauf
  • Publication number: 20130148920
    Abstract: An optical phase modulator having a reduced time drift of an electro-optical response is disclosed. An optical waveguide exhibiting the electro-optic effect includes two serially coupled portions having opposite time drifts of magnitudes of their respective electro-optical responses. As a result, a time drift of an overall electro-optical response of the optical phase modulator is lessened.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 13, 2013
    Applicant: JDS Uniphase Corporation
    Inventor: Karl Kissa
  • Patent number: 8463081
    Abstract: An optical phase modulator having a reduced time drift of an electro-optical response is disclosed. An optical waveguide exhibiting the electro-optic effect includes two serially coupled portions having opposite time drifts of magnitudes of their respective electro-optical responses. As a result, a time drift of an overall electro-optical response of the optical phase modulator is lessened.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 11, 2013
    Assignee: JDS Uniphase Corporation
    Inventor: Karl Kissa
  • Patent number: 8463088
    Abstract: The multi-channel optical device includes multiple laser cavities that each reflects a different light channel back and forth between reflective components. One of the reflective components is common to all of the laser cavities in that the common reflective component receives the channels from each of the laser cavities and reflects the received channels. The laser cavities also share a multiplexer that receives the channels reflected by the common reflective device and demultiplexes the channels into demultiplexed channels. A portion of the reflective components are partial return devices that each receives one of the demultiplexed channels. Each of the partial return devices transmits a portion of the demultiplexed channel received by that partial return device. The transmitted portion of the demultiplexed channel exits the laser cavity. Additionally, each of the partial return devices reflects a portion of the demultiplexed channel receive by that partial return device.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 11, 2013
    Assignee: Kotura, Inc.
    Inventors: Mehdi Asghari, Dazeng Feng
  • Patent number: 8463080
    Abstract: A waveguide and method for controllably altering an optical phase delay (OPD) of light traveling along a propagation direction through the waveguide. Many embodiments are disclosed, and in one example, a waveguide may include a core for guiding the light through the waveguide; at least one cladding adjacent the core, wherein the at least one cladding has liquid crystal molecules disposed therein; at least one electrode for receiving a first voltage for controllably altering the optical phase delay of the TE polarized light traveling through the waveguide; and at least one electrode for receiving a second voltage for controllably altering the optical phase delay of the TM polarized light traveling through the waveguide.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 11, 2013
    Assignee: Vescent Photonics, Inc.
    Inventors: Michael H. Anderson, Scott D. Rommel, Scott R. Davis
  • Publication number: 20130142472
    Abstract: An optical transmitter includes a first Mach-Zehnder, second Mach-Zehnders, a plurality of electrodes and a shift circuit. The first Mach-Zehnder is formed in an LN substrate. The second Mach-Zehnders are formed in branch waveguides of the first Mach-Zehnder. The plurality of electrodes are set in the second Mach-Zehnders and modulate lights input in the second Mach-Zehnders using an electric potential of the electrodes. The shift circuit causes a phase difference between the lights modulated in the above plurality of electrodes and output from the second Mach-Zehnders. The Mach-Zehnder synthesizes the above lights of different phases and generates an output signal.
    Type: Application
    Filed: October 19, 2012
    Publication date: June 6, 2013
    Applicant: Fujitsu Optical Components Limited
    Inventor: Fujitsu Optical Components Limited
  • Publication number: 20130142473
    Abstract: An optical device includes a phase modulation element having an optical waveguide part and electrodes, the optical waveguide part being configured such that a laser light beam emitted by a laser light source is inputted to the optical waveguide part and having an optical waveguide layer formed of an electro-optic material, the electrodes being provided on respective sides of the optical waveguide part to apply a voltage to the optical waveguide layer, the phase modulation element being configured to modulate a phase of the laser light beam by using a refraction index modulation region formed in the optical waveguide layer when a voltage is applied to the optical waveguide layer through the electrodes, and a pump light source configured to irradiate at least the refraction index modulation region of the optical waveguide layer with a pump light beam.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 6, 2013
    Inventors: Jun Nakagawa, Tsuyoshi Hashiguchi, Kazuhiko Tsukamoto