Compressively Fixed (chuck, Collet, Crimp, Set Screw, Etc.) Patents (Class 385/81)
  • Patent number: 7878717
    Abstract: The invention relates to an optical waveguide plug part of an optical waveguide plug connector for an optical waveguide, which has a fiber and a sheath, with a contact carrier for receiving the optical waveguide and at least one clamping part for securing the optical waveguide in the contact carrier, wherein the clamping part as a first clamping section for clamping the sheath of the optical waveguide and a second clamping section for clamping the fiber of the optical waveguide.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: February 1, 2011
    Assignees: Escha Bauelemente GmbH, Beckhoff Automation GmbH
    Inventors: Frank Schube, Dirk Bechtel, Franz-Joseph Kucharski
  • Patent number: 7874740
    Abstract: A housing (10) for an optical waveguide ferrule (12), includes first distance elements (22, 28) being determinative for a distance between two adjacently arranged housings (10) and being formed by formations of the housing (10), the first distance elements (22, 28) being located opposite each other with respect to one of a center axis (M) of the housing (10) and the optical waveguide ferrule (12) arranged in the housing (10), and the first distance elements (22, 28) being formed by a pair of first distance elements of a first type (22) and a second type (28) differing from the first type (22).
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: January 25, 2011
    Assignee: Harting Electronics GmbH & Co. KG
    Inventor: Rita Hoffmann
  • Publication number: 20100322568
    Abstract: A fiber optic connector and cable assembly is disclosed herein. The fiber optic connector and cable assembly includes a cable having at least one optical fiber, a jacket surrounding the optical fiber and at least one strength member for reinforcing the fiber optic cable. The fiber optic connector and cable assembly also includes a fiber optic connector having a main connector body having a distal end and a proximal end. The fiber optic connector also includes a ferrule supporting an end portion of the optical fiber. The ferrule is mounted at the distal end of the main connector body. The fiber optic connector further includes a spring for biasing the ferrule in a distal direction and a spring push for retaining the spring within the main connector body. The spring push is mounted at the proximal end of the main connector body. The spring push includes a main body and a stub that projects proximally outwardly from the main body.
    Type: Application
    Filed: May 19, 2010
    Publication date: December 23, 2010
    Applicant: ADC Telecommunications, Inc.
    Inventors: Steven C. Zimmel, Yu Lu, Patrick Nault, Scott C. Kowalczyk, Scott Droege, Brent Campbell, Christopher Stroth
  • Publication number: 20100303422
    Abstract: An optical connector having a front and back orientation and suitable for operating with a temperature range, the connector comprising: (a) a ferrule comprising a first material having a first coefficient of thermal expansion (COE), and having no greater than a first diameter below a transition temperature with the temperature range, and no less than a second diameter above the transition temperature, the ferrule also comprising an endface, and containing at least one fiber having a fiber end presented at the endface; (b) a spring disposed behind the ferrule and in contact with the ferrule to apply a forward urging force to the ferrule; and (c) a housing comprising a second material having a second COE, the housing defining a bore hole having a diameter greater than the second diameter, and an interface portion having a restricted bore hole having no greater than a third diameter below the transition temperature, and no less than a fourth diameter above the transition temperature; wherein the connector is con
    Type: Application
    Filed: June 1, 2009
    Publication date: December 2, 2010
    Applicant: Tyco Electronics Corporation
    Inventors: Daniel E. Wertman, Soren Grinderslev
  • Patent number: 7824110
    Abstract: The invention relates to a data transmission cable (10; 20), in particular for motor vehicles, at at least one of whose ends a plastics housing (14; 24) is arranged, said housing having mechanical dimensions in its interface region (30; 32) which conform to the FAKRA standardisation scheme. The data transmission cable (10; 20) has an optical waveguide, wherein a holding member (40) is provided in the plastics housing (14; 24), said holding member being configured for holding an optical imaging element (42) and for connecting the optical imaging element (42) to the optical waveguide.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventors: Bernd Rosenberger, Clemens Wurster
  • Patent number: 7819590
    Abstract: A ferrule for an evanescence field sensor line is specified that has a lower part and a correspondingly attachable upper part. The upper and lower parts respectively have a recess substantially in the shape of a half shell in such a way that in the assembled state a guide tube is formed for holding an optical wavelength in a fashion enclosing the end face. A number of geometric structures for locally fixing the optical wavelength are respectively arranged in the recesses. Furthermore, a pressure sensor having such a ferrule is specified that contains an optical wavelength configured for pressure acquisition by influencing the assigned evanescence field, and at least one optoelectronic module. The ferrule is assigned to the optoelectronic module.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 26, 2010
    Assignee: Leoni Automotive Leads GmbH
    Inventors: Dirk Neitzel, Wolfgang Waespy, Horst Kontants
  • Publication number: 20100254655
    Abstract: An optical plug connection for optical waveguides including a plug and a matching socket, and also a method for adjusting the plug connection. In the case of such a plug connection, the plug has at least one planar, smoothed contact area oriented with respect to a propagation direction of a light beam passing from or into the plug, for bearing on a corresponding planar, smoothed mating contact area of the socket that is oriented with respect to the propagation direction of the light beam.
    Type: Application
    Filed: June 7, 2008
    Publication date: October 7, 2010
    Applicant: LASOS LASERTECHNIK GMBH
    Inventors: Ludwig Bergann, Ralf Malz, Jens Konetzny
  • Patent number: 7806600
    Abstract: An improved, reversibly terminable fiber stub connector assembly is provided that can be readily and positively terminated in the field using simple termination tools. This allows repositioning or replacement of fiber optic cable field fibers if termination is not acceptable in performance. The tool may be a hand-held tool, or used in conjunction with a connector support structure to provide simplified and expeditious field termination of fiber optic cables. The cam tool can include a throughbore that enables connection of a patchcord to the stub fiber of the connector during or shortly after termination without removal of the termination tool. Accordingly, field testing of the connection can be made at the site of termination.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 5, 2010
    Assignee: Panduit Corp.
    Inventors: Samuel M. Marrs, Jerry A. Wiltjer, Shaun P. Brouwer
  • Patent number: 7787739
    Abstract: A system and method for testing a bare fiber optic. An actuator disposed on an adapter is engaged. The bare fiber optic is received in an insertion hole of the adapter for ensuring contact between the bare fiber optic and a test adapter in response to the actuator being engaged. The actuator is released in order to secure the bare fiber optic for testing. The bare fiber optic is tested through the test adapter in contact with the adapter.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: August 31, 2010
    Assignee: Embarq Holdings Company, LLC
    Inventor: Matthew A. Munn
  • Patent number: 7785017
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: August 31, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Publication number: 20100209053
    Abstract: A connector (50) receives and grips an optical fibre (F) in registry with an optical element (53). Pivoting portions (22, 32) are held in default inoperative position by the spring action of moulded hinges (21, 31), at which position two shutter portions (24, 34) meet, so forming a shutter preventing the ingress of dirt to the optical element. This is the default position when the connector is not being used. As the optical fibre (F) is pushed a small distance into the connector, the pivoting portions (22, 32) are caused to pivot a small amount about the hinges (21, 22), bringing teeth (23, 33) into contact with the outside jacket of the fibre (F). The bodies (20, 30) of the inserts are forced radially away from the central axis of the connector, so providing a leaf spring force which keeps the teeth (23, 33) engaged with the jacket of the fibre (F).
    Type: Application
    Filed: October 13, 2008
    Publication date: August 19, 2010
    Inventors: Thomas Moriarty, John Douglas Lambkin
  • Patent number: 7775726
    Abstract: An optical connector for terminating an optical fiber comprises a housing configured to mate with a receptacle and a collar body disposed in the housing. The collar body includes a ferrule securely disposed in an opening of the collar body, the ferrule including a central bore that defines an axis, and a housing portion disposed in a generally central portion of the collar body. The housing portion includes an opening to receive a gripping device to grip an optical fiber. The ferrule is axially moveable independent of the axial movement of the optical fiber and gripping device. The optical connector can be thermally balanced over a temperature range of at least 100° C.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 17, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Ronald P. Pepin, James R. Bylander, Paul M. Wendell, Johnny P. Bryant, Carl E. Fisher, Donald K. Larson, Sidney J. Berglund, Takaya Yamauchi
  • Patent number: 7758256
    Abstract: A field-installable optical connector for terminating an optical cable, said connector comprising: (a) a housing having a front and back orientation; (b) a rear body attached to the back of said connector housing; (c) a ferrule assembly disposed in said connector housing, said ferrule assembly comprising at least a ferrule adapted for receiving a fiber of said cable, and a clamping mechanism to the rear of said ferrule, said clamping mechanism comprising at least a platform defining a fiber-receiving channel for receiving said fiber, a first member adjacent to the fiber-receiving channel and having at least one cam surface, and a second member having a second cam surface, said first and second cam surfaces cooperating such that relative movement between said first and second members causes said first member to move toward said fiber-receiving channel; (d) an actuator operatively connected to said second member to cause said second member to move relative said first member upon axial movement of said actuator,
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: July 20, 2010
    Assignee: Tyco Electronics Corporation
    Inventors: Eric James Hopkins, Douglas Harold Rohde, David Donald Erdman
  • Patent number: 7758257
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: July 20, 2010
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 7731429
    Abstract: An optical connector has a simple structure and a method of attaching an optical fiber cord to the connector is easy. The connector 1 includes: a plug part 2 which has a capillary 5 provided at the front and containing a built-in optical fiber 6 and which includes a mechanical splicing portion 7 capable of allowing an optical fiber 51 to be inserted from the rear so as to be fixed therein; a caulking stand 35 capable of holding a sheath by radially contracting in a state in which the optical fiber cord 50 is inserted therein; a caulking ring 45 provided outside the cylindrical portion 36 of the stand 35 so as to hold the tension member 52 between the ring 45 and the stand 35; and a coupling body 20 provided behind the plug part 2 and accommodating the stand 35 and the ring 45.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: June 8, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichiro Ohtsuka, Daizo Nishioka, Yukihiro Yokomachi, Kenichi Suzuki, Takayasu Yamauchi, Katsuyuki Aihara, Keisuke Okada
  • Publication number: 20100129034
    Abstract: A re-terminable, no-crimp ST-type optical connector assembly includes a spring-loaded ferrule holder assembly and a reusable activation system for termination of the assembly. The optical connector can be terminated by a suitable cam activation tool. The connector includes a housing, such as a bayonet, matable to a mating adapter, a backbone retained within a rear of the housing, a ferrule holder provided within the backbone, and a cam provided between the ferrule holder and the backbone. The ferrule holder includes an alignment key exposed to mate with a cam activation tool to lock rotation of the ferrule holder relative to other connector components. The cam includes a cam activation cutout at a front face thereof that mates with a cam activation tool interface to enable rotation of the cam between de-activated and activated positions, the cam activation cutout also receiving the alignment key of the ferrule holder therethrough.
    Type: Application
    Filed: February 1, 2010
    Publication date: May 27, 2010
    Applicant: Panduit Corp.
    Inventors: Gregory L. Kuffel, Samuel M. Marrs, Shaun P. Brouwer, Robert T. Fitzpatrick, Phillip J. Irwin, Matthew M. Wagner
  • Patent number: 7712973
    Abstract: A connector for fiber optic cable comprising a one-piece body having a plurality of holes in a first end dimensioned to receive an optical fiber and reinforcing members. The connector comes preassembled with a ferrule connector at the opposing end. The first end has a slot therein dividing the first end and holes into two halves. A crimp sleeve is crimped to the connector body, compressing the first end of the connector body and thereby gripping the reinforcing members. Reinforcing fibers are crimped between the connector body and crimping sleeve.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: May 11, 2010
    Assignee: FiberSource, Inc.
    Inventor: Brian Anthony DiMarco
  • Patent number: 7712974
    Abstract: An optical connector and a method of assembling an optical connector that is capable of avoiding generation of unnecessary tension in the optical fiber cable in which plain fiber portions are optically connected to each other using a splice assembly. The optical connector comprises a connector housing having splice means configured to abut a stripped and cleaved end surface of a plain fiber of an optical fiber cable (2) onto an end of a fiber stub predisposed in the splice means to form an optical connection; and a cable fixing assembly (26, 40), that includes a cable fixing member (26) and a cable holder (40), for fixing an outer covering (2c) of the optical fiber cable (2) introduced into said connector housing (10).
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 11, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Akihiko Yazaki, Tomoyasu Oike, Takaya Yamauchi
  • Patent number: 7712971
    Abstract: Disclosed herein is an optical connection. In the present invention, an element wire is removably fastened to the optical connector by tightening a main wire connection member using a tightening member from a state in which a plug, a main wire aligning member, a spring, a fastening member, the main wire connection member and the tightening member are previously assembled together. Consequently, only a related optical line need be repaired or replaced with another one, so that the optical line connection work is markedly simplified and can be performed conveniently. Furthermore, there is an advantage of efficient reuse of components.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: May 11, 2010
    Assignee: Goldtel Co., Ltd.
    Inventors: Jae-Soo Lee, Hyung-Gon Jeong, Yong-Hyun Kim, Dong-Keun Kim, Yong-Moo Lim, Jeong-Bin Lee, Yong-Woo Yi
  • Publication number: 20100111479
    Abstract: Disclosed is a modified pre-ferrulized cable assembly that facilitates installation of an optical fiber communication cable through narrow cable guides having sharp bends. The pre-ferrulized cable assembly includes a communication cable having a free, front end, a semi-finished communication connector, and a suction plug. The invention further relates to efficient methods for installing the modified pre-ferrulized cable assembly through a cable guide.
    Type: Application
    Filed: January 11, 2010
    Publication date: May 6, 2010
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Willem Griffioen, Pieter Lock
  • Publication number: 20100104245
    Abstract: A ferrule includes a recess formed on an obliquely polished surface to house a protrusion formed on an obliquely polished surface of another ferrule, so as to avoid an angular change at an interface between end surfaces of the pair of obliquely polished end surfaces of the ferrules facing each other.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 29, 2010
    Applicant: FUJIKURA LTD.
    Inventor: Akito NISHIMURA
  • Publication number: 20100080516
    Abstract: Retention bodies for securing a fiber optic cable thereto for optical connectorization are disclosed along with fiber optic cable assemblies. The fiber optic cable is inserted into a passage of the retention body and secured to the same using a bonding agent and/or a mechanical element. The rear end opening of the passage is configured for inserting and securing an end portion of the fiber optic cable having at least one strength component and a portion of a cable jacket. Additionally, the retention body has a buckling chamber disposed within the retention body passage for accommodating movement of optical fiber.
    Type: Application
    Filed: January 19, 2009
    Publication date: April 1, 2010
    Inventors: Casey A. Coleman, Thomas Theuerkorn
  • Publication number: 20100061682
    Abstract: A fiber connector using a hooking structure includes a fiber connector having a socket and a fastening block disposed inside an upper end of the socket; a fiber positioning piece for inserting in the socket of the fiber connector, the fiber positioning piece having a spring plate extending forwardly from an upper end thereof, and a buckling slot disposed on the spring plate, the buckling slot being provided for the fastening block of the fiber connector to be fastened therein; therefore the hooking structure of the fiber connector is implemented by using these components.
    Type: Application
    Filed: September 6, 2008
    Publication date: March 11, 2010
    Inventor: Eden TSAI
  • Publication number: 20100054669
    Abstract: A connector for fiber optic cable comprising a one-piece body having a plurality of holes in a first end dimensioned to receive an optical fiber and reinforcing members. The connector comes preassembled with a ferrule connector at the opposing end. The first end has a slot therein dividing the first end and holes into two halves. A crimp sleeve is crimped to the connector body, compressing the first end of the connector body and thereby gripping the reinforcing members. Reinforcing fibers are crimped between the connector body and crimping sleeve.
    Type: Application
    Filed: September 4, 2008
    Publication date: March 4, 2010
    Inventor: Brian Anthony DiMarco
  • Patent number: 7654748
    Abstract: A re-terminable, no-crimp ST-type optical connector assembly includes a spring-loaded ferrule holder assembly and a reusable activation system for termination of the assembly. The optical connector can be terminated by a suitable cam activation tool. The connector includes a housing, such as a bayonet, matable to a mating adapter, a backbone retained within a rear of the housing, a ferrule holder provided within the backbone, and a cam provided between the ferrule holder and the backbone. The ferrule holder includes an alignment key exposed to mate with a cam activation tool to lock rotation of the ferrule holder relative to other connector components. The cam includes a cam activation cutout at a front face thereof that mates with a cam activation tool interface to enable rotation of the cam between de-activated and activated positions, the cam activation cutout also receiving the alignment key of the ferrule holder therethrough.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: February 2, 2010
    Assignee: Panduit Corp.
    Inventors: Gregory L. Kuffel, Samuel M. Marrs, Shaun P. Brouwer, Robert T. Fitzpatrick, Phillip J. Irwin, Matthew M. Wagner
  • Patent number: 7644959
    Abstract: A tube coupling for connection to a conduit through which a cable may pass includes a coupling body having an open ended throughway to receive an end of the conduit and a tube locking device in the open end of the throughway for locking the conduit in the coupling body. The throughway has a reduced diameter section with an annular step at an end of the section facing towards the open end of the throughway to receive the end of the conduit inserted into the throughway. An annular flexible sealing member is disposed adjacent the step to be forced by an end of a tube inserted into the throughway into the reduced diameter section of the throughway. Compression of the annular flexible seal forces the seal into sealing engagement with a cable extending along the throughway to provide a seal between the coupling body and cable.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: January 12, 2010
    Assignee: John Guest International Limited
    Inventor: John Derek Guest
  • Patent number: 7621676
    Abstract: An optical connector includes a receptacle body 40 having an engage hole 46 formed in a peripheral wall 45 of a chamber 44, a pigtail body 50 having a base body 51 contained in the chamber 44 and a locking protrusion 56 engaged in the engage hole 46 to attach the pigtail body 50, and a ferrule assembly 60 being inserted in a container 53 in the base body 51 so that the ferrule 62 is positioned in a receptacle cylinder 52, and a spring 70 inserted through an opening 54 in the base body 51 and pressing the ferrule 62 forward, wherein a stopper 73 is formed in the spring 70 as an integral part of the spring 70. A locking part 73b included in the stopper 73 is positioned in a recess 63 in the ferrule 62.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: November 24, 2009
    Assignee: Hosiden Corporation
    Inventors: Hiroshi Nakagawa, Takeshi Isoda
  • Patent number: 7621675
    Abstract: According to an example embodiment of the invention a one-piece retention housing is utilized for terminating an optical fiber cable. The retention housing attaches to strength members within the cable, providing tensile strength and a means for further mating with components of an optical fiber connector assembly. The retention housing is used as part of a kit for terminating and securing the optical fiber cable connector to a complementary receptacle or terminal for drop-cable deployments in optical access networks and outside plant applications.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: November 24, 2009
    Assignee: OFS Fitel, LLC
    Inventor: Kelvin B. Bradley
  • Publication number: 20090285534
    Abstract: An optical connector includes a connector housing; an optical ferrule that is housed in the connector housing; a coil spring that is housed in the connector housing and impresses the optical ferrule in a forward direction; and a spring pressing portion that is attached to an rear end of the connector housing, has an optical fiber inserting through-hole and a spring reception portion, and receives a reaction force of the coil spring. The spring pressing portion is divided into two half bodies. Since the spring pressing portion is divided into two parts, at the time of assembly of the optical connector, the optical ferrule is attached to the optical fibers and is terminated, and then the optical fibers can be covered with the spring pressing portion. At the time of the terminating operation, since there is no spring pressing portion that causes interference in the operation, it is easy to perform the terminating operation of the optical ferrule.
    Type: Application
    Filed: May 13, 2008
    Publication date: November 19, 2009
    Applicant: FUJIKURA LTD.
    Inventor: Takaaki Ishikawa
  • Publication number: 20090257719
    Abstract: A fiber optic connector assembly.
    Type: Application
    Filed: April 9, 2008
    Publication date: October 15, 2009
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventor: William L. Stewart, II
  • Publication number: 20090252460
    Abstract: An optical connector has a simple structure and a method of attaching an optical fiber cord to the connector is easy. The connector 1 includes: a plug part 2 which has a capillary 5 provided at the front and containing a built-in optical fiber 6 and which includes a mechanical splicing portion 7 capable of allowing an optical fiber 51 to be inserted from the rear so as to be fixed therein; a calking stand 35 capable of holding a sheath by radially contracting in a state in which the optical fiber cord 50 is inserted therein; a calking ring 45 provided outside the cylindrical portion 36 of the stand 35 so as to hold the tension member 52 between the ring 45 and the stand 35; and a coupling body 20 provided behind the plug part 2 and accommodating the stand 35 and the ring 45.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 8, 2009
    Inventors: Kenichiro Ohtsuka, Daizo Nishioka, Yukihiro Yokomachi, Kenichi Suzuki, Takayasu Yamauchi, Katsuyuki Aihara, Keisuke Okada
  • Publication number: 20090190885
    Abstract: The invention relates to an optical waveguide plug part of an optical waveguide plug connector for an optical waveguide, which has a fiber and a sheath, with a contact carrier for receiving the optical waveguide and at least one clamping part for securing the optical waveguide in the contact carrier, wherein the clamping part as a first clamping section for clamping the sheath of the optical waveguide and a second clamping section for clamping the fiber of the optical waveguide.
    Type: Application
    Filed: April 23, 2007
    Publication date: July 30, 2009
    Applicants: ESCHA BAUELEMENTE GMBH, BECKHOFF AUTOMATION GMBH
    Inventors: Frank Schube, Dirk Bechtel, Franz-Joseph Kucharski
  • Publication number: 20090185779
    Abstract: A cap for a field-installable optical connector having a front and rear orientation, a housing, an axially-actuated clamping mechanism in the housing, and a ferrule assembly forward of the clamping mechanism and forwardly biased in the housing, the ferrule assembly comprising a holder and a ferrule extending from the holder, the cap comprising a front end defining a cavity for receiving the ferrule and having an outer surface defining at least part of a front-end geometry, a back end defining an opening through which the ferrule is received and a perimeter around the opening, the perimeter configured to contact the holder when the cap is pushed rearward in the housing, the front and back ends being unitary such that any rearward force on the front end is transferred to the back end and through the perimeter to the holder and a retention portion for contacting the housing to secure the cap to the housing.
    Type: Application
    Filed: January 21, 2008
    Publication date: July 23, 2009
    Applicant: Tyco Electronics Corporation
    Inventors: Michael Lawrence Gurreri, David Donald Erdman, Eric James Hopkins, Douglas Harold Rohde, Koen Verweyen, Daniel Daems
  • Patent number: 7553089
    Abstract: An optical connector which is suitable for connection to jacketed cable includes a housing and a ferrule assembly. The ferrule assembly includes a front portion having a first geometry, and the housing includes a receiving portion having a second geometry that mates with the first geometry to prevent rotation of the ferrule assembly relative to the housing. A spring biases the ferrule assembly forward to assist mating of the first and second geometries.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: June 30, 2009
    Assignee: Tyco Electronics Corporation
    Inventors: Michael Lawrence Gurreri, Douglas Harold Rohde, Eric James Hopkins, David Donald Erdman
  • Publication number: 20090136184
    Abstract: Disclosed are fiber optic cables and assemblies for routing optical networks closer to the subscriber. The fiber optic cables have a robust design that is versatile by allowing use in aerial application with a pressure clamp along with use in buried and/or duct applications. Additionally, the fiber optic cables and assemblies have a relatively large slack storage capacity for excess length. Assemblies include hardened connectors and/or optical connectors such as plugs and/or receptacles suitable for outdoor plant applications attached to one or more ends of the fiber optic cables for plug and play connectivity.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 28, 2009
    Inventors: George C. Abernathy, David A. Seddon, Kenneth D. Temple, JR.
  • Patent number: 7534051
    Abstract: The present invention relates to a low-cost attachable/detachable optical fiber connector, and the like. The optical fiber connector comprises first and second fiber connecting members. The first fiber connecting members has a ferrule that holds a first optical fiber in its inserting hole in a slidable state, a housing that covers the first optical fiber, and a fixing member that fixes the inserted first optical fiber to the housing behind the ferrule so as not to protrude out from the ferrule. The second fiber connecting members has a housing that has a ferrule engaging portion having a recess therein and an optical fiber holding portion that holds a second optical fiber in its inserting hole in a slidable state, and a fixing member that fixes the inserted second optical fiber to the housing behind the optical fiber holding portion so as to protrude into the recess from the optical fiber holding portion.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: May 19, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Daizo Nishioka, Kenichiro Ohtsuka, Toshifumi Hosoya
  • Publication number: 20090116794
    Abstract: An assembling jig for assembling an optical connector is provided. The optical connector has a pair of beam portions having elasticity and adapted to hold a ferrule holding an optical fiber. The assembling jig includes a body portion, an optical connector receiving portion movably held by the body portion and adapted to receive the optical connector, a ferrule receiving portion movably held by the body portion and adapted to receive the ferrule, and an abutting portion adapted to abut the pair of beam portions to open the pair of beam portions outward.
    Type: Application
    Filed: September 23, 2008
    Publication date: May 7, 2009
    Inventors: Naoki Katagiyama, Makoto Sanguu, Kazuhiro Aihara, Hiroshii Yamamoto
  • Patent number: 7526162
    Abstract: An epoxy-free collimator assembly is configured with a ferrule and a lens operative to move within an outer case to a desired position therebetween. The collimator assembly further has an aligning component made from soft, malleable material which is capable of filling out the radial space between the ferrule and case so as to spatially fix the aligned fiber held in the ferrule and lens in the desirable position.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: April 28, 2009
    Assignee: IPG Photonics Corporation
    Inventors: Yuri Grapov, William D. Jones
  • Publication number: 20090092360
    Abstract: An optical fiber connector includes a connector housing, a ferrule and a clamping assembly. The connector hosing has a front end and a rear end. The ferrule is disposed in the connector housing and projects from the front end of the connector housing. The clamping assembly is disposed in the connector housing for mounting the ferrule, and includes a hollow housing and a cam member, wherein the cam member includes a groove adapted to clamp a terminating fiber when a cam effect between the hollow housing and the cam member is generated and further the cam effect causes the groove of the cam member to generate a clamping force.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Applicants: PROTAI PHOTONIC CO., LTD., SENKO ADVANCED COMPONENTS, INC
    Inventors: I En Lin, Tomoyuki Mamiya
  • Patent number: 7513695
    Abstract: An optical fiber connector includes a connector housing, a ferrule and a clamping assembly. The connector hosing has a front end and a rear end. The ferrule is disposed in the connector housing and projects from the front end of the connector housing. The clamping assembly is disposed in the connector housing for mounting the ferrule, and includes a hollow housing and a cam member, wherein the cam member includes a groove adapted to clamp a terminating fiber when a cam effect between the hollow housing and the cam member is generated and further the cam effect causes the groove of the cam member to generate a clamping force.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: April 7, 2009
    Assignees: Protai Photonic Co., Ltd., Senko Advanced Components, Inc
    Inventors: I En Lin, Tomoyuki Mamiya
  • Publication number: 20090087147
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Application
    Filed: November 7, 2007
    Publication date: April 2, 2009
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7500789
    Abstract: A fibre optic coupler assembly for optically aligning a sectioned fibre optic cable, the cable having a first end and a second end and comprising one or more fibre optic cores. The assembly comprises a first holder for holding the first end; a second holder for holding the second end coupled to the first end; a retractor for retracting the second end; an aligning unit comprising a resilient construction having a conduit passing through it, for linear alignment of the ends; whereby the first and second ends are coupled by the respective holders and whereby the second end can be linearly aligned in the conduit of the aligning unit, retracted using the retractor, and rotated to obtain rotational alignment of the fiber cores of the ends.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: March 10, 2009
    Assignee: BioScan Ltd.
    Inventors: Ilan Grunberg, Avram Matcovitch
  • Publication number: 20090060423
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Application
    Filed: October 23, 2008
    Publication date: March 5, 2009
    Inventors: Stuart R. Melton, Hieu V. Tran, David A. Thompson, Richard S. Wagman, Michael J. Gimblet, Xin Liu
  • Patent number: 7494285
    Abstract: The present invention relates to an optical fibre connector, and in particular to an optical port having a connector receptacle for receiving an optical fibre plug, and to an optical fibre connector assembly for transmitting and/or receiving an optical signal formed by an optical fibre connector and an optical fibre plug when these are joined together. The optical fibre connector assembly comprises an optical fibre connector and an optical fibre plug. The optical fibre plug includes a projecting ferrule and along an axis of this ferrule a first optical fibre. The optical connector including a hollow sleeve and within the sleeve a recessed ferrule and along an axis of this ferrule a second optical fibre.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: February 24, 2009
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Mark Jeffrey Dunn, Martyn Robert Owen, David Healy
  • Patent number: 7490994
    Abstract: A hybrid fiber/copper connector assembly which permits repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire connector assembly or the cable is disclosed. The hybrid fiber/copper connector assembly disclosed also allows individual hybrid fiber/copper connectors of the assembly to be converted from one gender to a different gender. The hybrid fiber/copper connector assembly disclosed also allows the individual hybrid fiber/copper connectors of the assembly to be converted from being hybrid fiber/copper connectors to being only fiber connectors or only copper connectors.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: February 17, 2009
    Assignee: ADC Telecommunications, Inc.
    Inventors: Jarrod Scadden, M'Hamed Anis Khemakhem, Jeffrey Louis Peters, Kenneth Allen Skluzacek, Wayne M. Kachmar
  • Publication number: 20090041411
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Application
    Filed: October 8, 2008
    Publication date: February 12, 2009
    Inventors: Stuart R. Melton, David A. Thompson, Michael J. Gimblet, Hieu V. Tran, Richard S. Wagman, Xin Liu
  • Publication number: 20090003776
    Abstract: A crimp (30) comprises a hollow crimp body (31) that is open at each end (32, 33) and includes, at a first end (32), a first crushable crimp tube (34) for crimping onto a connector; and at a second end (33) a second crushable crimp tube (36) for crimping onto a cable, the portion (39) of the crimp between the said ends including a recess (37) for engagement by a closure housing (38).
    Type: Application
    Filed: January 11, 2005
    Publication date: January 1, 2009
    Applicant: Tyco Electronics Raychem NV
    Inventors: Geoffrey Buddington, David Cheale, Jennifer Shaw
  • Patent number: 7467896
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 23, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Stuart R. Melton, David A. Thompson, Michael J. Gimblet, Hieu V. Tran, Richard S. Wagman, Xin Liu
  • Patent number: 7465106
    Abstract: An optical receptacle includes: a fiber stub having a ferrule and an optical fiber in a through-hole of the ferrule; a holder to which an rear end of the fiber stub is fixed; and a sleeve for holding a plug ferrule in front of the fiber stub; wherein a grip ring is provided on an outer side face in which the fiber stub and the sleeve are overlapped to each other, whereby attaining the shortened optical receptacle, and improving connection loss due to tilting of the plug ferrule, and obtaining good repeatability of the connection loss.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 16, 2008
    Assignee: Kyocera Corporation
    Inventors: Hiroki Ito, Tsuyoshi Tanaka, Toshiyuki Matsumoto
  • Publication number: 20080304795
    Abstract: A straight type optical connector enables a splicing operation of an optical fiber cable accurately and stably without requiring skilled labor and having a superior on-site installation property. An optical connector is provided with a splicing section for securely supporting an incorporated optical fiber securely supported at a ferrule and an optical fiber of an outside optical fiber cable in an end-abutting condition. The body of the optical connector is provided with a cable holding member able to hold an optical fiber cable. The cable holding member can be set at a temporary position where it makes an optical fiber of the optical fiber cable abut against the incorporated optical fiber at the splicing section in the state holding the optical fiber cable and bends a covered optical fiber of the optical fiber cable between the splicing section and the cable holding member by a pressing force in the lengthwise direction.
    Type: Application
    Filed: June 23, 2005
    Publication date: December 11, 2008
    Inventors: Tomayasu Oike, Takaya Yamauchi, Akihiko Yazaki, Tsunetaka Ema, Kenichi Nakazawa, Yasuhiko Hoshino