Compressively Fixed (chuck, Collet, Crimp, Set Screw, Etc.) Patents (Class 385/81)
  • Patent number: 8408814
    Abstract: An optical connector of the present invention includes a ferrule to which an internal optical fiber is embedded and an end face grinding is performed; and a connection mechanism which extends to an opposite side of a connection end face of the ferrule, wherein the optical connector butt connects the internal optical fiber and an insert optical fiber which is inserted from outside within a positioning groove provided at the connection mechanism; and a back end side of an end face of the internal optical fiber which butts to the insert optical fiber is made a beveled end face by cutting process.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: April 2, 2013
    Assignee: Fujikura Ltd.
    Inventors: Koji Sumida, Kazuhiro Takizawa, Daigo Saito
  • Patent number: 8388237
    Abstract: An optical connector that is assembled at the terminal of an optical fiber cable that integrates an optical fiber and a tension-resisting member extending in the longitudinal direction of the optical fiber, the optical connector including: a connector body having a stationary portion at the rear end thereof, the stationary portion having a threaded portion formed on the outer periphery surface, and a fixing cap that is screwed onto the threaded portion of the stationary portion, wherein the fixing cap fixes the tension-resisting member that has been drawn out from the optical fiber cable terminal by sandwiching the tension-resisting member between the fixing cap and the connector body when the fixing cap is screwed onto the stationary portion.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: March 5, 2013
    Assignee: Fujikura Ltd.
    Inventors: Daigo Saito, Kazuhiro Takizawa, Serin Khee Yen Tan
  • Publication number: 20130051735
    Abstract: An optical fiber connector includes an inner housing and a fixing module sleeved in the inner housing. The fixing module includes a fixing mechanism having a supporting member and a clamping member. The supporting member includes a first fixing portion axially defining a first restricting groove, a first fixing end and a second fixing end at two opposite ends of the first fixing portion, and the clamping member includes a second fixing portion axially defining two sliding grooves on two borders of the second fixing portion. The fixing module further includes a locking member sleeved on the fixing mechanism, a position member fixed at the first fixing end of the fixing mechanism, and an elastic member sleeved on the fixing mechanism with an end of the elastic member resisting with the position member and the other end of the elastic member resisting with the locking member.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 28, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: PO-HSUN SHEN, BING SU, JUN-JIN PAN, LELAND WANG
  • Patent number: 8382383
    Abstract: A ferrule structure for an optical connector includes a central member disposed in the ferrule. The central member is configured so that an exterior dimension of the central member can change between a smaller size and a larger size. A plurality of optical fibers are disposed in the ferrule externally to the central member. A method for assembling an optical connector ferrule includes providing a central member, wherein the central member is configured so that an exterior dimension of the central member can change between a smaller size and a larger size. The method further includes placing an axial load on the central member to cause the exterior dimension to assume the smaller size. The central member is disposed in the ferrule. A plurality of optical fibers are disposed in the ferrule, external to the central member. The axial load is removed from the central member.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 26, 2013
    Assignee: PGS Geophysical AS
    Inventors: Nicholas Claude George, Greyson Orval Knapp
  • Patent number: 8376631
    Abstract: A connector assembly for reversibly terminating a fiber optic cable comprising an optical fiber stub and an actuator illustratively configured for sliding along a path between a first position and a second position which illustratively serves to move one or more anvils thereby mechanically clamping the fiber optic cable proximate to the optical fiber stub.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: February 19, 2013
    Assignee: Belden CDT (Canada) Inc.
    Inventors: Luc Milette, Moise Levy, Yannick Demers
  • Publication number: 20130004130
    Abstract: An optical fiber mechanical splice connector system that couples with a field fiber includes a connector body comprising a ferrule receiving portion, a pellet receiving portion and a support portion between the ferrule receiving portion and pellet receiving portion. The pellet receiving portion includes one or more engagement fingers connected at a first end to the support portion and extending away from the ferrule receiving portion to a second, free end adjacent a pellet receiving opening of a pellet receiving cavity at the pellet receiving portion. A ferrule is connected to the connector body at the ferrule receiving portion. A stub fiber is captured within the ferrule. The stub fiber extends from the ferrule into a fiber receiving cavity provided within the connector body for connecting with the field fiber. A fiber carrying pellet carries the field fiber.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Inventors: Brandon A. Barnes, Michael de Jong, Greg J. Scherer
  • Publication number: 20120328248
    Abstract: An LC format optical connector for terminating an optical fiber includes a housing configured to mate with an LC receptacle. A backbone is configured to engage an outer surface of the outer shell of the housing and includes a mounting structure that is configured to engage a boot. A collar body is retained between the outer shell and the backbone and includes a fiber stub disposed in a first portion of the collar body, the fiber stub being mounted in a ferrule. A mechanical splice is disposed in a second portion of the collar body, the mechanical splice configured to splice the fiber stub to the optical fiber. The backbone also includes a fiber jacket clamping portion to clamp a jacket portion that surrounds a portion of the optical fiber upon actuation.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 27, 2012
    Inventors: Donald K. Larson, Wesley A. Raider, Daniel J. Treadwell, Martin G. Afflerbaugh, David Gonzalez, Daniel H. Henderson, William G. Allen
  • Publication number: 20120328247
    Abstract: A fiber optic connector assembly includes a connector and a carrier. The connector, defining a longitudinal bore extending through the connector and having a first end region and a second end region, includes a ferrule assembly, having an optical fiber extending through the connector, at least partially disposed in the longitudinal bore at the first end region, a tube, defining a passage and having a first end portion disposed in the longitudinal bore at the second end region and a second end region, and a spring disposed in the bore between the ferrule assembly and the tube. The carrier includes a cable end and a connector end engaged with the connector, a termination region disposed between the connector end and the cable end, a fiber support region disposed between the connector end and the termination region, and a take-up region disposed between the connector end and the fiber support region.
    Type: Application
    Filed: April 25, 2012
    Publication date: December 27, 2012
    Applicant: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8340485
    Abstract: Disclosed are optical assemblies such as field-installable connectors having a laser-shaped optical fiber along with methods for laser-shaping the optical fiber. The field-installable connector includes a ferrule having front and rear opposed faces and at least one fiber bore defined longitudinally therethrough, a stub optical fiber having a distal end with a laser-shaped end face is disposed within the at least one fiber bore of the ferrule and extends a predetermined distance beyond the rear face of the ferrule, and an alignment feature operable for aligning the stub optical fiber with the field optical fiber. One method of laser-shaping the optical fiber includes rotating the optical fiber and sweeping a beam of a laser across the optical fiber and then essentially stopping the rotation of the optical fiber and sweeping the beam through the optical fiber to cut the same with a tapered and angled end face.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: December 25, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Jeffrey D. Danley, Joel C. Rosson
  • Patent number: 8328432
    Abstract: A fiber optic cable assembly includes a fiber optic connector and a fiber optic cable having at least one strength element, the connector and cable held together by a crimp band. The crimp band may include at least one lateral aperture on at least one end for inspecting the disposition of the strength element prior to crimping to ensure a uniform distribution of the strength element.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 11, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Christopher S. Houser, James M. Wilson
  • Patent number: 8317409
    Abstract: An optical fiber connector includes a holder, a housing fixed on the holder, a clamping member for clamping an optical cable having an optical fiber, a protecting member positioned in the housing. The protecting member defines a bore for the optical fiber of the optical cable to moveably pass through. The optical fiber connector also includes a first elastic member, in which one end of the first elastic member resists the protecting member, and the other end of the first elastic member resists the clamping member, so as to extend the optical fiber out of the protecting member and the protecting member to partly protrude out of the housing.
    Type: Grant
    Filed: December 11, 2010
    Date of Patent: November 27, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Zhi-Ming Li, Yan-Jiang Yang, Le-Peng Wei
  • Publication number: 20120288238
    Abstract: The present invention relates to an optical fiber connector whereby an operator can easily couple optical fibers on site, and to an assembly method for the same. More specifically the invention relates to: an optical fiber connector wherein a guide ferrule bush is provided between a ferrule and a coil spring so as to be able to solve a problem whereby a ferrule optical fiber between a ferrule body and a reinforcing sleeve is bent, and a problem whereby contact between the ferrule body and the ferrule optical fiber is broken due to frequent movement, when the ferrule moves within a range of movement provided for by a resilient member due to the resilient member; and to an assembly method for the same.
    Type: Application
    Filed: August 25, 2010
    Publication date: November 15, 2012
    Inventors: Chan Soul Park, Kwang Cheon Lee, Sang Chul Jun, Jun Young Park
  • Publication number: 20120275749
    Abstract: A re-terminable, no-crimp ST-type optical connector assembly includes a spring-loaded ferrule holder assembly and a reusable activation system for termination of the assembly. The optical connector can be terminated by a suitable cam activation tool. The connector includes a housing, such as a bayonet, matable to a mating adapter, a backbone retained within a rear of the housing, a ferrule holder provided within the backbone, and a cam provided between the ferrule holder and the backbone. The ferrule holder includes an alignment key exposed to mate with a cam activation tool to lock rotation of the ferrule holder relative to other connector components. The cam includes a cam activation cutout at a front face thereof that mates with a cam activation tool interface to enable rotation of the cam between de-activated and activated positions, the cam activation cutout also receiving the alignment key of the ferrule holder therethrough.
    Type: Application
    Filed: July 5, 2012
    Publication date: November 1, 2012
    Applicant: PANDUIT CORP.
    Inventors: Gregory L. Kuffel, Samuel M. Marrs, Shaun P. Brouwer, Robert T. Fitzpatrick, Phillip J. Irwin, Matthew M. Wagner
  • Patent number: 8297850
    Abstract: An optical connector according to an embodiment of the present invention comprises (a) a ferrule incorporating a short fiber; (b) a mechanical splice having a holding part and a fixing part, and adapted so that the fixing part mechanically fixes the short fiber extending from the ferrule held by the holding part, and an optical fiber in an optical cable to butt the short fiber; (c) an outer housing having a housing part in which the mechanical splice is located, and a pair of flexible arms located on both sides of the housing part, the pair of arms each being provided with a locking claw at a tip; and (d) a jacket fixture for fixing a cable jacket, the jacket fixture being coupled to the mechanical splice so that the cable jacket is inserted therein.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: October 30, 2012
    Assignees: Sumitomo Electric Industries, Ltd., Nippon Telegraph and Telephone Corporation
    Inventors: Daizo Nishioka, Kenichiro Ohtsuka, Kazuhito Saito, Yoshikyo Tamekuni, Yukihiro Yokomachi, Tunetaka Ema, Kenichi Nakazawa, Yasuhiko Hoshino
  • Publication number: 20120257859
    Abstract: A connector includes a ferrule assembly having a ferrule, a hub and a spring, the ferrule having a distal face accessible at a distal end of the connector housing, the ferrule being movable in a proximal direction relative to the connector housing. The distal and proximal positions are separated by an axial displacement distance. The ferrule proximal movement is against the spring's bias. The cable of the assembly includes an optical fiber contained within a jacket and also a strength layer between the fiber and the jacket that is anchored to the connector housing. The fiber extends through a fiber passage from the proximal end of the connector housing to the ferrule. The fiber has a distal portion potted within the ferrule. The fiber passage has a fiber take-up region configured to take-up an excess length of the fiber corresponding to the ferrule axial displacement.
    Type: Application
    Filed: March 14, 2012
    Publication date: October 11, 2012
    Inventor: Ponharith Nhep
  • Patent number: 8267596
    Abstract: A fiber optic connector assembly includes a fiber optic cable with one or more optical fiber ribbons attached to a fiber optic connector. The connector includes a ferrule assembly and a crimp body with a fiber access aperture. The aperture has at least two walls defining a first width and a second width defining a predetermined delta and a predetermined aspect ratio. The delta and aspect ratio provide optical fiber access for alignment of the optical fiber ribbon to the optical fiber ferrule assembly. A method of making the fiber optic connector assembly is also disclosed.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: September 18, 2012
    Assignee: Corning Cable Systems LLC
    Inventor: Thomas Theuerkorn
  • Patent number: 8267594
    Abstract: Systems and methods are disclosed that include a fiber optic connection with an alignment chamber. In the alignment chamber is a first fiber optic terminal and a second fiber optic terminal coupled to the first fiber optic terminal. In addition, a securing mechanism is placed within the alignment chamber and forces the first fiber optic terminal and second fiber optic terminal together. Also in this embodiment an ejection mechanism is disclosed that ejects the first fiber optic terminal upon the removal of the securing mechanism.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 18, 2012
    Assignee: Applied Optical Systems, Inc.
    Inventor: Vincent A. Wouters
  • Patent number: 8262296
    Abstract: A connector (100) includes an insulative housing (1) having a receiving slot (121) formed therein and a post (1221) protruding forwardly towards the receiving slot (121); a set of contacts (2) retained in the insulative housing; an optical module (3) for transmitting optical data and being movably received in the receiving slot along a front-to-back direction; and a compression coil spring (4) sandwiched between the insulative housing and the optical module, and having a front end for biasing the optical module (3) forwardly and a rear end for being retained on the post (1221).
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: September 11, 2012
    Assignee: Hon Hai Precision Ind. Co., Ltd.
    Inventors: Chi-Nan Liao, Qi-Sheng Zheng, Jia-Yong He
  • Patent number: 8256970
    Abstract: An improved, reversibly terminable fiber stub connector assembly is provided that can be readily and positively terminated in the field using simple termination tools. This allows repositioning or replacement of fiber optic cable field fibers if termination is not acceptable in performance. The tool may be a hand-held tool, or used in conjunction with a connector support structure to provide simplified and expeditious field termination of fiber optic cables. The cam tool can include a throughbore that enables connection of a patchcord to the stub fiber of the connector during or shortly after termination without removal of the termination tool. Accordingly, field testing of the connection can be made at the site of termination.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 4, 2012
    Assignee: Panduit Corp.
    Inventors: Samuel M. Marrs, Jerry A. Wiltjer, Shaun P. Brouwer
  • Patent number: 8240927
    Abstract: A cable attachment system is disclosed for attaching a fiber optic connector to a fiber optic cable. In particular, strength members of the fiber optic cable are crimped between a crimp sleeve and a cable anchor, and the cable anchor is anchored to the fiber optic connector. An end of the crimp sleeve is adapted to receive an end of a jacket of the fiber optic cable. An end of the cable anchor includes a nipple adapted for insertion into the end of the jacket. An end portion of the jacket is crimped between an intermediate portion of the crimp sleeve and the nipple of the cable anchor. A support portion of the crimp sleeve, positioned between the end and the intermediate portion of crimp sleeve, supports a transitioning portion of the jacket beyond the end of the cable anchor.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: August 14, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Craig M. Standish
  • Publication number: 20120170896
    Abstract: A fiber optic connector includes a front housing having sidewalls each defining a slot and a rear insert with a pair of locking flanges extending radially away, the locking flanges configured to snap-fit into the slots, each locking flange defining a front face and a rear face, the radially outermost portion of the rear face defining an edge, the edge being the rearmost extending portion of the locking flange. Another fiber optic connector includes a front housing defining a front opening at a front end, a circular rear opening at a rear end, and an internal cavity extending therebetween. A rear insert including a generally cylindrical front portion is inserted into the front housing through the circular rear opening, the front portion defining at least one longitudinal flat configured to reduce the overall diameter of the generally cylindrical front portion configured to be inserted into the front housing.
    Type: Application
    Filed: November 30, 2011
    Publication date: July 5, 2012
    Inventors: Kenneth Allen Skluzacek, Michael D. Schroeder, Michael James Ott, Randall Wendland, Ponharith Nhep, Steven C. Zimmel
  • Patent number: 8192092
    Abstract: Disclosed is a modified pre-ferrulized cable assembly that facilitates installation of an optical fiber communication cable through narrow cable guides having sharp bends. The pre-ferrulized cable assembly includes a communication cable having a free, front end, a semi-finished communication connector, and a suction plug. The invention further relates to efficient methods for installing the modified pre-ferrulized cable assembly through a cable guide.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: June 5, 2012
    Assignee: Draka Comteq, B.V.
    Inventors: Willem Griffioen, Pieter Lock
  • Publication number: 20120106899
    Abstract: A field assembled optical connector is provided. The connector includes a ferrule having an optical fiber, a plug integrally forming a housing coupling part, and an open-topped boot into which an optical cable is inserted, an optical connection member to connect an optical fiber of the ferrule inserted at a tip end side and an optical fiber of the optical cable, a boot cover rotatably coupled to the plug on a side of the boot, a screw cap screw-coupled to the boot and the boot cover to fix the optical cable inserted into the boot and the boot cover, and a plurality of ring-shaped bosses arranged at inner sides of the boot and the boot cover.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Inventor: An Joon Choi
  • Patent number: 8152384
    Abstract: Push-pull fiber optic connectors and cable assemblies having a latch that is actuated by a cam surface are disclosed. The fiber optic connectors include a ferrule and a housing having the latch. A shroud fits over a portion of the housing and allows the craft to grab the shroud and push the shroud and hence the fiber optic connector into a suitable adapter or the like. Likewise, the craft can grab the shroud and pull on the same to remove the fiber optic connector out of the adapter or the like. The cam surface is disposed on a decoupling member, wherein the decoupling member is attached to the shroud so the components can move together. Methods of making the push-pull fiber optic connector are also disclosed.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Michael de Jong, Paul X. Devereaux, Ashley W. Jones, Ronald L. Mudd
  • Publication number: 20120045178
    Abstract: A fiber optic cable assembly includes a fiber optic cable with one or more optical fibers attached to a housing. The housing includes a connector housing for a connector, a furcation housing for a furcation, and a splice housing for a mid-span cable splice. The furcation housing and the splice housing include a crimp body. The crimp body has a compression area and at least one hoop about the compression area defining a crimp zone. A crimp band is arranged for engaging the crimp zone and including an indentation defining a compression surface and a rib defining a rib interior. The crimp band and the crimp body cooperate to grip the strength element and resist cable pull off forces. A method of making the fiber optic cable assembly is also disclosed.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Inventor: Thomas Theuerkorn
  • Publication number: 20120045179
    Abstract: A fiber optic connector assembly includes a fiber optic cable with one or more optical fiber ribbons attached to a fiber optic connector. The connector includes a ferrule assembly and a crimp body with a fiber access aperture. The aperture has at least two walls defining a first width and a second width defining a predetermined delta and a predetermined aspect ratio. The delta and aspect ratio provide optical fiber access for alignment of the optical fiber ribbon to the optical fiber ferrule assembly. A method of making the fiber optic connector assembly is also disclosed.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Inventor: Thomas Theuerkorn
  • Patent number: 8118494
    Abstract: An optical fiber connector comprises an outer housing configured to mate with a receptacle and a collar body disposed in the outer housing. The collar body receives and secures a ferrule in a first portion of the collar body. The ferrule includes a central bore that defines an axis. The ferrule further includes a fiber stub disposed in a portion of the central bore, the fiber stub comprising a first optical fiber having a first end proximate to an end face of the ferrule and a prepared second end terminating within the ferrule. The collar body further includes a second portion that includes a housing portion to house a gripping device that grips a second optical fiber.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: February 21, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Donald K. Larson, Sidney J. Berglund, Paul N. Winberg, James R. Bylander, Takaya Yamauchi, Tomoyasu Oike, Yukino Miyoshi
  • Patent number: 8118495
    Abstract: An optical connector comprises a connector housing having splice means configured to abut a stripped and cleaved end surface of a plain fiber of an optical fiber cable onto an end of a fiber stub predisposed in the splice means to form an optical connection. A cable fixing assembly includes a cable fixing member and a cable holder for fixing an outer covering of the optical fiber cable introduced into said connector housing. The cable fixing member includes an opposing piece for slidably engaging with a guide section formed on the wall of an end cap of the connector housing. A step section is formed on the sliding surface of the opposing piece for sliding contact with the sliding surface of the guide section. The cable fixing member moves together with the optical fiber cable so as to reduce a distance between the splice means and the cable holder.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 21, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Akihiko Yazaki, Tomoyasu Oike, Takaya Yamauchi
  • Patent number: 8113720
    Abstract: A hybrid fiber/copper connector assembly which permits repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire connector assembly or the cable is disclosed. The hybrid fiber/copper connector assembly disclosed also allows individual hybrid fiber/copper connectors of the assembly to be converted from one gender to a different gender. The hybrid fiber/copper connector assembly disclosed also allows the individual hybrid fiber/copper connectors of the assembly to be converted from being hybrid fiber/copper connectors to being only fiber connectors or only copper connectors.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 14, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Jarrod Scadden, M'Hamed Anis Khemakhem, Jeffrey Louis Peters, Kenneth Allen Skluzacek, Wayne M. Kachmar
  • Patent number: 8109678
    Abstract: An optic connector jack is provided with a punch-down fiber optic cable termination. The jack is made up of a housing with a connector mating interface, for connection to a plug connector, and a cradle for receiving a fiber optic cable. The cradle has at least one U-shaped punch-down blade for securing each fiber optic cable with respect to the housing. A crimping plate overlies the cradle and mates to the housing for securing each fiber optic cable in the cradle. The U-shaped punch-down blade has an open top portion, a closed bottom portion, and an inside diameter about equal to a fiber optic cable diameter. The U-shaped punch-down blade has an interior blade edge, the interior blade edge securing a fiber optic cable by slicing into at least a part of the fiber optic cable circumference. In one aspect, the jack includes a lens for each fiber optic cable.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: February 7, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy
  • Patent number: 8087833
    Abstract: A plug part (1) for an optical plug connection comprises one pin holder (3) in which a plug pin (2) for retaining an optical waveguide which extends over a longitudinal central axis (L) is held. The pin holder (3) can be pushed into a plug housing (4) via a cable-side opening (30) and locked therein in a mounting position, wherein the plug pin (2) is held axially resiliently in the plug housing (4) with the aid of a separate spring element (5). The spring element (5) can here be inserted in a mount in the plug housing (4) before the pin holder (3) is pushed in. The spring element (5) is secured by way of a clamping sleeve (6) which can be inserted into the mount via the plug-side opening (30) in the push-in direction (e). Arranged in the mount is a circlip (7) and the pin holder (3) has a groove (12) which can be brought into engagement with the circlip (7) in a latching manner in order to fix the mounting position.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: January 3, 2012
    Assignee: Diamond SA
    Inventors: Dionigi Fantini, Sergio Belli
  • Patent number: 8075197
    Abstract: An exemplary fiber optic connector includes four converging lenses and a main body. The main body includes a first surface and a opposite second surface. The first surface defines four receiving holes for receiving four optical fibers. The converging lenses are arranged on the second surface and align with the respective receiving holes. The second surface defines two receiving slots for fixedly receiving two fixing protrusions of a complementary fiber optic connector, as well as two buffer slot. The two buffer slots each are located between the converging lens and the receiving slot, and are configured for allowing two portions of the main body to be bendable, such that precise alignment of the converging lens and the receiving slot is maintained.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: December 13, 2011
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Hsiang-Hung Chen
  • Patent number: 8070367
    Abstract: An LC format optical connector for terminating an optical fiber includes a housing configured to mate with an LC receptacle, the housing including a shell, a first resilient latch disposed on a surface of the shell, and a backbone. The LC format connector also includes a collar body disposed in the housing and retained between the outer shell and the backbone, wherein the collar body includes a fiber stub disposed in a first portion of the collar body. The collar body further includes a mechanical splice disposed in a second portion of the collar body, the mechanical splice configured to splice the second end of the fiber stub to a second optical fiber. The LC format connector further includes a trigger coupled to an outer surface of the housing backbone, the trigger including a second latch that engages the first latch when acted upon by a pressing force. An optical connector with a single piece latch structure is also provided.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: December 6, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Paul N. Winberg, Donald K. Larson, Wesley A. Raider
  • Publication number: 20110293224
    Abstract: An optical connector that is assembled at the terminal of an optical fiber cable that integrates an optical fiber and a tension-resisting member extending in the longitudinal direction of the optical fiber, the optical connector including: a connector body having a stationary portion at the rear end thereof, the stationary portion having a threaded portion formed on the outer periphery surface, and a fixing cap that is screwed onto the threaded portion of the stationary portion, wherein the fixing cap fixes the tension-resisting member that has been drawn out from the optical fiber cable terminal by sandwiching the tension-resisting member between the fixing cap and the connector body when the fixing cap is screwed onto the stationary portion.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Applicant: FUJIKURA LTD.
    Inventors: Daigo SAITO, Kazuhiro TAKIZAWA, Serin Khee Yen TAN
  • Publication number: 20110293223
    Abstract: Provided is an optical connector apparatus comprising a connector which is connected to an electro-optical composite cable including an optical fiber and a metal conductor, and a connection object to be connected. The connector is provided with a ferrule which has a conductive portion on at least a part of the surface thereof. The connection object to be connected is provided with an electrically conductive connection member to be connected to the ferrule. The ferrule and the cable are connected by a crimping structure. When the ferrule is inserted in the connection member, the connector and the connection object to be connected are electrically and optically connected to each other.
    Type: Application
    Filed: February 3, 2010
    Publication date: December 1, 2011
    Inventors: Hideto Shimazu, Osamu Hashiguchi, Yukitaka Tanaka, Kenzo Fukayama, Masahiro Izaki
  • Publication number: 20110286698
    Abstract: A fiber optical connector microlens is provided with a self-aligning optical fiber cavity. The microlens includes a convex first lens surface and a second lens surface. A fiber alignment cavity is integrally formed with the second lens surface to accept an optical fiber core. A lens body is interposed between the first and second lens surfaces, having a cross-sectional area with a lens center axis, and the fiber alignment cavity is aligned with the lens center axis. In a first aspect, the fiber alignment cavity penetrates the lens second surface. In a second aspect, an integrally formed cradle with a cradle surface extends from the lens second surface, and a channel is formed in the cradle surface, with a center axis aligned with the lens center axis. The fiber alignment cavity includes a bridge covering a portion of the channel.
    Type: Application
    Filed: August 24, 2010
    Publication date: November 24, 2011
    Inventors: Reid Greenberg, Igor Zhovnirovsky, Subhash Roy
  • Patent number: 8047727
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 1, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 8038356
    Abstract: A hardened fiber optic connector includes a unitary housing that mounts a connector body. The hardened fiber optic connector terminates a fiber optic cable including a strength layer and can be connected to a hardened fiber optic adapter. The unitary housing can transfer loads between the fiber optic cable and the hardened fiber optic adapter.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: October 18, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventors: Thomas Marcouiller, Ponharith Nhep, Steven C. Zimmel
  • Patent number: 8014641
    Abstract: A coupler assembly for a fiber laser is disclosed. The assembly includes a tubular housing having a sidewall with an interior surface, an exterior surface, a first end and a second end. An input collimator unit is also included and configured to be received within the first end of the sidewall of the tubular housing. An output collimator unit received within the second end of the sidewall of the tubular housing. Further included is a compression mechanism configured and arranged to concentrically align the input collimator unit and the output collimator unit about a common central axis. The assembly may further include an alignment mechanism configured and arranged to optically align the input collimator unit and the output collimator unit about a common optical axis. Optionally, a fluid coolant system may also be included.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 6, 2011
    Inventors: Yuri Grapov, William D. Jones, Vladlen Ivshin
  • Publication number: 20110158593
    Abstract: An optical fiber connector includes a holder, a housing fixed on the holder, a clamping member for clamping an optical cable having an optical fiber, a protecting member positioned in the housing. The protecting member defines a bore for the optical fiber of the optical cable to moveably pass through. The optical fiber connector also includes a first elastic member, in which one end of the first elastic member resists the protecting member, and the other end of the first elastic member resists the clamping member, so as to extend the optical fiber out of the protecting member and the protecting member to partly protrude out of the housing.
    Type: Application
    Filed: December 11, 2010
    Publication date: June 30, 2011
    Applicants: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: ZHI-MING LI, YAN-JIANG YANG, LE-PENG WEI
  • Publication number: 20110150398
    Abstract: The present disclosure relates to a drop cable assembly including a fiber optic drop cable having a length that extends from a first end of the fiber optic drop cable to an opposite second end of the fiber optic drop cable. The fiber optic drop cable also includes an intermediate location located between the first and second ends of the fiber optic drop cable. The drop cable assembly also includes a first fiber optic connector mounted at the first end of the fiber optic drop cable and a second fiber optic connector mounted at the second end of the fiber optic drop cable. The drop cable assembly further includes an optical fiber that extends continuously without splicing along the length of the fiber optic drop cable from the first fiber optic connector to the second fiber optic connector.
    Type: Application
    Filed: November 19, 2010
    Publication date: June 23, 2011
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Steven C. Zimmel, Christopher Stroth, Wayne M. Kachmar, Ronald J. Kleckowski
  • Patent number: 7958753
    Abstract: A method and apparatus are described, which permit a simple, rapid manufacture of an end of an optical fiber bundle. According to the method a metallic sleeve is placed on an end section of the bundle, the end section with the sleeve on it is positioned in a shaping tool without pressing the sleeve and then pressure is exerted on the sleeve exclusively in a radial direction by press jaws of the shaping tool. In the optical fiber bundle made by the method the outer optical fibers (4?) of the optical fiber bundle (1) are embedded at least partially in the sleeve material. The apparatus for making the end of the bundle (1) with the sleeve (10) has a shaping tool (20) including at least two radially movable press jaws (22a-22f) that substantially surround the sleeve (10).
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: June 14, 2011
    Assignee: Schott AG
    Inventors: Hubertus Russert, Thomas Henrich
  • Publication number: 20110116749
    Abstract: A re-terminable, no-crimp ST-type optical connector assembly includes a spring-loaded ferrule holder assembly and a reusable activation system for termination of the assembly. The optical connector can be terminated by a suitable cam activation tool. The connector includes a housing, such as a bayonet, matable to a mating adapter, a backbone retained within a rear of the housing, a ferrule holder provided within the backbone, and a cam provided between the ferrule holder and the backbone. The ferrule holder includes an alignment key exposed to mate with a cam activation tool to lock rotation of the ferrule holder relative to other connector components. The cam includes a cam activation cutout at a front face thereof that mates with a cam activation tool interface to enable rotation of the cam between de-activated and activated positions, the cam activation cutout also receiving the alignment key of the ferrule holder therethrough.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicant: PANDUIT CORP.
    Inventors: Gregory L. Kuffel, Samuel M. Marrs, Shaun P. Brouwer, Robert T. Fitzpatrick, Phillip J. Irwin, Matthew M. Wagner
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Publication number: 20110103749
    Abstract: A connector for an optical fiber includes a first coupling element threadedly secured to a second coupling element such that the first coupling element and second coupling element define a lumen. A collet configured to receive a portion of the optical fiber is disposed in the lumen such that the collet holds the optical fiber in place with respect to the first and second coupling elements. An adjustable ferrule is threadedly secured to the proximal end of the second coupling element and is rotatable with respect to the second coupling element to translate a proximal end of the adjustable ferrule longitudinally with respect to a proximal end of the optical fiber. A connector element is secured to the proximal end of the second coupling element with the adjustable ferrule and is rotatable with respect to the second coupling element.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 5, 2011
    Applicant: HOGUE SURGICAL, LLC
    Inventor: Roger S. Hogue
  • Publication number: 20110091165
    Abstract: Fiber optic connectors and other structures that can be easily and quickly prepared by the craft for termination and/or connectorization in the field are disclosed. More specifically, the fiber optic connectors and other structures disclosed are intended for use with glass optical fibers having a large core. In one embodiment, the fiber optic connector includes a ferrule having a bore sized to receive an optical fiber and a buffer layer at a front end face of the ferrule. Methods of making the fiber optic connectors and other structures are also disclosed. The methods disclosed allow “rough cutting” of the optical fibers with a buffer layer thereon by the craft.
    Type: Application
    Filed: October 11, 2010
    Publication date: April 21, 2011
    Inventors: Seldon David Benjamin, Michael de Jong, Radawan Hall, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, Randy LeRue McClure
  • Publication number: 20110091166
    Abstract: Fiber optic connectors and other structures that can be easily and quickly prepared by the craft for termination and/or connectorization in the field are disclosed. More specifically, the fiber optic connectors and other structures disclosed are intended for use with glass optical fibers having a large core. In one embodiment, the fiber optic connector includes a a body having a portion with a retaining structure for securing an optical fiber and a front portion having a passageway sized to receive an optical fiber and a buffer layer through a front end. Methods of making the fiber optic connectors and other structures are also disclosed. The methods disclosed allow “rough cutting” of the optical fibers with a buffer layer thereon by the craft.
    Type: Application
    Filed: October 11, 2010
    Publication date: April 21, 2011
    Inventors: Seldon David Benjamin, Michael de Jong, Radawan Hall, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, Randy LaRue McClure
  • Patent number: 7927023
    Abstract: A connector receives and grips an optical fiber in registry with an optical element. Pivoting portions are held in default inoperative position by the spring action of molded hinges, at which position two shutter portions meet, so forming a shutter preventing the ingress of dirt to the optical element. As the optical liber is pushed a small distance into the connector, the pivoting portions are caused to pivot a small amount about the hinges, bringing teeth into contact with the outside jacket of the fiber. The bodies of the inserts are forced radially away from the central axis of the connector, so providing a leaf spring force which keeps the teeth engaged with the jacket of the fiber. The shutter portions move out of the way of the fiber and the spring action applies a force to draw the fiber further into the body of the connector.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: April 19, 2011
    Assignee: Firecomms Limited
    Inventors: Thomas Moriarty, John Douglas Lambkin
  • Publication number: 20110044588
    Abstract: An optical fiber connector includes a housing configured to mate with a receptacle, a collar body that includes a fiber stub and a mechanical splice device, a backbone to retain the collar body within the housing, and a boot. The backbone includes a fiber jacket clamping portion to clamp a jacket portion that surrounds a portion of the terminated optical fiber upon actuation. The boot actuates the fiber jacket clamping portion of the backbone upon attachment to the backbone. The optical fiber connector can be terminated in the field without the need to use a separate termination platform or tool.
    Type: Application
    Filed: May 15, 2009
    Publication date: February 24, 2011
    Inventors: Donald K. Larson, Chansool Park
  • Patent number: 7887244
    Abstract: A connector assembly for reversibly terminating an optical fiber comprises a housing having a cavity extending along a longitudinal axis. An elongate member having a groove extending along a surface thereof is provided within the cavity. An end portion of the fiber is aligned with a fiber stub within the groove such that the stub's splicing face is positioned opposite the fiber's splicing face. A splice anvil is positioned adjacent the member's surface with the anvil's clamping surface overlapping the abutting stub and fiber splicing faces. The clamping mechanism comprises an actuator slideably mounted about the member for movement between a released position and a clamping position in which the inner surface of the actuator displaces the anvil in a direction perpendicular to the longitudinal axis and towards the member's surface, the anvil's clamping surface thus bringing a clamping force to bear on the abutting fiber and fiber stub.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: February 15, 2011
    Assignee: Belden CDT (Canada) Inc.
    Inventors: Luc Milette, Moise Levy