Hybrid Communication System (e.g., Optical And Rf) Patents (Class 398/115)
  • Patent number: 8958789
    Abstract: An optical medium, such as fiber, is tapped to provide an antenna port wherever radio service coverage is desired. Each antenna port is a bi-directional remote unit that receives a digital optical signal from a host unit and transforms the signal to a radio frequency signal for transmission by the remote unit. The remote unit receives radio frequency signals that are converted to digital signals and summed with signals from other remote units and converted to an optical signal for transmission to the host unit.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: February 17, 2015
    Assignee: ADC Telecommunications, Inc.
    Inventors: Donald R. Bauman, Philip M. Wala, Jeffrey O. Brennan
  • Publication number: 20150043922
    Abstract: An optical transceiver module coupled to a device is provided. The optical transceiver module includes an electronic signal transmitting terminal coupled to a receiving terminal of the device, an electronic signal receiving terminal coupled to a transmitting terminal of the device, an optical signal receiving terminal coupled to the electronic signal transmitting terminal, and an optical signal transmitting terminal coupled to the electronic signal receiving terminal. When the optical transceiver module is at an normal operation state and the electronic signal receiving terminal does not receive any electronic signal over a first predetermined time period, the optical transceiver module enters a idle detection state to make the electronic signal transmitting terminal to perform a receiver termination detection to the device to determine whether the device is coupled to the optical transceiver module.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 12, 2015
    Inventors: Cheng-Ming YING, Woei-Harng LIN, Yu-Lung LIN, Wei-Yu WANG
  • Patent number: 8953944
    Abstract: The systems and methods described herein provide a reconfigurable, long-range, optical modem-based underwater communication network. In particular, the network provides a low power, low cost, and easy to deploy underwater optical communication system capable of being operated at long distances. Optical modem-based communication offer high data rate, omni-directional spatial communication in the visual spectrum. The omni-directional aspect of communication is advantageous because precise alignment of communication units may not be required. The optical modems may be deployed via unmanned underwater vehicles (UUVs) and physically connected by tethers.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: February 10, 2015
    Assignee: Woods Hole Oceanographic Institution
    Inventors: Casey Machado, Lee Freitag, Andy Bowen, Norman E. Farr
  • Patent number: 8953945
    Abstract: A radio transmitter integrated circuit includes a photodiode array circuit, a digital conversion module, and a transmit baseband processing module. The photodiode array circuit converts received light into electrical image signals. The digital conversion module converts the electrical image signals into digital image signals. The transmit baseband processing module converts the digital image signals into digital transmit baseband or low IF signals.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: February 10, 2015
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza (Reza) Rofougaran
  • Publication number: 20150037028
    Abstract: An adaptive distributed antenna system comprises a control module coupled between multiple base stations, and multiple antenna groups, each of which includes multiple antenna devices each coupled to the control module via a transmission line, and operable to convert an external wireless signal and a transmitting signal from the transmission line respectively into a receiving signal and a signal to be radiated. The control module converts a downlink signal from any base station and the receiving signal from any transmission line respectively into the transmitting signal and an uplink signal. The control module is configured to establish a transmission link between one base station and one antenna device of the antenna groups.
    Type: Application
    Filed: March 21, 2014
    Publication date: February 5, 2015
    Applicant: AMOESOLU CORPORATION
    Inventors: Terng-Yin HSU, Cheng-Yen CHEN, Wen-Jye HUANG, Ray-Shiang JEAN, Shao-Ying YEH, You-Hsien LIN
  • Publication number: 20150037040
    Abstract: A hub device detects, using a plurality of different wireless communication interfaces, the presence of a plurality of different wireless devices, wherein, initially, each of the plurality of different wireless devices implements an unknown type of wireless connectivity. The hub device detects a type of wireless connectivity, of a plurality of different types of wireless connectivity, for each of the plurality of different wireless devices whose presence is detected, and causes a connection to be established to the plurality of different wireless devices, via selected ones of the plurality of different wireless communication interfaces, based on the type of wireless connectivity detected for each of the plurality of different wireless devices. The hub device forwards data received from one of the plurality of different wireless devices to another of the plurality of different wireless devices using two different ones of the plurality of different types of wireless connectivity.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: Cellco Partnership d/b/a Verizon Wireless
    Inventor: Denise Nicole Lyn-Shue
  • Patent number: 8948599
    Abstract: A network architecture for integrating a 4G wireless mesh network (WMN) with a 3-G network in order to effectively support multimedia communication is described. In one embodiment of the present invention, a wireless mesh network system comprises a plurality of routers each having a wireless optical interface; at least one base station having Internet backhaul and connecting to a wireless optical device; a computer media storing instructions for assigning at least one of the plurality of routers to act as an Internet gateway via said base station; wherein said assigned router and said base station communicating via a link between wireless optical interface of said assigned router and the wireless optical device connected to said base station, and said link is line-of-sight.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: February 3, 2015
    Inventors: Dharma P. Agrawal, Nishan S. Weragama, Hailong Li
  • Patent number: 8948596
    Abstract: A mobile transmitter traverses a drive path in a neighborhood node of a cable communication system and broadcasts a test signal at frequencies falling within an upstream path bandwidth. A navigational device generates a first record of positions of the transmitter along the drive path, and an analyzer monitors the upstream path bandwidth and generates a second record of received signal amplitudes of the transmitted test signal as a function of time. An ingress map is generated showing the drive path and potential points of ingress in the node, and employed to remediate faults particularly in the hardline coaxial cable plant. Iterative generation of maps and corresponding remediation in the node enable improved cable communication systems with reduced noise profiles between 5 MHz and 20 MHz and employing higher modulation order QAM communication channels (e.g., 256-QAM and higher) throughout the upstream path bandwidth to increase upstream capacity.
    Type: Grant
    Filed: June 30, 2012
    Date of Patent: February 3, 2015
    Assignee: CetusView Technologies, LLC
    Inventors: Steven Nielsen, Ronald Totten, Travis Halky
  • Patent number: 8942562
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: January 27, 2015
    Assignee: A Optix Technologies, Inc.
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Patent number: 8938170
    Abstract: In one aspect, identification and communication systems are described herein. In some embodiments, an identification and communication system comprises one or more query units and one or more response units, wherein at least one query unit is a handheld device. In some embodiments, the handheld device does not comprise a weapon and is not mounted on a weapon. In some embodiments, the handheld device comprises a flashlight. In some embodiments, the handheld device comprises a stylus. In some embodiments, the handheld device comprises a smart device in communication with the stylus. In some embodiments, the handheld device comprises a display screen. In some embodiments, the handheld device comprises a query controller and the display screen is operable to display data provided by the query controller.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: January 20, 2015
    Assignee: Analysis First LLC
    Inventors: Peter Gerber, Jodi Lasky
  • Publication number: 20150016823
    Abstract: A wireless data connection may be established between a first vehicle and a second vehicle, the first vehicle driving ahead of the second vehicle. A forward camera of the second vehicle may obtain image data of a rear portion of the first vehicle and determine an identification number of the first vehicle from the obtained image data. The second vehicle may broadcast a data connection request which indicates at least a part of the determined identification number of the first vehicle.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Inventor: Marek Strassenburg-Kleciak
  • Patent number: 8934777
    Abstract: According to one embodiment of a method for interference suppression in radio-over-fiber communication systems, the method uses a mode selection module to continuously update real time information of at least two mobile stations and determine to enter a cross mode or a single mode. In the single mode, when a mobile station approaches a switching point, a single mode command is issued to control at least one first specific remote antenna unit (RAU). In the cross mode, when an immediate cross condition is a new cross condition, a new cross mode table is generated, and when the position of any one mobile station of the at least two mobile stations cross a threshold, a cross mode command is issued to control at least one second specific RAU according to a corresponding cross mode table.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: January 13, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Hsien-Wen Chang, Ming-Chien Tseng, Ming-Hung Cheng
  • Patent number: 8934773
    Abstract: A method for data processing in an optical network includes providing several main wavelengths and processing a subcarrier modulation for the several main wavelengths. An optical network component and a communication system including such an optical network component are also provided.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 13, 2015
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Erich Gottwald, Karl Kloppe, Harald Rohde
  • Patent number: 8929740
    Abstract: The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: January 6, 2015
    Assignee: ADC Telecommunications, Inc.
    Inventors: Trevor D. Smith, Yu Lu, Wayne M. Kachmar
  • Publication number: 20150003833
    Abstract: An optoelectronic circuit for transmitting an optical clock signal to an electronic component contains a clock-generating device for the generation of an optical clock signal, a converter element for the conversion of the optical clock signal into an electrical clock signal supplied to the electronic component and an optical line from the clock-generating device to the conversion element. The optoelectronic circuit in this context provides a delay time of the optical clock signal from the clock-generating device to the conversion element. The optoelectronic circuit accordingly comprises an adjustable optical element for adjusting the delay time between the clock-generating device and the electronic component.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Gerhard KAHMEN, Ingo DETTMANN
  • Publication number: 20150003832
    Abstract: A server is configured to manage second positional information, which shows a location of the lighting device, so that the second positional information is associated with the ID information of the lighting device. The server is configured to determine whether or not the ID information received from the receiving terminal is justifiable based on the second positional information, which corresponds to the ID information received from the receiving terminal, and the first positional information, which is received from the receiving terminal. The server is configured to reply, to the receiving terminal, the service information corresponding to the ID information received from the receiving terminal when determining that the ID information received from the receiving terminal is justifiable. The server is configured not to reply the service information to the receiving terminal when determining that the ID information received from the receiving terminal is not justifiable.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 1, 2015
    Inventors: Shigeaki YAMASAKI, Eiji SHIOHAMA, Shojirou KIDO
  • Publication number: 20150003828
    Abstract: A digital (fiber optic) link transports one or more RF digital signal blocks, that when converted into analog and (optionally) converted to a RF center frequency with an D-A converter, form RF analog signal blocks. The RF analog signal block occupies a specified frequency band and is preferably capable of being distributed over a downstream coaxial portion of a HFC network and/or being broadcast. The D-A conversion is performed in a fiber node at a remote location where the transmission medium converts from digital optical fiber preferably to coaxial cable. The multiple RF digital signal blocks may be broadcast to multiple nodes or unicast to a single node. The RF signal blocks allow for any type of band-limited RF signal to be transported. The optical digital traffic to compose a RF analog signal blocks using a D-A converter may be point-to-point Ethernet, or may utilize a software-defined networking controller such as the one described in the OpenFlow™ specification, and may use buffering as necessary.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Thomas H. Williams, Luis Alberto Campos, Christopher Donley
  • Patent number: 8923702
    Abstract: A microwave photonics based signal receiving device includes a signal generation module, a first Mach-Zehnder modulator, a dispersion module, a second Mach-Zehnder modulator, and a signal conversion module. The signal receiving device simplifies a structure of the signal receiving device by adopting quadrature demodulation. The signal receiving device demodulates a high-order modulation signal and flexibly adjusts a microwave carrier frequency.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 30, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wentong Wan, Kun Li, Limin Dong, Yanfu Yang, Chao Lv
  • Patent number: 8923703
    Abstract: Some embodiments are provided for performing wireless maintenance procedures on personal equipment systems. Personal equipment systems can include wireless communication systems that allow external systems, users, or both to maintain the systems and/or run diagnostic procedures. Personal equipment systems are provided having one or more local devices coupled thereto and in wired communication with one another. Personal equipment systems can include a wireless system and local devices attached to a headgear system, the local devices being in wired communication with one another and in wireless communication with external systems. The wireless communication system is configured to establish a wireless connection with external systems for maintenance of local devices that are in wired communication with each other. Methods for performing wireless maintenance of personal equipment systems are described.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: December 30, 2014
    Assignee: N2 Imaging Systems, LLC
    Inventors: David Michael Masarik, Matthew James Masarik
  • Patent number: 8923701
    Abstract: A wireless communications link comprising an RF link and a free space optics (FSO) link, a switch, an RF signal monitoring apparatus, an optical signal monitoring apparatus, alarm apparatus and a controller. The switch operates in a normal mode to aggregate the links to form a link aggregation group and to route traffic on the link aggregation group, a first protection mode to route traffic on the FSO link, or a second protection mode to route traffic on the RF link. The controller is arranged to receive an alarm signal and to generate and transmit a control signal to cause the switch to operate in the first protection mode when a first alarm signal is received, the second protection mode when a second alarm signal is received, and the normal mode when an indicator is received indicating that both signal quality parameters are above their threshold values.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: December 30, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Antonio D'Errico, Marzio Puleri
  • Publication number: 20140376920
    Abstract: Embodiments herein relate to a method in a network node configured in an optical network for enabling a first unit to connect ad-hoc to a second unit in a system configured for remote radio units and main units. The network node receives a connection request from the first unit over the optical network. The network node establishes a connection, to the first unit, for retrieving control data. The network node stores control data regarding the first unit. The control data is retrieved from the first unit over the established connection and wherein the control data enables the first unit to connect/be connected ad-hoc to the second unit for transferring user data over a physical path through the optical network.
    Type: Application
    Filed: February 9, 2012
    Publication date: December 25, 2014
    Applicant: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Kim Laraqui
  • Patent number: 8917991
    Abstract: In fiber-to-the-home (FTTH) RF over Glass (RFoG) Architecture a customer-premise-equipment (CPE) includes a wavelength separator. A method includes up-converting a baseband upstream data signal to a frequency band above a frequency band of a baseband downstream data signal; combining the up-converted upstream data signal with an upstream cable return signal; transmitting the up-converted upstream data signal and the upstream cable return signal using a single upstream laser; and separating, with a wavelength separator, A) a downstream data signal and a downstream cable feed signal from B) the combined up-converted upstream data signal and upstream cable return signal.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: December 23, 2014
    Assignee: Aurora Networks, Inc.
    Inventors: Sudhesh Mysore, Charles Barker, Oleh Sniezko, Krzysztof Pradzynski
  • Patent number: 8913892
    Abstract: Distributed antenna systems in which the distributed antenna systems can be sectorized. Radio bands distributed by the distributed antenna systems are allocated to one or more sectors. The antenna units in the distributed antenna systems are also allocated to one or more sectors. In this manner, only radio frequency (RF) communications signals in the radio band(s) allocated to given sector(s) are distributed the antenna unit allocated to the same sector(s). The bandwidth capacity of the antenna unit is split among the radio band(s) allocated to sector(s) allocated to the antenna unit. The sectorization of the radio band(s) and the antenna units can be configured and/or altered based on capacity needs for given radio bands in antenna coverage areas provide by the antenna units.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: December 16, 2014
    Assignee: Coring Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliot Greene, Michael Sauer, Gerald Bernhart Schmidt
  • Publication number: 20140363169
    Abstract: In one aspect, an optical media converter is provided for use within aircraft data networks. In one example, the optical media converter converts electrical doublet signals to optical Manchester signals, and vice versa. In an illustrative example, the optical media converter includes a receiver circuit coupled to a fiber optic port for receiving a Manchester-encoded input signal using an edge-coupled filter that filters out signals not associated with edges within the time-varying input signal Manchester signal. The optical media converter also provides, for example, for high common mode rejection and includes logic to correct for bit-width skew. The optical media converter is well-suited for use in converting doublet signals generated by a serial interface module of a line replaceable unit of an ARINC 629-compatible system into optical Manchester signals for transmission over a fiber optic bus system interconnected by a star coupler.
    Type: Application
    Filed: May 15, 2014
    Publication date: December 11, 2014
    Applicant: Sanmina Corporation
    Inventors: Robert Benjamin Conger, David R. Porter
  • Publication number: 20140363168
    Abstract: A method and apparatus for conveying using a visual representation extending between an electronic device and a target device, information relating to a wireless connection established between the electronic device and a target device. The visual representation may be setup and/or configured based on a determination of the location and/or position of the target device relative to the electronic device. The visual representation may comprise a visual light or laser beam, which may be emitted by a light or laser source in the electronic device, and may be projected at the target device. The conveying of information may comprise color adjustment of the visual representation based on information being conveyed. The conveyed information may relate to the status of the wireless connection and/or the transfer of data over the wireless connection. The electronic device may comprise a handheld mobile communication device, such as, for example, a smartphone or a tablet.
    Type: Application
    Filed: October 24, 2012
    Publication date: December 11, 2014
    Inventor: Jeremy Walker
  • Publication number: 20140363170
    Abstract: An interference-free communication system having a central communication controller (CCC) with a wavelength-tunable light source that emits a tunable wavelength optical data signal, and controls the wavelength-tunable light source by conditioning, modulation and wavelength-tuning, the CCC includes a signal-transparent optical crossconnect and fiber optic network, a pencil-radiating antenna (PRA) that is a passive 2-dimensional diffractive module is coupled to the wavelength-tunable light source via the fiber optic network, the crossconnect routes the optical data signal to the PRA, the optical data signal is transmitted through a confined optical pencil beam, the PRA deflects the pencil beam in 2 angular dimensions as a function of a wavelength of the pencil beam, the deflected pencil beam is disposed for communication with an opto-electronic communication device, and a radio return channel that provides upstream communication from the communication device to the CCC includes a lack-of-connection communicatio
    Type: Application
    Filed: January 18, 2013
    Publication date: December 11, 2014
    Inventors: Antonius Marcellus Jozef Koonen, Peter G. M. Baltus, Antonio Liotta
  • Publication number: 20140362874
    Abstract: An optical receiver includes: an optical receiving device configured to generate an analog received signal that represents a received modulated optical signal; an A/D converter configured to generate a digital received signal from the analog received signal; an E/O circuit configured to generate an optical digital signal from the digital received signal; an O/E circuit configured to generate an electric digital signal from the optical digital signal; and a digital signal processor configured to recover a data signal from the electric digital signal.
    Type: Application
    Filed: May 21, 2014
    Publication date: December 11, 2014
    Applicant: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventor: Hiroshi NISHIMOTO
  • Patent number: 8909046
    Abstract: A system for transporting a plurality of analog and/or digital signals over an optical fiber can include one or more master modems for modulating digital signals and/or RF inserters modulating video signals. The RF signals from the modem(s)/RF inserters are up-converted resulting in frequency bands that are non-overlapping and are spaced apart within a single sub-octave. The sub-octave signal is then converted into an optical signal and directed onto an end of an optical fiber. At the downstream end of the optical fiber, the received optical signal is converted to an RF signal at an optical receiver. The RF signal is then filtered, down-converted and directed to a selected coaxial distribution unit. From the coaxial distribution unit, the RF signal is demodulated, e.g. at a slave modem, to recover the initial analog and/or digital signal.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: December 9, 2014
    Assignee: Titan Photonics
    Inventors: Chen-Kuo Sun, Peter H. Wolff
  • Patent number: 8909057
    Abstract: A system for transporting a plurality of digital signals (i.e. “n” digital signals) over an optical fiber includes a plurality of modems for modulating each digital signal on a respective analog signal. Each resulting RF signal is processed by a corresponding up-convertor, which includes a mixer and local oscillator, to produce a frequency band which can be a double sideband or single sideband of the modulated signal. The resulting frequency bands output by the up-convertors are non-overlapping and are spaced apart within a single sub-octave. An RF combiner combines the frequency bands and the combined RF signal is converted into an optical signal by an optical transmitter that outputs to an optical fiber. An optical receiver converts the optical signal from the fiber to an RF signal that is directed to an RF splitter. Signal fractions from the splitter are filtered, down-converted and demodulated to recover the initial digital signals.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: December 9, 2014
    Assignee: Titan Photonics
    Inventor: Chen-Kuo Sun
  • Patent number: 8909056
    Abstract: A lighting node is described. One embodiment of the lighting node includes a lamp, a radio device, and a memory. The lamp is configured for generating illumination. The radio device is configured for radio communication. The radio device is configured to remotely receive a color profile from the controller. The lamp is also configured to generate illumination to substantially match the received color profile. The memory is configured to store a group identifier for the lighting node.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: December 9, 2014
    Assignee: Lumenetix, Inc.
    Inventor: Matthew D. Weaver
  • Publication number: 20140355994
    Abstract: A system and method are provided for transmitting multi-octave telecommunications signals, as sub-octave signals, on an optical fiber. Using different modems, digital signals are modulated onto respective radio frequency (RF) carriers. In detail, the resultant RF signals (fn) are all within a same lower frequency band. At least one fn is a multi-octave signal. A frequency changer switches each fn (possibly multi-octave) from the lower frequency band to an upper frequency band, where they avoid overlapping each other, and where they are each established as a sub-octave signal (f?n). A combiner then groups the individual sub-octave signals (f?n) into a single sub-octave signal (f?). Further, an electrical/optical converter creates an optical signal of wavelength (?) for transmitting the combined sub-octave signal (f?) over the optical fiber.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Chen-Kuo Sun, Charlie Chen, Eric Liu
  • Publication number: 20140355995
    Abstract: An optoelectronic device may include a package having a component for sending/receiving optical signals along a first direction, and a chip of semiconductor material housed within the package. The chip may have a main surface and a portion exposed on the main surface for sending/receiving the optical signals along a second direction different from the first direction. The optoelectronic device may further include a component for deflecting the optical signals between the first direction and the second direction, the component being mounted on the main surface.
    Type: Application
    Filed: May 20, 2014
    Publication date: December 4, 2014
    Applicant: STMICROELECTRONICS S.r.I.
    Inventors: Luca MAGGI, Antonio FINCATO, Salvatore Mario ROTOLO, Matteo Alessio TRALDI, Luigi VERGA, Mark Andrew SHAW
  • Patent number: 8903244
    Abstract: Example modular optical network terminals (ONTs) and methods to implement the same are disclosed. A disclosed example ONT includes a base unit having an integral optical interface to optically couple the ONT to an optical network, and to convert an optical signal received from the optical network to form an electrical signal, a plug-in service module to distribute the electrical signal within a customer premises, and a modular interface connector configured to receive the plug-in service module and to couple the electrical signal from the base unit to the plug-in service module.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 2, 2014
    Assignee: AT&T Intellectual Property I., L.P.
    Inventor: Edward Walter
  • Publication number: 20140348509
    Abstract: A fiber-optic communication apparatus includes a modulator, a combiner and an electro-optic converter. The modulator modulates a number (N) of radio frequency (RF) signals with the same frequency respectively into a number (N) of modulated signals with mutually different frequencies, where N?2. The combiner is coupled to the modulator for combining the modulated signals therefrom into a combined signal that has a number (N) of components with mutually different frequencies. The electro-optic converter is coupled to the combiner for converting the combined signal therefrom into an optical signal that has a number (N) of components with mutually different frequencies.
    Type: Application
    Filed: December 4, 2013
    Publication date: November 27, 2014
    Applicants: TRANSYSTEM INC., AMOESOLU CORPORATION
    Inventors: Lee-Chuan Chang, Wen-Jye HUANG, Chuang-Chun CHIOU, Cheng-Yen CHEN
  • Patent number: 8897648
    Abstract: Systems and methods are provided for network communication using wireless base stations and an optical orthogonal frequency division multiple access (OFDMA) signal generated on an optical wavelength, with the optical OFDMA signal being composed of a plurality of OFDMA subcarriers. A multi-level modulator modulates each of the plurality of OFDMA subcarriers. A single optical wavelength propagates each of the plurality of OFDMA subcarriers to different base stations; a passive optical splitter delivers the optical OFDMA signal to different base stations; and an OFDMA subcarrier de-multiplexer delivers and extracts traffic for each of the base stations in an electronic-domain, wherein the extracted traffic is remodulated in a wireless signal format. Antennas at each of the base stations transmit wireless signals, and the wireless signals are recovered and processed from the base stations.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 25, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Neda Cvijetic, Milorad Cvijetic, Ting Wang
  • Patent number: 8897647
    Abstract: A communication link can be established by way of a radio interface between a first mobile communication facility and a second mobile or permanently stationary communication facility. In at least one embodiment, an item of identification information is made available by one of the communication facilities as an optical signal for receipt at the cited sensor; the communication facility, to which the sensor receiving the optical signal belongs, accepts the identification information and transfers the accepted identification information as a request to set up a communication link via the radio interface with the communication facility, which makes or has made the optical signal available. The requested communication facility implements a comparison between the accepted identification information and its own identification information and permits the setup of the communication link as a function of the comparison result.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: November 25, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Friese, Georg Von Wichert
  • Patent number: 8897607
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 25, 2014
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Publication number: 20140341587
    Abstract: An optical transmission system includes an optical transmitter and an optical receiver. The optical transmitter includes: a first digital signal processor configured to generate an electric-field information signal corresponding to a transmission signal; and a transmitter front-end configured to generate an optical signal from the electric-field information signal. The optical receiver includes: a receiver front-end configured to generate an electric signal corresponding to the optical signal; and a second digital signal processor configured to detect polarization dependent effects on the optical signal based on the electric signal. The first digital signal processor corrects the electric-field information signal based on the polarization dependent effects detected by the second digital signal processor in the optical receiver.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: Hisao NAKASHIMA, Takeshi HOSHIDA, Takahito TANIMURA
  • Publication number: 20140341586
    Abstract: A system and method are disclosed that may include a system and method for transmitting user data from an initial satellite in a first constellation located conveniently to an origination user terminal to a destination satellite in the first constellation located conveniently to a destination user terminal, the method including transmitting the user data over an optical link from the initial satellite in the first constellation to a first satellite within a second satellite constellation; conveying the user data over an optical link from the first satellite in the second constellation to a second satellite in the second constellation; and receiving the user data from the second satellite in the second constellation at the destination satellite in the first constellation.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 20, 2014
    Inventor: Gregory Thane Wyler
  • Patent number: 8891974
    Abstract: A distortion compensation circuit compensates for distortion generated by one or more non-linear elements such as a laser device and/or an optical fiber and may include a primary signal path for carrying an input signal and a secondary signal paths for generating distortion. The distortion compensation circuit may also include a controllable phase inverters and a tunable filter. For example, the secondary signal path may include a distortion generator to produce distortion products from the input signal and a signal controlled phase inverter that inverts the phase of the distortion products and a tunable filter that adjusts the phase of the frequency dependent distortion. The phase inversion and tunable filter may be controlled in response to control signals generated based on one or more parameters such as, for example, laser power, input RF channel loading, temperature, and fiber length.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 18, 2014
    Assignee: Applied Optoelectronics, Inc.
    Inventor: Yi Wang
  • Patent number: 8886045
    Abstract: An LED light and communication system is in communication with a broadband over power line communications system. The LED light and communication system includes at least one optical transceiver. The optical transceiver includes a light support having a plurality of light emitting diodes and at least one photodetector attached thereto, and a processor. The processor is in communication with the light emitting diodes and the at least one photodetector. The processor is constructed and arranged to generate a communication signal.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: November 11, 2014
    Assignee: Federal Law Enforcement Development Services, Inc.
    Inventors: John C. Pederson, Paul R. Brown, Timothy J. Vogt, James LeClaire, James Zimmerman, Brent Mikkelsen
  • Publication number: 20140328595
    Abstract: Provided is a transistor outline (TO)-CAN type optical module and an optical transmission apparatus including the same. The optical module includes a stem, a thermo-electric cooler (TEC) on the stem, a first sub-mount on the TEC, an optical element on the first sub-mount, a plurality of electrode lead wirings inserted from an outside to an inside of the stem and disposed adjacent to the TEC and the optical element, a second sub-mount between the electrode lead wirings and the optical element, radio frequency (RF) transmission lines on the second sub-mount, a plurality of bonding wires connecting the RF transmission lines and the optical element, and the RF transmission lines and the electrode lead wirings, and an impedance matching unit disposed around the RF transmission lines and the electrode lead wirings, and controlling impedances of the RF transmission lines and the electrode lead wires.
    Type: Application
    Filed: February 7, 2014
    Publication date: November 6, 2014
    Applicants: Phovel.co.LTD, Electronics and Telecommunications Research Institute
    Inventors: Young-Tak HAN, Jang Uk SHIN, Sang Ho PARK, Yongsoon BAEK, Jeong Soo KIM
  • Patent number: 8879916
    Abstract: This invention provides an approach to lock the optical phase of a single sideband, carrier-suppressed coherent-AM analog optical link, so that for example an RF signal can be transmitted with high fidelity over fibers. In some embodiments, a method comprises providing a RF locking signal; impressing an RF input signal and the RF locking signal onto the optical field of a suppressed carrier; introducing the optical spectrum to a photonic integrated circuit comprising a microresonator filter and a finite impulse response filter; selectively passing the double sideband, associated with the locking frequency, through the finite impulse response filter; and recovering a RF output signal, wherein a feedback loop provides dithering to stabilize the optical phase of the link and thus preserve amplitude/phase integrity for the RF-photonic signal. The disclosed method is especially suited to the filtering of RF-photonic signals via use of the resonance passbands derived from microdisks or micro-rings.
    Type: Grant
    Filed: December 4, 2011
    Date of Patent: November 4, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Willie W. Ng, David L. Persechini
  • Publication number: 20140321857
    Abstract: A modulator device for converting digital data into modulation of an optical signal includes an electronic input for receiving an input data word of N bits and an electrically controllable modulator for modulating the intensity of an optical signal, the modulator including M actuating electrodes where M?N. An electrode actuating device, most preferably a digital-to-digital converter, operates actuating electrodes so that at least one electrode is actuated as a function of values of more than one bit of the input data word. According to an alternative, or supplementary, aspect of the invention, the set of electrodes includes at least one electrode having an effective area which is not interrelated to others of the set by factors of two. In one preferred implementation, a Mach-Zehnder modulator also provides phase modulation to give QAM functionality. Another implementation employs a semiconductor laser.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Yossef EHRLICHMAN, Ofer Amrani, Shlomo Ruschin
  • Publication number: 20140314419
    Abstract: An electro-optical system for exchanging quantum information between optical qubits and including a superconductive microwave cavity; an electro-optical material: a superconductive qubit circuit formed on the electro-optical material including a superconductive qubit; a dipole antenna, formed on the electro-optical material for directly coupling the superconductive qubit to the superconductive microwave cavity; an optical input for receiving input optical photons; a microwave input for receiving input microwave photons; and an optical output for outputting modulated optical photons, wherein a frequency and a phase of the optical photon is modulated with a state of the superconducting qubit by the dipole antenna.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 23, 2014
    Applicant: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventor: Hanhee Paik
  • Patent number: 8867919
    Abstract: A multi-port accumulator apparatus for a radio-over-fiber (RoF) wireless picocellular system comprising a housing supporting a tail cable port and transponder ports. The tail cable port is optically coupled to the RoF transponder ports to provide for transmission of uplink and downlink optical signals between the tail cable port and each of the transponder ports. The tail cable port is also electrically coupled to provide power to each transponder port. The multi-port accumulator supports RoF transponders, one at each of the transponder ports. Each RoF transponder includes a directional antenna system forming a picocellular coverage sub-area, with the combined sub-areas constituting a picocellular coverage area for the multi-port accumulator. The multi-port accumulator permits quick installation and deployment of large numbers of RoF transponders without individually connecting each RoF transponder to downlink and uplink optical fibers in an optical fiber RF communication link.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 21, 2014
    Assignee: Corning Cable Systems LLC
    Inventor: Eric Raymond Logan
  • Patent number: 8867931
    Abstract: A transceiver architecture for wireless base stations wherein a broadband radio frequency signal is carried between at least one tower-mounted unit and a ground-based unit via optical fibers, or other non-distortive media, in either digital or analog format. Each tower-mounted unit (for both reception and transmission) has an antenna, analog amplifier and an electro-optical converter. The ground unit has ultrafast data converters and digital frequency translators, as well as signal linearizers, to compensate for nonlinear distortion in the amplifiers and optical links in both directions. In one embodiment of the invention, at least one of the digital data converters, frequency translators, and linearizers includes superconducting elements mounted on a cryocooler.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: October 21, 2014
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Oleg Mukhanov
  • Patent number: 8867918
    Abstract: A remote controller includes: an operation unit including plural operation keys; a radio communication unit that performs bidirectional communication with a controlled apparatus; an infrared communication unit that performs unidirectional communication with the controlled apparatus; and a control unit that is input with an operation signal from the operation unit and controls the radio communication unit and the infrared communication unit, wherein the control unit includes a measuring unit that measures power supply voltage, and the control unit controls the radio communication unit to transmit a control signal to the controlled apparatus when the power supply voltage is equal to or higher than a predetermined value and controls the infrared communication unit to transmit the control signal to the controlled apparatus when the power supply voltage is lower than the predetermined value.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: October 21, 2014
    Assignee: Sony Corporation
    Inventor: Tetsuya Nakamura
  • Publication number: 20140308044
    Abstract: Power management for a remote antenna unit(s) (RAUs) in a distributed antenna system. Power can be managed for an RAU configured to power modules and devices that may require more power to operate than power available to the RAU. For example, the RAU may be configured to include power-consuming RAU modules to provide distributed antenna system-related services. As another example, the RAU may be configured to provide power through powered ports in the RAU to external power-consuming devices. Depending on the configuration of the RAU, the power-consuming RAU modules and/or external power-consuming devices may demand more power than is available at the RAU. In this instance, the power available at the RAU can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the RAU.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: CCS Technology, Inc.
    Inventors: Christian Heidler, Jonathan Richard Hull, John Kedziora, Michael Sauer, Wolfgang Gottfried Tobias Schweiker
  • Patent number: RE45321
    Abstract: A method and apparatus for sectorizing coverage of a cellular communications area includes providing a remote unit having microcell antenna units. Each microcell antenna unit is configured to cover a particular sector. The remote unit is connected to a sectorized base station unit which is connected to a mobile telecommunications switching office. Separate digitized streams representative of telephone signals received from the mobile telecommunications switching office are generated corresponding to the microcell antenna units and the separate digitized streams are multiplexed and transmitted to the remote unit. The remote unit demultiplexes the multiplexed digitized streams into the separate digitized streams corresponding to the microcell antenna units and the separate digitized streams are converted to RF signals for coverage of a particular sector by the corresponding microcell antenna unit.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 6, 2015
    Assignee: ADC Telecommunications, Inc.
    Inventors: Larry G. Fischer, David S. Russell, Philip M. Wala, Charles R Ratliff, Jeffrey O. Brennan