Particular Coupling Structure Patents (Class 385/39)
  • Patent number: 10295743
    Abstract: Disclosed is an optical semiconductor device which can be improved in light shift precision and restrained from undergoing a loss in light transmission. In this device, an inner side-surface of a first optical coupling portion of an optical coupling region and an inner side-surface of a second optical coupling portion of the region are increased in line edge roughness. This manner makes light coupling ease from a first to second optical waveguide. By contrast, the following are decreased in line edge roughness: an outer side-surface of the first optical coupling portion of the optical coupling region; an outer side-surface of the second optical coupling portion of the region; two opposed side-surfaces of a portion of the first optical waveguide, the portion being any portion other than the region; and two opposed side-surfaces of a portion of the second optical waveguide, the portion being any portion other than the region.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: May 21, 2019
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Hiroyuki Kunishima, Yasutaka Nakashiba, Masaru Wakabayashi, Shinichi Watanuki, Ken Ozawa, Tatsuya Usami, Yoshiaki Yamamoto, Keiji Sakamoto
  • Patent number: 10241379
    Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: March 26, 2019
    Assignee: Aurrion, Inc.
    Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
  • Patent number: 10198389
    Abstract: An information processing system, device and method wherein a base board is configured to couple to both back and midplane systems as well as optical modules for use in a data center rack system. Specifically, a base board adapter is configured to electrically couple to an integrated backplane/midplane electronic interface of the base board and translate the signals to one or more optical interface module connectors such that one or more optical interface modules are able to be coupled to the base board.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: February 5, 2019
    Assignee: Cavium, LLC
    Inventors: Amir H. Motamedi, Nikhil Jayakumar, Bhagavathi R. Mula, Vivek Trivedi, Vasant K. Palisetti, Daman Ahluwalia
  • Patent number: 10103510
    Abstract: An optical module includes an optical element having a group of first pads which is formed on a first surface thereof, a substrate having a group of second pads which is formed on a second surface thereof facing the first surface so as to correspond to the group of first pads, respectively, and a group of solders that respectively bonds the group of first pads and the group of second pads to each other, wherein, in a plan view, the corresponding first and second pads partially overlap each other, and a center of gravity of the group of first pads coincides with a center of gravity of the group of second pads.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 16, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Norio Kainuma, Naoaki Nakamura
  • Patent number: 10069535
    Abstract: Aspects of the subject disclosure may include, receiving a signal, and launching, according to the signal, an electromagnetic wave along a transmission medium, where the electromagnetic wave propagates along the transmission medium without requiring an electrical return path, and where the electromagnetic wave has a phase delay profile that is dependent on an azimuth angle about an axis of the transmission medium. Other embodiments are disclosed.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: September 4, 2018
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Giovanni Vannucci, Peter Wolniansky, Paul Shala Henry, Robert Bennett, Farhad Barzegar, Irwin Gerszberg, Donald J. Barnickel, Thomas M. Willis, III
  • Patent number: 10042134
    Abstract: An optical module for connecting photoelectric conversion device on a substrate to a ferrule connected to an optical fiber includes a body configured to be mounted on the substrate, a first lens disposed on the body at a side thereof connectable to the ferrule, a second lens disposed on the body at a side thereof facing the substrate, and a core disposed in the body between the first lens and the second lens, wherein a refractive index of the core is higher than a refractive index of the body.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: August 7, 2018
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Hongfei Zhang, Shigemi Kurashima, Satoshi Moriyama, Shinichiro Akieda, Rie Gappa, Mitsuki Kanda
  • Patent number: 9977170
    Abstract: A light device using a light cylinder is disclosed. The light device includes a cover, a light source section combined with at least part of an inside surface of the cover and configured to output a light, and a light cylinder configured to include one entrance part and a plurality of output parts. The entrance part is combined with the light source section, and the light incident through the entrance part is outputted through the output parts.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: May 22, 2018
    Inventor: Heon Cheol Kim
  • Patent number: 9946100
    Abstract: To effectively prevent the acceleration of the drift phenomenon generated by the application of a high electric field to a substrate through a bias electrode in a waveguide type optical element. A waveguide type optical element includes a substrate (100) having an electro-optic effect, two optical waveguides (104 and 106) disposed on a surface of the substrate, a non-conductive layer (120) which is disposed on the substrate and is made of a material having a lower dielectric constant than the substrate, and a control electrode (150) which is disposed on the non-conductive layer and is intended to generate a refractive index difference between the two optical waveguides by respectively applying electric fields to the two optical waveguides, and the non-conductive layer is constituted of a material which includes silicon oxide, an oxide of indium, and an oxide of titanium and has a ratio between a molar concentration of the titanium oxide and a molar concentration of indium oxide of 1.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: April 17, 2018
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Teppei Yanagawa, Katsutoshi Kondou, Tetsuya Fujino, Junichiro Ichikawa
  • Patent number: 9897826
    Abstract: In an optical modulator, a light-receiving element, and an output port are disposed in a substrate. In addition, at least a part of an electrical line, which electrically connects the light-receiving element and the output port to each other, is formed in the substrate. In addition, a plurality of the optical modulation sections are provided. In addition, among a plurality of the light-receiving elements which are provided to the optical modulation sections, at least one light-receiving element is disposed at a position different from positions of the other light-receiving elements in a light wave propagating direction. A plurality of the output ports are disposed in an arrangement in the light wave propagating direction in correspondence with an arrangement of the plurality of the light-receiving elements in the light wave propagating direction.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: February 20, 2018
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kei Katou, Norikazu Miyazaki, Ryo Shimizu
  • Patent number: 9851518
    Abstract: Systems, methods, and apparatus for an optical sub-assembly (OSA) are disclosed. In one or more embodiments, the disclosed apparatus involves a package body, and a lock nut, where a first end of the lock nut inserted into a first cavity of the package body. The apparatus further involves a transistor outline (TO) can, where a first end of the TO can is inserted into a second cavity of the package body. Also, the apparatus involves an optical fiber, where a portion of the jacket from an end of the optical fiber is stripped off, thereby exposing bare optical fiber at the end of the optical fiber. The end of the optical fiber is inserted into a second end of the lock nut such that the bare optical fiber passes into the package body and at least a portion of the bare optical fiber is inserted into the TO can cavity.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: December 26, 2017
    Assignee: The Boeing Company
    Inventors: Eric Y. Chan, Tuong K. Truong, Dennis G. Koshinz, Henry B. Pang
  • Patent number: 9829640
    Abstract: A temperature insensitive DEMUX/MUX device whose wavelength does not change by environment temperature is provided for WDM application. The temperature insensitive DEMUX/MUX device includes a waveguide-based delay-line-interferometer configured to receive an input light bearing multiplexed wavelengths and output a first output light bearing the same multiplexed wavelengths but with a shifted intensity peak position. The first output light is transmitted into a DEMUX device through a first free space coupler and a grating fiber or waveguide to be demultiplexed for forming a plurality of second output lights each bearing an individual wavelength. The DEMUX device includes a second free space coupler for refocusing each second output light to corresponding output channel. The shifted intensity peak position of the first output light is tunable to make each second output light free from any temperature-induced drift off corresponding output channel.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: November 28, 2017
    Assignee: INPHI CORPORATION
    Inventor: Masaki Kato
  • Patent number: 9778417
    Abstract: An optical multi-mode HIC (high index contrast) waveguide (102, 104, 201, 301) for transporting electromagnetic radiation in the optical waveband, the waveguide comprising a guiding core portion (204) with higher refractive index, and cladding portion (206) with substantially lower refractive index configured to at least partially surround the light guiding core in the transverse direction to facilitate confining the propagating radiation within the core, the waveguide being configured to support multiple optical modes of the propagating radiation, wherein the waveguide incorporates a bent waveguide section (202) having bend curvature that is configured to at least gradually, preferably substantially continuously, increase towards a maximum curvature of said section from a section end.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 3, 2017
    Assignee: Teknologian tutkimuskeskus VTT Oy
    Inventors: Matteo Cherchi, Timo Aalto
  • Patent number: 9772454
    Abstract: Ferrule for an optical connector, an optical connector containing such a ferrule, and a method for assembling such a ferrule. The ferrule includes a base, at least one cover, at least one fiber section running through a channel between the base and the cover from a cable connection side to an opposite contact face exposing distal ends of the fiber sections. The fibers are adhered to the base and/or to the cover at a bonding section at a distance from the contact face.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: September 26, 2017
    Assignee: FCI Asia Pte. Ltd.
    Inventors: Gert Julien Droesbeke, Ulrich Dieter Felix Kell, Michael Richter, Alexander Eichler-Neumann, Sven Klinknicht
  • Patent number: 9753225
    Abstract: A system, apparatus, or method may include an optical connector that is configured to be fixed to a substrate including an optical waveguide. The substrate may also include a reference mark spaced away from the optical waveguide and extending from a substrate edge. The optical connector may define a first alignment aperture and a second alignment aperture through which the optical connector may be aligned with the substrate (e.g., the optical waveguide). The first alignment aperture may be configured to be aligned with the reference mark and the second alignment aperture may be configured to be aligned with the substrate edge.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: September 5, 2017
    Assignee: XYRATEX TECHNOLOGY LIMITED
    Inventor: Alistair Allen Miller
  • Patent number: 9683887
    Abstract: A photoelectric conversion device includes a circuit board, a light emitting module, a light receiving module, and an optical coupling lens. The circuit board includes two positioning portions apart from each other. The light emitting module and the light receiving module are mounted on the circuit board, and are spaced apart from each other. The optical coupling lens includes a bottom surface facing the light emitting module and the light receiving module, two first converging portions formed on the bottom surface, and two locating portions. Centers of the positioning portions are aligned with centers of the locating portions to ensure perfect alignment of the light emitting module and the light receiving module with the first converging portions.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: June 20, 2017
    Assignee: ScienBiziP Consulting(Shenzhen)Co., Ltd.
    Inventors: Yi Hung, Li-Ying Wang He
  • Patent number: 9671338
    Abstract: The present invention provides a water quality sensor for household appliance which is installed inside of a washing appliance, including a housing and a detecting module contained therein. The detecting module includes a light emitting element for emitting a detecting beam passing through the transparent panel, and a light receiving element for receiving a backscattered beam generated from the detecting beam and backscattered by the cleaning medium. The light emitting element and the light receiving element are positioned on a same plane of a circuit board parallel to the transparent panel, and the detecting beam emitted from the light emitting element is blocked by a sensor holder from being directly received by the light receiving element, such that the water quality sensor determines the water quality of the cleaning medium contained in the household appliance based on the backscattered beam.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: June 6, 2017
    Assignee: SOLTEAM OPTO, INC.
    Inventors: Shang-Jung Wu, Chun-Yen Wu, Chin-Feng Chen
  • Patent number: 9658411
    Abstract: A structure includes a combination of a stub fabricated on a polymer and a groove fabricated on a silicon (Si) chip, with which an adiabatic coupling can be realized by aligning a (single-mode) polymer waveguide (PWG) array fabricated on the polymer with a silicon waveguide (SiWG) array fabricated on the silicon chip. The stub fabricated on the polymer is patterned according to a nano-imprint process along with the PWG array in a direction in which the PWG array is fabricated. The groove fabricated on the silicon chip is fabricated along a direction in which the SiWG array is fabricated.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: May 23, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hidetoshi Numata, Yoichi Taira, Masao Tokunari
  • Patent number: 9645334
    Abstract: A pluggable optical transceiver that enhances the heat dissipation function is disclosed. The optical transceiver provides the MPO connector that receives an external MT ferrule, the assembly substrate that installs a semiconductor optical device, a lens block that bends the optical axis of the semiconductor optical device by about 90°, the circuit board electrically connected to the assembly substrate, the inner fiber optically couples the MPO connector with the lens block, and the top and bottom housings that installs the MPO connector, the assembly substrate, the circuit board, and the inner fiber therein. The bottom housing mounts the circuit board, while, the assembly substrate is thermally and physically in contact to the top housing through a thermal grease.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 9, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kuniyuki Ishii, Hiromi Kurashima
  • Patent number: 9606283
    Abstract: The invention relates to the field of display technology, and particularly to a surface light source, a backlight module and a display device. The surface light source of the invention comprises at least one optical fiber and at least one light source, wherein the at least one light source is provided at one end of the at least one optical fiber one to one, the at least one optical fiber each is provided with a plurality of light outgoing windows along its length direction, a light beam emitted from each light source propagates in a corresponding optical fiber, and outgoes from the optical fiber through the plurality of light outgoing windows. The surface light source and the backlight module adopting the surface light source have advantages of wide gamut, high efficiency and high light focusing effect. The display device adopting the backlight module has better display effect.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: March 28, 2017
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Kiman Kim, Jaegeon You
  • Patent number: 9553689
    Abstract: A temperature insensitive DEMUX/MUX device whose wavelength does not change by environment temperature is provided for WDM application. The temperature insensitive DEMUX/MUX device includes a waveguide-based delay-line-interferometer configured to receive an input light bearing multiplexed wavelengths and output a first output light bearing the same multiplexed wavelengths but with a shifted intensity peak position. The first output light is transmitted into a DEMUX device through a first free space coupler and a grating fiber or waveguide to be demultiplexed for forming a plurality of second output lights each bearing an individual wavelength. The DEMUX device includes a second free space coupler for refocusing each second output light to corresponding output channel. The shifted intensity peak position of the first output light is tunable to make each second output light free from any temperature-induced drift off corresponding output channel.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: January 24, 2017
    Assignee: INPHI CORPORATION
    Inventor: Masaki Kato
  • Patent number: 9507100
    Abstract: The optical fiber connector assembly includes a first connector and a second connector. The first connector includes at least two positioning pillars corresponding to the optical fibers. The first connector defines at least two optical fiber holes for receiving and positioning the optical fiber. Each optical fiber hole passes through a distal end of a corresponding positioning pillar. The second connector defines at least two positioning holes corresponding to the positioning pillars. Each positioning hole includes an end surface in the second connector. The second connector includes at least two first lenses corresponding to the optical fibers. Each first lens is positioned on the end surface of a corresponding positioning hole. The optical fibers are respectively aligned with the first lenses by an engagement of the positioning posts and the positioning holes.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: November 29, 2016
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Chang-Wei Kuo
  • Patent number: 9466944
    Abstract: The present invention relates to a compact tunable laser device that can change the oscillation laser wavelength.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: October 11, 2016
    Assignee: PHOVEL. CO. LTD.
    Inventor: Jeong-Soo Kim
  • Patent number: 9366835
    Abstract: An integrated optical semiconductor device includes a substrate including first and second regions; a plurality of light receiving devices disposed in the second region; a multimode interference coupler disposed in the first region, the multimode interference coupler including output optical waveguides optically coupled to the corresponding light receiving devices; first and second conductive layers disposed on a back surface of the substrate in the first and second regions, respectively; and a plurality of capacitors disposed in the second region, each of the capacitors including a first electrode connected to one of the light receiving devices and a second electrode connected to the second conductive layer. The second conductive layer is electrically insulated from the first conductive layer. The substrate is made of a semi-insulating semiconductor. The multimode interference coupler and the light receiving devices include the same n-type semiconductor layer disposed on a principal surface of the substrate.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: June 14, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryuji Masuyama, Yoshihiro Yoneda, Hideki Yagi, Naoko Konishi
  • Patent number: 9330907
    Abstract: Suspended structures are provided using selective etch technology. Such structures can be protected on all sides when the selective undercut etch is performed, thereby providing excellent control of feature geometry combined with superior material quality.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 3, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Robert Chen, James S. Harris, Jr., Suyog Gupta
  • Patent number: 9297955
    Abstract: An optical device includes a transparent substrate and a conductive layer disposed over an upper surface of the transparent substrate. The conductive layer defines at least one groove inwardly extending from an upper surface and includes an aperture that is spaced apart from the at least one groove. An interface between the upper surface of the conductive layer and an ambient medium defines an optical branch along which surface plasmon polariton modes are excited in response to at least partially coherent light being received by the optical device.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 29, 2016
    Inventors: Filbert Bartoli, Qiaoqiang Gan, Yongkang Gao
  • Patent number: 9297696
    Abstract: A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 29, 2016
    Assignee: U.S. Department of Energy
    Inventors: Steven D Woodruff, Dustin L. Mcintyre
  • Patent number: 9274353
    Abstract: The modulator includes a ring resonator having a phase modulator that tunes blocked wavelengths within phase modulator bandwidths. The blocked bands include blocked wavelengths at which the intensity of an output light signal is minimized. Each of the blocked bands is associated with the phase modulator bandwidth within which the blocked wavelength is tuned. A bandwidth shifting device is configured to shift a selection of wavelengths that falls within each of the phase modulator bandwidths. Electronics are configured to operate the bandwidth shifting device so as to shift the phase modulator bandwidths from a location where a first target wavelength falls within a first one of the phase modulator bandwidths to a location where a second target wavelength falls within a second one of the phase modulator bandwidths.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 1, 2016
    Assignee: Kotura, Inc.
    Inventor: Po Dong
  • Patent number: 9274352
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 1, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Patent number: 9268062
    Abstract: An artificial electromagnetic material is provided. The artificial electromagnetic material includes at least one material sheet. Each material sheet includes a laminary substrate and a plurality of artificial microstructures attached to the substrate. The substrate is made from transparent material. Because the substrate is made from transparent material, therefore the artificial electromagnetic material is capable of generating responses to visible light wave and convergence, divergence, deflection of visible light wave and so on can be achieved.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: February 23, 2016
    Assignees: KUANG-CHI INNOVATIVE TECHNOLOGY LTD., KUANG-CHI INSTITITE OF ADVANCED TECHNOLOGY
    Inventors: Ruopeng Liu, Lin Luan, Yuqin Xu, Zhiya Zhao, Chaofeng Kou
  • Patent number: 9246588
    Abstract: A connector provided on a projector has an RF chip. A plug connected to the connector has an RF chip at a position opposite to the RF chip of the connector. When a protruding section of the plug is inserted and fit into an aperture section of the connector, the RF chip of the plug and the RF chip of the connector perform wireless communication with each other in a non-contact state. Thus, a connecting tool can be easily attached to/detached from a receiving tool without breaking a terminal due to contact such as in a case where a conventional contact type terminal is used.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: January 26, 2016
    Assignee: Sony Corporation
    Inventors: Koichiro Kishima, Ayataka Nishio, Tamotsu Yamagami
  • Patent number: 9246529
    Abstract: An all optical radio frequency converter. The invention relates to a microtoroid optomechanical oscillator that can provide a local oscillation frequency and a mixing functionality. The microtoroid optomechanical oscillator can be fabricated from a silica-on-silicon wafer. When an input optical signal having an optical carrier frequency carrying a modulated RF signal representing information is applied to the microtoroid optomechanical oscillator, a signal including the baseband information modulated on the optical carrier is provided as output. The output signal can be detected with a photodetector. Information carried by the optical signal can be recorded and/or displayed to a user. Injection locking of the microtoroid optomechanical oscillator can be accomplished by providing a signal of suitable frequency. The frequency and the phase of operation of the microtoroid optomechanical oscillator can be locked to the respective frequency and phase of the injected locking signal.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: January 26, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Mani Hossein-Zadeh, Kerry J. Vahala
  • Patent number: 9195052
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: November 24, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Patent number: 9164235
    Abstract: Embodiments disclosed herein generally relate to optical couplers for transmitting an optical signal between a waveguide in an optical device to an external light-carrying medium and vice versa. The couplers include first and second portions that extend away from the waveguide towards an optical interface that faces the light-carrying medium. The first portion is attached to the waveguide, while the second portion is not. In one example, a first end of the first portion is attached to the waveguide, while a second end, opposite the first end, faces the optical interface. The first portion may taper as it extends from the first end to the second. The second portion of the coupler may be physically separated from both the first portion and the waveguide. However, in one embodiment, the first and second portions extend in the same direction towards the optical interface.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: October 20, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Ravi Sekhar Tummidi, David Piede
  • Patent number: 9140855
    Abstract: A structure of a low frequency surface plasmon polariton waveguide includes multiple unit cell blocks arranged at a sub-wavelength period to line up in a one-dimensional line-up direction to form a hollow metallic block periodic structure. Each unit cell blocs includes a body, a penetration section, and an open slot. The penetration section is formed in the unit cell block by extending in a direction perpendicular to the one-dimensional line-up direction so as to define a channel space in the unit cell block. In a low frequency spoof surface plasmon polariton transmission mode, in case of serving as a structure of an antenna, each unit cell block has an electromagnetic field distribution mostly confined in a channel space of the unit cell block; and in case of serving as a waveguide, the electromagnetic field is mostly distributed between two adjacent unit cell blocks with minority distributed in the channel space.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: September 22, 2015
    Assignee: Chung Hua University
    Inventor: Chia Ho Wu
  • Patent number: 9097859
    Abstract: An optical coupler includes a male port and a female port. The male port includes a first main body, a first optical fiber, and a male port lens unit. The male port lens unit includes a first base body, a first male port lens coupling with the first optical fiber, and a second male port lens. The first base body includes a male port reflecting sidewall. The female port includes a second main body, a second optical fiber, and a female port lens unit. The female port lens unit includes a second base body, a first female port lens coupling with the second optical fiber, and a second female port lens coupling with the second male port lens. The second base body includes a female port reflecting surface parallel with the male port reflecting sidewall.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: August 4, 2015
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Kai-Wen Wu
  • Patent number: 9069116
    Abstract: A fan-in/fan-out device includes a plurality of single-core fibers which are connected to a plurality of first cores of a multicore fiber and which include an elongated portion extending in a longitudinal direction so as to reduce a diameter and being connected to a first end portion of the multicore fiber at a second end portion in an extending direction of the elongated portion, where a refractive index distribution of each of the single-core fibers has a single peak, a relative refractive index difference of a second core with respect to a second cladding in each of the single-core fibers is 0.8% or more; and a second mode field diameter of the second end portion of the elongated portion is greater than a first mode field diameter of the first end portion of the multicore fiber.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: June 30, 2015
    Assignees: FUJIKURA LTD., National University Corporation Hokkaido University
    Inventors: Hitoshi Uemura, Koji Omichi, Katsuhiro Takenaga, Kunimasa Saitoh
  • Patent number: 9052423
    Abstract: The invention provides a lighting device comprising (a) a transparent waveguide plate (200), with first surface (201), opposite second surface (202), and edge surface between the first surface and the second surface, (b) a light source (300) for providing light source light towards a light incoupling surface of the transparent waveguide plate, configured to provide at least part of the light source light in a direction perpendicular to one or more of the first surface and the second surface. The transparent waveguide plate further comprises a luminescent material, (400) configured to convert at least part of the light source light into luminescent material emission, and light outcoupling means (220) for coupling luminescent material emission and optionally light source light out of the transparent waveguide plate as lighting device light in a direction away from one or more of the first surface and the second surface.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 9, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Rifat Ata Mustafa Hikmet, Roy Gerardus Franciscus Antonius Verbeek, Ties Van Bommel
  • Patent number: 9052092
    Abstract: Discrete flexible pixel assemblies can be hermetically sealed from the environment and can comprise unitary, self-contained replaceable modules which enable efficient, economical production of large scale, free-form electronic displays, signs and lighting effects for outdoor use. The method and means for producing hermetically sealed discrete flexible pixel assemblies can include encapsulation means, exterior encasement means, and cable connector means.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: June 9, 2015
    Assignee: Daktronics, Inc.
    Inventors: Brett David Wendler, Eric Steven Bravek, Erich J. Grebel
  • Patent number: 9046649
    Abstract: Some embodiments include communication methods, methods of forming an interconnect, signal interconnects, integrated circuit structures, circuits, and data apparatuses. In one embodiment, a communication method includes accessing an optical signal comprising photons to communicate information, accessing an electrical signal comprising electrical data carriers to communicate information, and using a single interconnect, communicating the optical and electrical signals between a first spatial location and a second spatial location spaced from the first spatial location.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: June 2, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 9042697
    Abstract: A resonator for thermo optic devices is formed in the same process steps as a waveguide and is formed in a depression of a lower cladding while the waveguide is formed on a surface of the lower cladding. Since upper surfaces of the resonator and waveguide are substantially coplanar, the aspect ratio, as between the waveguide and resonator in an area where the waveguide and resonator front one another, decreases thereby increasing the bandwidth of the resonator. The depression is formed by photomasking and etching the lower cladding before forming the resonator and waveguide. Pluralities of resonators are also taught that are formed in a plurality of depressions of the lower cladding. To decrease resonator bandwidth, waveguide(s) are formed in the depression(s) of the lower cladding while the resonator is formed on the surface. Thermo optic devices formed with these resonators are also taught.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 26, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Guy T. Blalock, Howard E. Rhodes
  • Patent number: 9035409
    Abstract: A novel germanium (Ge) photodetector is disclosed, containing a stripe layer including Ge, a substrate supporting the stripe layer, and P and N regions, which are located inside the substrate and near opposite sides of the stripe. The stripe layer containing Ge for light absorption is operated in a slow-light mode by adding combinations of a gradual taper indent structure and a periodic indent structure to reduce light scatterings and to control light group velocity inside the stripe. Due to the slower light traveling velocity inside the stripe, the absorption coefficient of the stripe containing Ge is upgraded to be 1 to 2 orders of magnitude larger than that of a traditional bulk Ge at L band, and so the absorption coefficient reaches more than 1 dB/?m at the wavelength of 1600 nm.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 19, 2015
    Assignee: Forelux Inc.
    Inventor: Yun-Chung Na
  • Patent number: 9025916
    Abstract: An optical communication apparatus includes a PCB, a photoelectric element, a driver chip, and a light waveguide. The PCB defines a groove in a surface thereof. The groove includes a bottom surface and a side surface connected to the bottom surface. The PCB includes a reflecting layer coated on the side surface. The photoelectric element includes an optical portion for emitting/receiving light carrying optical signals. An optical signal emitting/receiving direction of the photoelectric element is substantially perpendicular to the surface of the PCB. The side surface passes through a projection area of the optical portion along a direction substantially perpendicular to the surface of the PCB. An end of the light waveguide is positioned on the bottom surface of the groove and is out of the projection area of the optical portion. The reflecting layer couples optical signals between the photoelectric element and the light waveguide.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: May 5, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kuo-Fong Tseng
  • Patent number: 9020310
    Abstract: An optical waveguide provided with a slab waveguide, which has a plurality of phase gratings arranged at a distance from each other in a direction substantially parallel to a light propagation direction and diffracting propagated light and a plurality of interference regions arranged alternately to the plurality of phase gratings in the direction substantially parallel to the light propagation direction and interfering the light diffracted by the plurality of phase gratings, and an arrayed waveguide whose end is connected to an end of the slab waveguide at a position of a constructive interference portion of a self-image formed by the plurality of phase gratings as an integrated phase grating.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 28, 2015
    Assignee: NTT Electronics Corporation
    Inventors: Keiichi Morita, Kazumi Shimizu, Kenya Suzuki, Koji Kawashima
  • Patent number: 9014520
    Abstract: A photoelectric mixed substrate includes a wiring substrate including a first ground wire, a signal wire arranged above the first ground wire and electrically connected to the photoelectric component and the electronic component, and a waveguide unit stacked on the wiring substrate to cover the signal wire. The waveguide unit includes a first clad layer formed on the wiring substrate, a second ground wire formed above the first clad layer, a core formed on the first clad layer and optically coupled to the photoelectric component, and a second clad layer formed on the first clad layer to cover the core.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: April 21, 2015
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Kenji Yanagisawa
  • Patent number: 9008476
    Abstract: A polarization conversion device includes: a directional coupler that includes an input side optical waveguide and an output side optical waveguide which are disposed in parallel to each other and each of which has a core. Assuming that a direction in which the input side optical waveguide and the output side optical waveguide face each other is a width direction and a direction perpendicular to the width direction is a height direction in a cross section perpendicular to a longitudinal direction of each of the input side optical waveguide and the output side optical waveguide, and the directional coupler is configured to couple first light guided through the input side optical waveguide to second light guided through the output side optical waveguide, the polarization direction of the second light is perpendicular to that of the first light.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: April 14, 2015
    Assignee: Fujikura Ltd.
    Inventors: Akira Oka, Kazuhiro Goi, Kensuke Ogawa, Hiroyuki Kusaka
  • Patent number: 9008477
    Abstract: Alignment of a single-mode polymer waveguide (PWG) array fabricated on a polymer with a silicon waveguide (SiWG) array fabricated on a silicon (Si) chip and thereby realizing an adiabatic coupling. A stub and a groove are fabricated with high precision and made to function as the absolute positioning reference to provide a self-alignment according to the groove and the stub. In a PWG patterning by photolithography, plural masks are used, but the fabrication is made along the alignment base line for mask and thus a high precision is achieved with respect to error ?x. In a PWG patterning by nano imprint, a high precision in the fabrication is also achieved with respect to error ?x and ?y.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventor: Hidetoshi Numata
  • Patent number: 9002143
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: April 7, 2015
    Assignee: Harris Corporation
    Inventors: Richard Desalvo, Charles Franklin Middleton, IV
  • Patent number: 9002163
    Abstract: An optical converter and a method of manufacturing the optical converter are provided. The optical converter may include a signal receiving portion configured to receive an optical signal from an optical fiber which can be coupled to the optical converter, a signal output portion configured to output the optical signal received by the signal receiving portion, and a signal coupling portion being disposed between the signal receiving portion and the signal output portion and being configured to couple the optical signal received by the signal receiving portion into the signal output portion. The signal output portion may include a waveguide element having at least one tapered end section, and being partially or wholly surrounded by the signal coupling portion. The at least one tapered end section may be configured to couple the optical signal from the signal coupling portion into the waveguide element and the waveguide element may be configured to output the optical signal.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 7, 2015
    Assignee: Agency for Science, Technology and Research
    Inventors: Qing Fang, Tsung-Yang Liow, Mingbin Yu, Guo Qiang Patrick Lo
  • Publication number: 20150093075
    Abstract: According to the present invention, as a result of using a depressed or trench-assisted light-receiving waveguide in which the core is surrounded by a layer having a refractive index lower than that of a cladding as light-receiving means for receiving light outputted from a multi-core optical fiber, the layer of a low refractive index can inhibit the propagation of noise, etc. from the cladding to the core. Consequently, even in cases where the inter-core crosstalk is small, it is possible to accurately measure the inter-core crosstalk since components different from crosstalk-derived components in optical power are reduced.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Tetsuya HAYASHI, Osamu SHIMAKAWA
  • Patent number: 8995796
    Abstract: The invention relates to a system (1) for generating a (high-frequency) beat signal. The system has a first light source (3) with a multimode spectrum, a second light source (4) and a coupler and filter arrangement (5) with a first port (6) for coupling in light from the first light source (3), and a second port (7) for coupling in light from the second light source (4). Furthermore, a detector (11) is provided to which light of both light sources (3, 4) can be supplied. The coupler and filter arrangement (5) has a spectral filter (20, 28) for filtering out one or several modes from the spectrum of the first light source (3), and a first fiber-optical coupler (17, 23, 26) for coupling the light of the second light source (4) and the not yet filtered or the already filtered light of the first light source (3). The coupler and filter arrangement (5) is configured to be merely fiber-optical.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 31, 2015
    Assignee: Menlo Systems GmbH
    Inventors: Ronald Holzwarth, Marc Fischer, Michael Mei