Directional Coupler Patents (Class 385/42)
  • Patent number: 10330866
    Abstract: An optical component comprising at least one first waveguide having a first core and a casing surrounding the first core, and comprising at least one second waveguide having a second core, wherein the first core and the second core are guided adjacent and at a distance to one another in a longitudinal section, and at least one Bragg grating is arranged in said longitudinal section, and at least the first core, the first casing the second core and the Bragg grating are arranged in a single substrate.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: June 25, 2019
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V., BAKER HUGHES INTEQ GMBH
    Inventors: Wolfgang Schade, Michael Köhring, Christian Waltermann, Konrad Bethmann, Thomas Kruspe, Sebastian Jung, Gunnar Tackmann
  • Patent number: 10048441
    Abstract: The variable optical splitter system includes a V-shaped optical splitter for use in planar lightwave circuits (PLCs), photonic integrated circuits (PICs), etc. The V-shaped optical splitter has first and second optically transmissive branches sharing a common optically transmissive base, where the first and second optically transmissive branches each define an optical waveguide. The first and second optically transmissive branches are symmetrically angled about a central longitudinal axis. A light source directs a light beam to a laterally extending input surface of the optically transmissive base. The light beam travels parallel to the central longitudinal axis. The optical power splitting ratio is directly proportional to the input beam's displacement from the central longitudinal axis, permitting selective tuning of the ratio during design of the splitter.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: August 14, 2018
    Assignee: KING SAUD UNIVERSITY
    Inventor: Ehab Salaheldin Awad Mohamed
  • Patent number: 10033477
    Abstract: A system includes an optical Y-junction coupler to receive a first modulated optical signal on a wide input path of the optical Y-junction coupler and to receive a second modulated optical signal on a narrow input path of the optical Y-junction coupler, wherein the optical Y-junction coupler generates a combined optical signal from signals received on the wide input path and the narrow input path. A multimode waveguide receives the combined optical signal from the optical Y-junction coupler and propagates a spatially multiplexed optical output signal along a transmission path.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 24, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Alexandre M Bratkovski, Jacob Khurgin, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 9952719
    Abstract: A touch system that employs interference effects is disclosed. The touch system includes first and second waveguides that have first and second optical paths that define an optical path difference. The first and second waveguides are configured so that a touch event deforms at least one of the waveguides in a manner that causes the optical path difference to change. The change in the optical path difference is detected by combining the light traveling in the two waveguides to form interfered light. The interfered light is processed to determine the occurrence of a touch event. The time-evolution of the deformation at the touch-event location can also be determined by measuring the interfered light over the duration of the touch event.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: April 24, 2018
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Daniel Aloysius Nolan, Wendell Porter Weeks
  • Patent number: 9276673
    Abstract: The present disclosure relates to a method for testing a fiber optic network including a fiber distribution hub. The method includes providing a test splitter within the fiber distribution hub to provide optical connectivity between an F1 fiber and at least a portion of an F2 fiber network. The method also includes testing sending a test signal from the F1 fiber through the test splitter to the F2 fiber network, and replacing the test splitter after testing has been completed.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: March 1, 2016
    Assignee: CommScope Technologies LLC
    Inventor: Trevor D. Smith
  • Patent number: 9217827
    Abstract: An optical waveguide arrangement is provided which comprises an active ridge waveguide structure 12 formed by etching of a semiconductor substrate 1, 2, 3. There is also provided an auxiliary waveguide-like structure 8 formed on the substrate adjacent the active ridge waveguide structure 12 to control the etched profile of the active waveguide structure. The arrangement of the auxiliary structure 8 on the substrate controls the etched profile over the cross-section of the active waveguide structure 12 and along the length of the active waveguide structure 12. Advantageously, this arrangement reduces or eliminates the disadvantages associated with etch-process induced asymmetries in the shape of closely spaced waveguides.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: December 22, 2015
    Assignee: OCLARO TECHNOLOGY LIMITED
    Inventors: Stephen K. Jones, Peter J. Williams
  • Patent number: 9191140
    Abstract: Disclosed herein is an apparatus comprising a plurality of separators configured to forward a plurality of optical signals from a plurality of optical network terminals (ONTs) along a plurality of single mode waveguides, a mode coupler coupled to the single mode waveguides and configured to receive the optical signals from the plurality of separators and combine the optical signals into a multi-mode waveguide, and an optical receiver coupled to the mode coupler via the multi-mode waveguide and configured to detect the optical signals. Also disclosed is a method comprising receiving a plurality of single mode optical channels, coupling the single mode optical channels into a multimode channel, and detecting the optical modes corresponding to the channels in the multimode channel.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: November 17, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Ning Cheng, Frank J. Effenberger
  • Patent number: 9177852
    Abstract: An isolated semiconductor circuit comprising: a first sub-circuit and a second sub-circuit; a backend that includes an electrically isolating connector between the first and second sub-circuits; a lateral isolating trench between the semiconductor portions of the first and second sub-circuits, wherein the lateral isolating trench extends along the width of the semiconductor portions of the first and second sub-circuits, wherein one end of the isolating trench is adjacent the backend, and wherein the isolating trench is filled with an electrically isolating material.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: November 3, 2015
    Assignee: NXP B.V.
    Inventors: Peter Gerard Steeneken, Roel Daamen, Gerard Koops, Jan Sonsky, Evelyne Gridelet, Coenraad Cornelis Tak
  • Patent number: 9035409
    Abstract: A novel germanium (Ge) photodetector is disclosed, containing a stripe layer including Ge, a substrate supporting the stripe layer, and P and N regions, which are located inside the substrate and near opposite sides of the stripe. The stripe layer containing Ge for light absorption is operated in a slow-light mode by adding combinations of a gradual taper indent structure and a periodic indent structure to reduce light scatterings and to control light group velocity inside the stripe. Due to the slower light traveling velocity inside the stripe, the absorption coefficient of the stripe containing Ge is upgraded to be 1 to 2 orders of magnitude larger than that of a traditional bulk Ge at L band, and so the absorption coefficient reaches more than 1 dB/?m at the wavelength of 1600 nm.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 19, 2015
    Assignee: Forelux Inc.
    Inventor: Yun-Chung Na
  • Publication number: 20150125116
    Abstract: An apparatus and a method for jointing a first optical fibre and a second optical fibre, the apparatus includes a composite cable, where the composite cable includes an electric power cable, a first optical fibre cable including the first optical fibre, and a second optical fibre cable including the second optical fibre, wherein the apparatus includes a first routing device and a second routing device, each routing device being arranged to change the direction of a fibre optic path from a first axis to a second axis and including a first optical fibre portion aligned with the first axis, a second optical fibre portion aligned with the second axis, and an intermediate optical fibre portion integral with the first and second optical fibre portions and extending through an arc between the first and second optical fibre portions, the intermediate optical fibre portion in the region of the arc having a reduced diameter in relation to the diameter of the first and second optical fibre portions, wherein the first op
    Type: Application
    Filed: June 21, 2012
    Publication date: May 7, 2015
    Applicant: ABB Technlogy Ltd
    Inventor: Thomas Worzyk
  • Patent number: 9020311
    Abstract: An optical waveguide includes a first cladding layer, at least two core portions formed on the first cladding layer and extended in a first direction, at least two groove portions formed in each of the core portions at positions spaced apart from each other in the first direction, each groove portion having an inclined surface, an optical path conversion mirror formed on one of the inclined surfaces formed in each of the core portions, and a second cladding layer formed on the first cladding layer and the core portions. The optical path conversion mirrors formed in the core portions adjacent to each other are arranged at positions different from each other in the first direction. The groove portions formed in the core portions adjacent to each other are arranged at the same positions in the first direction.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: April 28, 2015
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Kazunao Yamamoto
  • Patent number: 9008476
    Abstract: A polarization conversion device includes: a directional coupler that includes an input side optical waveguide and an output side optical waveguide which are disposed in parallel to each other and each of which has a core. Assuming that a direction in which the input side optical waveguide and the output side optical waveguide face each other is a width direction and a direction perpendicular to the width direction is a height direction in a cross section perpendicular to a longitudinal direction of each of the input side optical waveguide and the output side optical waveguide, and the directional coupler is configured to couple first light guided through the input side optical waveguide to second light guided through the output side optical waveguide, the polarization direction of the second light is perpendicular to that of the first light.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: April 14, 2015
    Assignee: Fujikura Ltd.
    Inventors: Akira Oka, Kazuhiro Goi, Kensuke Ogawa, Hiroyuki Kusaka
  • Patent number: 8965156
    Abstract: A beam combiner is disclosed that comprises a planar lightwave circuit that is based on undoped silicon nitride-based surface waveguides, wherein the planar lightwave circuit comprises a plurality of input ports, a mixing region, and an output port, and wherein the mixing region comprises a plurality of directional couplers that are arranged in a tree structure. Embodiments of the present invention are capable of combining a plurality of light signals characterized by disparate wavelengths on irregular spacings with low loss. Further, the present invention enables high-volume, low cost production of beam combiners capable of combining three or more light signals into a single composite output beam.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: February 24, 2015
    Assignee: Octrolix BV
    Inventors: Edwin Jan Klein, Ronald Dekker, Hindrik F. Bulthuis
  • Patent number: 8948546
    Abstract: An object of the present invention is to provide a temperature-independent optical frequency shifter for generating sub-carriers with a miniaturizable configuration, as well as to provide an all-optical OFDM modulator using the same that is compact, has low temperature dependence, and is even compatible with different frequency grids. Provided is an optical frequency shifter and an optical modulator using the same, the optical frequency shifter comprises one input optical port, a 1-input, 2-output optical coupler optically connected thereto, two Mach-Zehnder modulation units individually optically connected to the two outputs thereof, a 2-input, 2-output optical coupler optically connected to the individual outputs thereof, and two output optical ports optically connected to the outputs thereof, wherein the two Mach-Zehnder modulation units are driven by periodic waveforms at the same frequency whose phases differ from each other by (2p+1)?/2 (p: integer).
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: February 3, 2015
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Saida, Hiroshi Yamazaki, Takashi Goh, Ken Tsuzuki, Shinji Mino
  • Publication number: 20150003782
    Abstract: A polarization conversion device includes: a directional coupler that includes an input side optical waveguide and an output side optical waveguide which are disposed in parallel to each other and each of which has a core Assuming that a direction in which the input side optical waveguide and the output side optical waveguide face each other is a width direction and a direction perpendicular to the width direction is a height direction in a cross section perpendicular to a longitudinal direction of each of the input side optical waveguide and the output side optical waveguide, and the directional coupler is configured to couple first light guided through the input side optical waveguide to second light guided through the output side optical waveguide, the polarization direction of the second light is perpendicular to that of the first light.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 1, 2015
    Applicant: FUJIKURA LTD.
    Inventors: Akira OKA, Kazuhiro GOI, Kensuke OGAWA, Hiroyuki KUSAKA
  • Publication number: 20140355935
    Abstract: The invention relates to a directional coupling-type multi-drop bus of which the impedance is matched with the bus at the time of coupling so that the speed is increased. A directional coupler is formed when a second module provided with a second coupler end is mounted on a first module provided with a first coupler end, and as a result, the coupling impedance where the proximity effects in the coupling state of the directional coupler are reflected is matched with the impedance of the bus.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Applicant: KEIO UNIVERSITY
    Inventors: Tadahiro Kuroda, Hiroki Ishikuro
  • Patent number: 8903210
    Abstract: An optical waveguide structure may include a dielectric layer having a top surface, an optical waveguide structure, and an optical coupler embedded within the dielectric layer. The optical coupler may have both a substantially vertical portion that couples to the top surface of the dielectric layer and a substantially horizontal portion that couples to the optical waveguide structure. The substantially vertical portion and the substantially horizontal portion are separated by a curved portion.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 8885992
    Abstract: At the time of assembly of an optical transmission/reception module, a test variable wavelength light source 22 for outputting a test light signal is connected to a connector 8 of an optical fiber 7, and a large-diameter PD 23 measures a transmission loss in a light wavelength band limiting filter 12 while a rotational position determining unit 24 rotates a fiber ferrule 5, so that the rotational position determining unit 24 determines the rotational position ?loss-min of the fiber ferrule 5 which minimizes the transmission loss in the light wavelength band limiting filter 12, and aligns the fiber ferrule 5 at the rotational position ?loss-min.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tamon Omura, Nobuo Ohata, Masatoshi Katayama
  • Patent number: 8861908
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 14, 2014
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8861906
    Abstract: A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of a CMOS photonic chip in a photonic transceiver, wherein photonic, electronic, or optoelectronic devices may be integrated in a front surface of the CMOS photonic chip. Optical couplers, such as grating couplers, may receive the optical signals in the front surface of the chip. The optical signals may be coupled into the back surface of the chips via optical fibers and/or optical source assemblies. The optical signals may be coupled to the optical couplers via a light path etched in the chips, which may be refilled with silicon dioxide. The chips may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the optical couplers via metal reflectors, which may be integrated in dielectric layers on the chips.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 14, 2014
    Assignee: Luxtera, Inc.
    Inventors: Thierry Pinguet, Attila Mekis, Steffen Gloeckner
  • Patent number: 8809906
    Abstract: A semiconductor optical device includes a first clad layer, a second clad layer and an optical waveguide layer sandwiched between the first clad layer and the second clad layer, wherein the optical waveguide layer includes a first semiconductor layer, a second semiconductor layer disposed on the first semiconductor layer and extending in one direction, and a third semiconductor layer covering a top surface of the second semiconductor layer, and wherein the first semiconductor layer includes an n-type region disposed on one side of the second semiconductor layer, a p-type region disposed on the other side of the second semiconductor layer, and an i-type region disposed between the n-type region and the p-type region, and wherein the second semiconductor layer has a band gap narrower than band gaps of the first semiconductor layer and the third semiconductor layer.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 19, 2014
    Assignee: Fujitsu Limited
    Inventors: Lei Zhu, Shigeaki Sekiguchi, Shinsuke Tanaka, Kenichi Kawaguchi
  • Patent number: 8805139
    Abstract: An optical waveguide directional coupler includes a base and a Y-shaped optical waveguide formed in the base. The base includes a planar member and a ridge member extending from a side of the planar member. The planar member includes a top surface. The ridge member includes a recessed planar portion and a raised portion raised relative to the recessed planar portion and perpendicularly extending from the planar member. The raised portion has an upper surface coplanar with the top surface. The Y-shaped optical waveguide is exposed to the upper surface and the top surface. One end of the Y-shaped optical waveguide is exposed to an end of the ridge member, and the other two ends are exposed to an end of the planar member.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 12, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Hsin-Shun Huang
  • Patent number: 8792757
    Abstract: There is described a double-clad fiber coupler (DCFC) composed of two double-clad fibers that have been fused together and tapered. The DCFC allows the propagation of light in the fundamental mode in its single-mode core with very little loss. Back reflected light may be collected two ways: by the core of the double-clad fiber and by the inner cladding of the double-clad fiber.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: July 29, 2014
    Assignee: Polyvalor, Limited Partnership
    Inventors: Caroline Boudoux, Nicolas Godbout, Simon Lemire-Renaud
  • Patent number: 8787712
    Abstract: An optocoupler, an optical interconnect and method of manufacture providing same are provided for coupling an optical signal between a high refractive index waveguide of an integrated circuit and a waveguide external to the integrated circuit. The optocoupler includes a thinned high refractive index waveguide having a thickness configured to exhibit an effective refractive index substantially matching a refractive index of the external waveguide.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: July 22, 2014
    Assignee: Socpra Sciences et Genie S.E.C.
    Inventors: Etienne Grondin, Guillaume Beaudin, Vincent Aimez, Richard Ares, Paul G. Charette
  • Patent number: 8768123
    Abstract: A multi-chip module (MCM) includes a stack of chips that are coupled using optical interconnects. On a first surface of a middle chip in the stack, there are: a first optical coupler, an optical waveguide, which is coupled to the first optical coupler, and a second optical coupler, which is coupled to the optical waveguide. The first optical coupler redirects an optical signal from the optical waveguide to a first direction (which is not in the plane of the first surface), or from the first direction to the optical waveguide. The second optical coupler redirects the optical signal from the optical waveguide to a second direction (which is not in the plane of the first surface), or from the second direction to the optical waveguide. An optical path associated with the second direction passes through an opening in a substrate in the middle chip.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: July 1, 2014
    Assignee: Oracle International Corporation
    Inventors: Jin Yao, Xuezhe Zheng, Ashok V. Krishnamoorthy, John E. Cunningham
  • Publication number: 20140169740
    Abstract: Methods and systems for stabilized directional couplers are disclosed and may include a system comprising first and second directional couplers formed by first and second waveguides, where one of the waveguides may comprise a length extender between the directional couplers. The directional couplers may be formed by reduced spacing between the waveguides on opposite sides of the length extender. An input optical signal may be communicated into one of the waveguides, where at least a portion of the input optical signal may be coupled between the waveguides in the first directional coupler and at least a portion of the coupled optical signal may be coupled between the waveguides in the second directional coupler. Optical signals may be communicated out of the system with magnitudes at a desired percentage of the input optical signal. The length extender may add phase delay for signals in one of the first and second waveguides.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 19, 2014
    Applicant: Luxtera, Inc.
    Inventors: Lieven Verslegers, Steffen Gloeckner, Adithyaram Narasimha, Attila Mekis
  • Patent number: 8755649
    Abstract: An optical connector having a plurality of directional taps and connecting between a plurality of optical waveguides (e.g., such as a connector between a waveguide that is part of, or leads from, a seed laser and/or an initial optical-gain-fiber power amplifier, and a waveguide that is part of, or leads to, an output optical-gain-fiber power amplifier and/or a delivery fiber), wherein one of the directional taps extracts a small amount of the forward-traveling optical output signal from the seed laser or initial power amplifier (wherein this forward-tapped signal is optionally monitored using a sensor for the forward-tapped signal), and wherein another of the directional taps extracts at least some of any backward-traveling optical signal that may have been reflected (wherein this backward-tapped signal is optionally monitored using a sensor for the backward-tapped signal).
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: June 17, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Tolga Yilmaz, Khush Brar, Charles A. Lemaire
  • Patent number: 8737782
    Abstract: A dynamic optical circulator device applicable to UPC-type and PC-type optical connectors is provided, including a first UPC/PC-type optical connector, a second UPC/PC-type optical connector, a third UPC/PC-type optical connector, a passive optical circulator, a reflected light detector and a transform element. The first, second and third UPC/PC-type optical connectors provide connections to optical fibers for receiving and transmitting optical signals. The first UPC/PC-type optical connector, the second UPC/PC-type optical connector and the third UPC/PC-type optical connector are connected to the three ports of the passive optical circulator, respectively, with the reflected light detector placed between the second UPC/PC-type optical connector and the second port of the passive optical circulator, while the transform element can be placed between any port of passive optical circulator and corresponding UPC-type and PC-type optical port.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: May 27, 2014
    Assignee: Browave Corporation
    Inventors: Yeongher Chen, HsiangHsi Chiang, HsienSheng Lin
  • Patent number: 8687278
    Abstract: An opto-mechanical switch produces different optical paths from two optical path sections out of a plurality of optical path sections that are oriented in different spatial directions. The switch has an optical component on which one end of each optical path section impinges, and which is adapted to be moved linearly in a direction of movement at right angles to the optical path sections between different switching positions, in which it selectively couples different optical path sections optically with each other. Further provided is a measuring system for the analysis of fluids, having such an opto-mechanical switch.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 1, 2014
    Assignees: Buerkert Werke GmbH, Karlsruher Institut fuer Technologie
    Inventors: Marko Brammer, Timo Mappes
  • Patent number: 8682115
    Abstract: An optical sensor for detecting a substance includes a first waveguide and a second waveguide optically coupled via a directional coupler to the first waveguide. The sensor has a functional surface in a region of the directional coupler for accumulating or storing the substance to be detected so that an intensity of a coupling arranged by the directional coupler between the first waveguide and the second waveguide can be changed by the accumulating or storing of this substance. The first waveguide extends in a freely floating manner over a coupling path covered by the directional coupler or rests on a swellable material. The first waveguide is guided in a vicinity of the coupling path so that a spacing between the first waveguide and the second waveguide can be changed there by a deformation or movement of the first waveguide or of a carrier of the first waveguide.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: March 25, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Helmut Heidrich, Peter Lutzow, Herbert Venghaus
  • Patent number: 8680689
    Abstract: An approach for a coplanar waveguide structure in stacked multi-chip systems is provided. A method of manufacturing a semiconductor structure includes forming a first coplanar waveguide in a first chip. The method also includes forming a second coplanar waveguide in a second chip. The method further includes directly connecting the first coplanar waveguide to the second coplanar waveguide using a plurality of chip-to-chip connections.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Hanyi Ding, Wolfgang Sauter, Guoan Wang, Wayne H. Woods, Jr.
  • Patent number: 8666210
    Abstract: A liquid crystal (LC) display panel including a lower substrate with pixel structures, an upper substrate, and an LC layer is provided. Each of the pixel structures includes a transistor and a pixel electrode. The pixel electrode includes first and second pixel electrodes insulated from each other, respectively including a first pattern and a second pattern that different and complementary to each other. Each of the first pixel electrode and the second pixel electrode has at least a trunk with a width smaller than or equal to 10 microns and a plurality of branches. The LC layer is positioned between the upper and the lower substrates and includes a plurality of LC molecules and a plurality of polymers, which are formed on surfaces of at least one of the upper and the lower substrates to cause the plurality of LC molecules to have a pretilt angle.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: March 4, 2014
    Assignee: Chimei Innolux Corporation
    Inventors: Chien-Hong Chen, Jian-Cheng Chen, Rung-Nan Lu
  • Patent number: 8666204
    Abstract: An optical transmission module includes a semiconductor substrate, a first film layer, an electronic component layer and a waveguide structure. The electronic component layer is used for converting a first electrical signal into an optical signal. The waveguide structure is formed on the first film layer, and includes a first reflective surface, a waveguide body and a second reflective surface. After the optical signal is transmitted through the semiconductor substrate and the first film layer and enters the waveguide structure, the optical signal is reflected by the first reflective surface, transmitted within the waveguide body and reflected by the second reflective surface. After the optical signal reflected by the second reflective surface is transmitted through the first film layer and the semiconductor substrate and received by the electronic component layer, the optical signal is converted into a second electrical signal by the electronic component layer.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: March 4, 2014
    Assignee: National Central University
    Inventors: Mao-Jen Wu, Hsiao-Chin Lan, Yun-Chih Lee, Chia-Chi Chang, Hsu-Liang Hsiao, Chin-Ta Chen, Bo-Kuan Shen, Guan-Fu Lu, Yan-Chong Chang, Jen-Yu Chang
  • Patent number: 8624579
    Abstract: A Fiber-optic current sensor for sensing electric current carried in an electric conductor (18). Its optical section comprises: a light source (1); a directional coupler (2) with two ports (2A, 2B) of two arms each; a radiation polarizer (3); a polarization modulator (4); a fiber line (17) coupled to a current-sensing fiber loop (11); a mirror (10); and a photodetector (22). The first port of the coupler (2) is coupled to the light source (1) and to the photodetector (22). Its second port is coupled via the radiation polarizer (3) to the polarization modulator (4). The polarization modulator comprises a magneto-sensitive element (5), around which a solenoid (6) is wound. The fiber loop (11) comprises a magneto-sensitive optical fiber with embedded linear birefringence. An electronic section comprises a signal generator (21) which drives the solenoid (6); and a signal processing unit which receives the optical signal from the photodetector (22).
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: January 7, 2014
    Assignee: Closed Joint Stock Company “Profotech” (CJSC “Profotech”)
    Inventors: Yuri Chamorovskiy, Vladimir Gubin, Sergei Morshnev, Yan Prziyalkovskiy, Maxin Ryabko, Nikolay Starostin, Alexander Sazonov, Anton Boyev
  • Patent number: 8620119
    Abstract: The invention relates to an array of waveguides (1) comprising a set of coupled waveguides that are substantially parallel and oriented in a guidance direction (Y), the set of waveguides comprising a first zone (2) formed by waveguides coupled according to a first coupling coefficient, and a second zone (3) formed by waveguides coupled according to a second coupling coefficient that is different from the first coupling coefficient, characterized in that the second coupling coefficient is different from the first coupling coefficient in the guidance direction and in the direction (X) perpendicular to the guidance direction.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: December 31, 2013
    Assignees: Centre National de la Recherche Scientifique—CNRS, Groupe des Ecoles des Telecommunications—GET
    Inventors: Jean-Marie Moison, Christophe Minot
  • Publication number: 20130330041
    Abstract: The present invention aims to provide a low-wavelength-dependent optical coupler capable of concurrently achieving high process stability and low polarization dependence. An optical coupler 100 according to an embodiment includes a cladding layer 105 being formed on a substrate 104 and having two waveguides 101a, 101b inside. Three directional couplers 102a, 102b, 102c are each formed by bringing portions of the two waveguides close to each other in parallel, and the two delay paths 103a, 103b are each formed to give an optical path difference between the two waveguides. The delay path 103a is provided between the directional couplers 102a and 102b, and the delay path 103b is provided between the directional couplers 102b and 102c. The three directional couplers have the same coupling characteristic, and the two delay paths have different optical path differences from each other.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventor: Kazutaka NARA
  • Publication number: 20130322823
    Abstract: An optical waveguide directional coupler includes a base having a planar member and a ridge member and an optical waveguide in the base. The ridge member extends from the planar member and has an upper surface where the optical waveguide exposed. The optical waveguide includes a first flat side surface, a second flat side surface parallel to the first flat side surface, a third flat side surface, a fourth flat side surface parallel to the third flat side surface, and a first flat connection side surface. An included angle ?1 between the first and third flat side surfaces is an obtuse angle, an included acute angle ?1 is formed between the first flat connection side surface and the second flat side surface, and ?1 and ?1 satisfy ?1<(180°??1).
    Type: Application
    Filed: November 28, 2012
    Publication date: December 5, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: HSIN-SHUN HUANG
  • Publication number: 20130301990
    Abstract: An optical waveguide directional coupler includes a base and two optical waveguides formed in the base. The base has a ridge portion, and a planar portion adjacent to the ridge portion. Each of the optical waveguides includes a first straight section located in the ridge portion, a second straight section, and a curved section interconnected between the first and second straight sections. The curved sections and the second straight sections are located in the planar portion. The first straight sections are parallel with each other and define a light coupling region therebetween. The second straight sections are parallel with each other, and a distance between the second straight sections being greater than a distance between the first straight sections.
    Type: Application
    Filed: September 25, 2012
    Publication date: November 14, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Hsin-Shun HUANG
  • Publication number: 20130287340
    Abstract: An optical waveguide directional coupler includes a base and a Y-shaped optical waveguide formed in the base. The base includes a planar member and a ridge member extending from a side of the planar member. The planar member includes a top surface. The ridge member includes a recessed planar portion and a raised portion raised relative to the recessed planar portion and perpendicularly extending from the planar member. The raised portion has an upper surface coplanar with the top surface. The Y-shaped optical waveguide is exposed to the upper surface and the top surface. One end of the Y-shaped optical waveguide is exposed to an end of the ridge member, and the other two ends are exposed to an end of the planar member.
    Type: Application
    Filed: October 25, 2012
    Publication date: October 31, 2013
    Inventor: HSIN-SHUN HUANG
  • Publication number: 20130279855
    Abstract: Provided is a bidirectional optical module having an improved structure capable of bidirectionally transmitting an optical signal.
    Type: Application
    Filed: December 5, 2012
    Publication date: October 24, 2013
    Applicant: Hantech Co., Ltd.
    Inventor: Hantech Co., Ltd.
  • Publication number: 20130243377
    Abstract: The inventive concept provides optic couplers, optical fiber laser devices, and active optical modules using the same. The optic coupler may include a first optical fiber having a first core and a first cladding surrounding the first core, a second optical fiber having a second core transmitting a signal light to the first optical fiber and a third cladding surrounding the second core, third optical fibers transmitting pump-light to the first optical fiber in a direction parallel to the second optical fiber; and a connector connected between the first optical fiber and the second optical fiber, the connector extending the third optical fibers disposed around the second optical fiber toward the first optical fiber, the connector comprising a third core connected between the first core and the second core and a fifth cladding surrounding the third core.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 19, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hong-Seok SEO, Bong Je Park, Joon Tae Ahn, Jung-Ho Song
  • Publication number: 20130243362
    Abstract: A reflective structure includes an input/output port and an optical splitter coupled to the input/output port. The optical splitter has a first branch and a second branch. The reflective structure also includes a first resonant cavity optically coupled to the first branch of the optical splitter. The first resonant cavity comprises a first set of reflectors and a first waveguide region disposed between the first set of reflectors. The reflective structures further includes a second resonant cavity optically coupled to the second branch of the optical splitter. The second resonant cavity comprises a second set of reflectors and a second waveguide region disposed between the second set of reflectors.
    Type: Application
    Filed: September 10, 2012
    Publication date: September 19, 2013
    Applicant: Skorpios Technologies, Inc.
    Inventors: Derek Van Orden, Amit Mizrahi, Timothy Creazzo, Stephen B. Krasulick
  • Patent number: 8532451
    Abstract: An optical transmitter includes three or more emission optical fibers that are three-dimensionally arranged, a single reception optical fiber, and an optical path converting component to optically couple the emission optical fibers to the reception optical fiber. The optical path converting component includes optical transmission portions that are optically coupled to the three or more emission optical fibers one to one, respectively, and optically coupled commonly to the single reception optical fiber. Entry ends of the optical transmission portions are aligned with exit ends of the three or more emission optical fibers, respectively. Exit ends of the optical transmission portions are aligned, as a whole, with an entry end of the single reception optical fiber. The exit ends of the optical transmission portions are arranged substantially parallel to one another and in closer proximity to one another than the entry ends of the optical transmission portions.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: September 10, 2013
    Assignee: Olympus Corporation
    Inventor: Tomoyuki Hatakeyama
  • Patent number: 8488925
    Abstract: An optical fiber coupler is formed of a section of optical fiber that is positioned between a conventional input fiber (for example, a single mode fiber) or waveguide and a coiled optical fiber device. The adiabatic coupler is coiled (or, at least, curved) to assist in transforming a conventional fundamental mode optical signal propagating along the longitudinal axis of the input fiber to an optical signal that is shifted into a peripheral region of the coiled optical fiber. Moreover, the pitch of an inventive coiled optical fiber coupler can be controlled to assist in the adiabatic transformation process.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: July 16, 2013
    Assignee: OFS Fitel, LLC
    Inventor: Mikhail Sumetsky
  • Publication number: 20130156376
    Abstract: We present optical systems suitable for focusing two substantially collimated beams or sheets of light propagating in different directions onto a common focal point. In some embodiments the optical systems comprise separate focusing elements for each beam or sheet of light, while in other embodiments the optical systems comprise a focusing element and a redirection element. The optical systems have particular application in the receive optics of infrared touch screens, where they enable the detection of additional light paths that assist in the determination of two or more simultaneous touch events.
    Type: Application
    Filed: May 23, 2011
    Publication date: June 20, 2013
    Inventors: Robert Bruce Charters, Dax Kukulj, Warwick Todd Holloway, Duncan Ian Ross, Graham Roy Atkins
  • Patent number: 8457453
    Abstract: Apparatus and methods that compensate for the thermally-induced drift of the resonance frequency of a closed-loop resonator include, in an exemplary embodiment, a waveguide-based Mach-Zehnder interferometer (MZI) and an overcoupled, waveguide-based microring resonator. The temperature-induced red-shifting ring resonance can be balanced by a spectral blueshift with temperature of the MZI. To stabilize the resonance of the ring at a given wavelength, the change in optical path lengths with temperature of the ring and the MZI should be equal and opposite. The interplay of nonlinear change in phase of ring resonator with temperature and linear change in phase of MZI with temperature, along with matching the period of this phase change, gives rise to perfect oscillation in the combined system resonance with temperature.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: June 4, 2013
    Assignee: Cornell University
    Inventors: Michal Lipson, Biswajeet Guha
  • Patent number: 8442364
    Abstract: An optical waveguide device includes an optical branch device for branching a first input light and outputting the branched first input light to a first and a second optical waveguides, another optical branch device, arranged between the first and the second optical waveguides, for branching a second input light and outputting the branched second input light to a third and a fourth optical waveguides, an optical coupler which couples the lights traveling along the first and the third optical waveguides, then branches the coupled lights, and outputs them; and another optical coupler which couples the lights traveling along the second and the fourth optical waveguides, then branches the coupled lights, and outputs them, wherein optical path lengths of either a pair of the first and the second optical waveguides or a pair of the third and the fourth optical waveguides are set to be equal.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: May 14, 2013
    Assignee: NEC Corporation
    Inventor: Shinya Watanabe
  • Patent number: 8433162
    Abstract: A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of one or more of a plurality of CMOS photonic chips comprising photonic, electronic, and optoelectronic devices. The devices may be integrated in a front surface of the chips and optical couplers may receive the optical signals in the front surface of the chips. The optical signals may be coupled into the back surface of the chips via optical fibers and/or optical source assemblies. The optical signals may be coupled to the optical couplers via a light path etched in the chips, which may be refilled with silicon dioxide. The chips may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the optical couplers via metal reflectors, which may be integrated in dielectric layers on the chips.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: April 30, 2013
    Assignee: Luxtera Inc.
    Inventors: Thierry Pinguet, Attila Mekis, Steffen Gloeckner
  • Patent number: RE46525
    Abstract: There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: August 29, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Guy Castonguay, Terry Dean Cox, Thomas Shaw Liggett, Selena Strickland
  • Patent number: RE46701
    Abstract: There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: February 6, 2018
    Assignee: Corning Cable Systems LLC
    Inventors: Guy Castonguay, Terry Dean Cox, Thomas Shaw Liggett, Selena Strickland, Elli Makrides-Saravanos, Brent Michael Frazier, Daniel S. McGranahan, Raymond Glenn Jay