Including Optical Fiber Or Waveguide Patents (Class 398/139)
  • Patent number: 8989589
    Abstract: An apparatus in one embodiment includes a transceiver housing operable to be inserted into a port of a host system, the port comprising at least a first channel and a second channel. The transceiver housing may be a compact small form-factor (SFP) pluggable module housing. The apparatus also includes a printed circuit board mounted in the transceiver housing and an electrical interface of the printed circuit board operable to interface with the port of the host system. The electrical interface includes a first transmit pin and a first receive pin configured to interface with the first channel of the port and a second transmit pin and a second receive pin configured to interface with the second channel of the port. A first connector couples the first transmit pin and the second receive pin, and a second connector couples the second transmit pin and the first receive pin.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: March 24, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Farrokh Mottahedin, Darren K. Hopcroft, Brice D. Achkir
  • Patent number: 8985871
    Abstract: An optical module includes a housing, an optical adapter attached to an end portion of the housing, and an optical transmitter and receiver assembly mounted in the housing. The optical transmitter and receiver assembly includes a TOSA including a plurality of light-emitting elements, a ROSA including a light-receiving element, and a circuit board electrically connected to the TOSA and the ROSA. The TOSA further includes a TOSA base having an opposing side surface on which the plurality of light-emitting elements are oppositely arranged so as to form at least one pair. The circuit board includes a first flexible substrate mounting the TOSA and a first rigid substrate connected to the first flexible substrate. The first flexible substrate includes a TOSA base facing-portion facing the TOSA base, and a connection portion extending from both end portions of the TOSA base-facing portion and connected to the plurality of light-emitting elements.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: March 24, 2015
    Assignee: Hitachi Metals, Ltd
    Inventors: Kenji Mizobuchi, Ryuta Takahashi
  • Patent number: 8989588
    Abstract: An optical transceiver includes an optical IC coupled to a processor IC. For transmit, the optical IC can be understood as a transmitter IC including a laser device or array. For receive, the optical IC can be understood as a receiver IC including a photodetector/photodiode device or array. For a transmitter IC, the processor IC includes a driver for a laser of the transmitter IC. The driver includes an equalizer that applies high frequency gain to a signal transmitted with the laser device. For a receiver IC, the processor IC includes a front end circuit to interface with a photodetector of the receiver IC. The front end circuit includes an equalizer that applies high frequency gain to a signal received by the receiver IC. The driver can be configurable to receive a laser having either orientation: ground termination or supply termination.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 24, 2015
    Assignee: Intel Corporation
    Inventors: Gil Afriat, Lior Horwitz, Dror Lazar, Assaf Issachar, Alexander Pogrebinsky, Adee O. Ran, Ehud Shoor, Roi Bar, Rushdy A. Saba
  • Patent number: 8989590
    Abstract: One embodiment provides a pluggable optical line terminal (OLT). The OLT includes a bi-directional optical transceiver configured to transmit optical signals to and receive optical signals from a number of optical network units (ONUs), an OLT chip coupled to the optical transceiver and configured to communicate with the ONUs through the optical transceiver, and a pluggable interface coupled to the OLT chip and configured to electrically interface between the OLT chip and a piece of network equipment. The optical transceiver, the OLT chip, and the pluggable interface are contained in an enclosure complying with a form factor, thereby allowing the pluggable OLT to be directly plugged into the network equipment.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: March 24, 2015
    Assignee: Broadcom Corporation
    Inventor: Jaroslaw Wojtowicz
  • Publication number: 20150078760
    Abstract: An optical transceiver that implements an inner fiber to optically connect an optical receptacle with an optical module is disclosed. The optical module in a ceiling thereof forms a gap against a printed circuit board (PCB) electrically connected with the optical module by a flexible printed circuit (FPC) board. The inner fiber is extended in a gap formed between the PCB and the FPC, or between the FPC and the ceiling of the optical module.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Inventor: Hiromi Kurashima
  • Patent number: 8983287
    Abstract: A personnel monitoring system. The personnel monitoring system includes a host node having an optical source for generating optical signals, and an optical receiver. The personnel monitoring system also includes a plurality of fiber optic sensors for converting at least one of vibrational and acoustical energy to optical intensity information, each of the fiber optic sensors having: (1) at least one length of optical fiber configured to sense at least one of vibrational and acoustical energy; (2) a reflector at an end of the at least one length of optical fiber; and (3) a field node for receiving optical signals from the host node, the field node transmitting optical signals along the at least one length of optical fiber, receiving optical signals back from the at least one length of optical fiber, and transmitting optical signals to the optical receiver of the host node.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: March 17, 2015
    Assignee: US Seismic Systems, Inc.
    Inventors: Eric Lee Goldner, Gerald Robert Baker, James Kengo Andersen, Agop Hygasov Cherbettchian, Jeffrey Carl Buchholz
  • Publication number: 20150063821
    Abstract: An two-way optical communication apparatus, including a transmit element, a receive element, and a transceive processor. The transmit element is coupled to a light pipe, and transmits a first signal. The receive element is coupled to the light pipe, and receives a second signal. The transceive processor directs the transmit element to pause and then resume transmitting the first signal during first intervals, and directs the receive element to sample for the second signal during one or more second intervals within each of the first intervals, where the each of the first intervals is less than a first value and the first intervals occur at a duty cycle no greater than a second value, and where the first and second values are controlled by the transceive processor such that a user perceives the first optical signal as having a constant state for a third interval.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Inventors: JEFFREY P. MATHEWS, JONATHAN S. BRUNEAU, LEE R. TAYLOR
  • Patent number: 8971717
    Abstract: An optical system has an optical emitter that transmits an optical signal through an optical fiber. An optical detector detects light from the fiber and provides an analog signal indicative of such light. A crosstalk cancellation element is configured to receive an electrical signal from the optical emitter and to adjust such signal in order to form a cancellation signal that models the optical and/or electrical crosstalk affecting the analog signal. The cancellation signal is subtracted from the analog signal thereby removing optical and/or electrical crosstalk from the analog signal.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: March 3, 2015
    Assignee: ADTRAN, Inc.
    Inventor: Daniel M. Joffe
  • Patent number: 8965204
    Abstract: An optical communication system including an optical communication fiber and a plurality of modules. Each of the modules has an optical transceiver that is optically coupled to the optical communication fiber by a corresponding optical drop. And each of the transceivers is configured for transmitting and/or receiving one or more optical signals via the optical communication fiber. The optical signals represent a plurality of individual data streams formatted according to one or more different communication protocols. In this manner, optical communication is enabled among the modules via the optical communication fiber.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: February 24, 2015
    Assignee: Invensys Systems, Inc.
    Inventors: Nestor J. Camino, Jr., Harris D. Kagan
  • Patent number: 8965212
    Abstract: Various embodiments of the present invention are directed to optical-based methods and expansion memory systems for disaggregating memory of computer systems. In one aspect, an expansion memory system comprises a first optical/electronic interface in electrical communication with a processor, a memory expansion board configured with memory, and a second optical/electronic interface attached to the memory expansion board. The first interface converts optical signals into electronic signals that are sent to the processor and converts electronic signals produced by the processor into optical signals. The second interface converts optical signals into electronic signals that are sent to the memory and converts electronic signals produced by the memory into optical signals. The optical signals are exchanged between the first and second interfaces. Embodiments also include methods for sending and receiving data in an expansion memory system.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: February 24, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Terrel Morris, Michael Renne Ty Tan
  • Patent number: 8965200
    Abstract: A method, an apparatus and a system for detecting a connection status of an optical fiber jumper are provided in the embodiments of the present invention. The method for detecting a connection status of an optical fiber jumper includes: judging a connection status of a second port and a first port according to whether an optical signal sent by the first port to the second port through a first optical fiber is received, wherein the first optical fiber is connected to two ends of an optical fiber jumper, and the two ends of the optical fiber jumper are connected to the first port and the second port respectively; and obtaining a port identification corresponding to the first port according to the optical signal if the optical signal is received.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: February 24, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yunsheng Wen, Jun Zhao, Bo Wang, Xiaolei Shan
  • Patent number: 8929742
    Abstract: An optical communication module in which the pin arrangement can be applied flexibly. An optical communication module has an outer shape formed based on normal standards and which is able to communicate with a host-side circuit board, etc. to which it is fitted, via a predetermined communication interface; wherein the optical communication module exchanges input/output I/F information with the circuit board, etc., and the communication interface can be switched to another communication interface based on these input/output I/F information.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: January 6, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Masayuki Miura
  • Patent number: 8929740
    Abstract: The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: January 6, 2015
    Assignee: ADC Telecommunications, Inc.
    Inventors: Trevor D. Smith, Yu Lu, Wayne M. Kachmar
  • Patent number: 8909059
    Abstract: An optical communication module includes a substrate, an optical signal receiving unit, an optical signal emitting unit and a coupler. The substrate includes a first surface and a second surface. The substrate defines through holes passing through the first and second surfaces. The optical signal receiving unit includes optical-electrical signal converters. The optical signal emitting unit includes optical signal generators. Each of the optical-electrical signal converters and the optical signal generators is mounted on the first surface and aligned with a corresponding one of the through holes. The coupler includes coupling lenses. The coupler is fixed to the second surface. Each of the optical-electrical signal converters and the optical signal generators is aligned with a corresponding coupling lens through the corresponding through hole.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: December 9, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Patent number: 8909054
    Abstract: Embodiments of the present invention relate to a bi-direction optical sub-assembly and an optical transceiver. A transmitter in the bi-direction optical sub-assembly is configured to transmit a first communication signal or a detection signal, where the first communication signal or the detection signal is input from a first end of a first optical path and output from a second end of the first optical path, enters a second end of a third optical path through reflection of a WDM optical filter, and is input from a first end of the third optical path to an optical fiber. A second communication signal received by the optical fiber is input from the first end of the third optical path and output from the second end of the third optical path, and the second signal is received by a BOSA receiver through transmission of the WDM optical filter.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: December 9, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Xueming Zhang
  • Patent number: 8909058
    Abstract: An optical transceiver system includes a transmitter transmitting out a first light beam with a first wavelength, a receiver receiving a second light beam with a second wavelength; an optical fiber transmitting the first light beam and the second light beam; and a light guide member. The light guide member includes a lens block having a first side surface facing toward both the transmitter and the receiver, and a second side surface facing toward the optical fiber. A first lens portion and a second lens portion formed on the first side surface for optically coupling the respective transmitter and receiver, a third lens portion formed on the second side surface for optically coupling the optical fiber, and a wavelength divisional multiplexer embedded in the lens block. The wavelength divisional multiplexer receives and divides the first light beam and the second light beam.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: December 9, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yi-Zhong Sheu
  • Patent number: 8903247
    Abstract: A bidirectional interface for multimode optical fiber includes a receive/transmit optical fiber port operable to connect to a multimode optical fiber, a wavelength separating module in communication with the receive/transmit optical fiber port, an optical receiver module in communication with the wavelength separating module and configured to receive optical signals at a first wavelength via the wavelength separating module and the receive/transmit optical fiber port, and an optical transmit module in communication with the wavelength separating module and configured to transmit at a second wavelength via the wavelength separating module and the receive/transmit optical fiber port.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: December 2, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Marco Mazzini, Cristiana Muzio, Alessandro Sguazzotti, Federico Fontanella
  • Publication number: 20140348512
    Abstract: A gearbox IC is incorporated into an optical communications system to enable an optical link that incorporates the system to achieve data rates that are at least double that which are currently achievable in optical links. The gearbox IC is compatible with ASIC designs currently used in optical fiber links. The gearbox IC enables the data rate of the optical fiber link to be dramatically increased without requiring a redesign of the ASIC that is currently used in the optical fiber link. The gearbox IC performs data rate conversion and phase alignment for bit streams being transferred via the gearbox IC between the ASIC and an optical transceiver module of the optical communications system.
    Type: Application
    Filed: August 14, 2013
    Publication date: November 27, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Faouzi Chaahoub, Georgios Asmanis
  • Publication number: 20140341590
    Abstract: An optical communication device includes a printed circuit board (PCB), a light emitting element, a light receiving element, and a light waveguide. The PCB includes a substrate. The substrate includes a first end surface and a second end surface opposite to the first end surface. The light emitting element is electrically connected to the first end surface. The light receiving element is electrically connected to the second end surface. The light waveguide includes a light incident end and a light emergent end. The light waveguide is embedded in the substrate. The light incident end is exposed to the first end surface and optically aligned with the light emitting element along a transmitting direction of the light waveguide. The light emergent end is exposed to the second end surface and optically aligned with the light receiving element along the transmitting direction of the light waveguide.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: KUO-FONG TSENG
  • Patent number: 8891971
    Abstract: Implementations of an apparatus including an optical circuit switch (OCS) having a plurality of OCS input/output ports, at least one optical circulator having a port optically coupled to a corresponding one of the plurality of OCS input/output ports and a reflection mitigation positioned in the optical path between each optical circulator port and its corresponding OCS input/output port and/or in the optical path inside the OCS. A corresponding optical transceiver is optically coupled to each of the at least one optical circulators. Each optical transceiver includes a transmitter optically coupled to one port of the optical circulator and a receiver optically coupled to another port of the optical circulator.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 18, 2014
    Assignee: Google Inc.
    Inventors: Hong Liu, Ryohei Urata, Christopher L. Johnson
  • Patent number: 8886048
    Abstract: An optical transceiver device includes a transmitter, a first and a second optical circulators and a receiver. The transmitter transmits a light signal uploaded with an electrical signal. The first and second optical circulators each include three ports. The second port of the second optical circulator is configured for transmitting the light signal circulated via the first and second ports of the first optical circulator and the first port of the second optical circulator, and the third port of the second optical circulator is configured for receiving an incoming light signal. The receiver receives the incoming light signal circulated back via the first port of the second optical circulator, and the second and third ports of the first optical circulator and converts the incoming light signal to be an electrical signal.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 11, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yu-Chao Hsiao
  • Patent number: 8885992
    Abstract: At the time of assembly of an optical transmission/reception module, a test variable wavelength light source 22 for outputting a test light signal is connected to a connector 8 of an optical fiber 7, and a large-diameter PD 23 measures a transmission loss in a light wavelength band limiting filter 12 while a rotational position determining unit 24 rotates a fiber ferrule 5, so that the rotational position determining unit 24 determines the rotational position ?loss-min of the fiber ferrule 5 which minimizes the transmission loss in the light wavelength band limiting filter 12, and aligns the fiber ferrule 5 at the rotational position ?loss-min.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tamon Omura, Nobuo Ohata, Masatoshi Katayama
  • Publication number: 20140328590
    Abstract: An optical transceiver (1) comprises: a ring resonator (6), a first waveguide (2) comprising, in succession, an input-output section (22), a coupling section (20) coupled to a first portion of the ring resonator and an amplification section (21) coupled to a first optical reflector (4) suitable for reflecting light toward the coupling section, a second waveguide (5) comprising, in succession, a reception section (52), a coupling section (50) coupled to a second portion of the ring resonator and a reflection section coupled to a second optical reflector (4) suitable for reflecting light toward the coupling section, a gain medium (7) arranged in the amplification section of the first waveguide and suitable for producing a stimulated light transmission, and an optical detector (8) coupled to the reception section of the second waveguide.
    Type: Application
    Filed: February 28, 2014
    Publication date: November 6, 2014
    Applicant: Commissariat a I'Energie Atomique et aux Energies Alternatives
    Inventors: ROMAIN BRENOT, NICOLAS CHIMOT
  • Patent number: 8873967
    Abstract: An optical interconnection module (100) for connecting to a media converter module (20) as part of a hybrid electrical-optical network (10) is disclosed. The optical interconnection module includes a transmitter connector (136T) having transmit ports (POT(i)) and a receiver connector having receive ports (POR(i)). The optical interconnection module also has transmit/receive ports (POF(i)) that are optically connected via a set (F) of fibers (142) to the transmit and receive ports of the transmitter and receiver connectors using one of two port configurations. Hybrid electrical-optical networks that utilize a trunk cable (60) to connect the media converter module to the optical interconnection module are also disclosed.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: October 28, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Robert W. Dennis, Alan W. Ugolini
  • Publication number: 20140314424
    Abstract: An optical communication apparatus includes a PCB, a photoelectric unit, a fixing board, a coupler, and an optical fiber unit corresponding to the photoelectric unit. The photoelectric unit is electrically connected to a surface of the PCB, the fixing board is securely positioned on the surface of the PCB, and the coupler unit is connected to the fixing board. The fixing board defines a through opening portion exposing the photoelectric unit. The coupler includes a lens unit corresponding to the photoelectric unit. One of the fixing board and the coupler defines a number of positioning holes, the other of the fixing board and the coupler includes a number of positioning poles corresponding to the positioning holes. The positioning poles are inserted into the corresponding positioning holes. The lens unit is aligned with the photoelectric unit by an engagement between the positioning poles and the positioning holes.
    Type: Application
    Filed: February 27, 2014
    Publication date: October 23, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: YI-ZHONG SHEU
  • Publication number: 20140314423
    Abstract: An optoelectronic module for data communication through an optical fiber. The optoelectronic module may comprise a base, an outer cap, an inner cap, a flexible substrate, an attachment member, a moisture barrier and an optoelectronic module. The outer cap may have a first cavity and coupled with the base. A slit may be formed on the outer cap. The flexible substrate may be extended through the slit of the outer cap. The inner cap may be disposed within the first cavity. The inner cap may comprise a second cavity. The attachment member may be disposed within the first cavity and configured to attach the inner cap to the base. The moisture barrier may be disposed within the first cavity and encapsulates the attachment member. The optoelectronic component may be disposed within the second cavity and proximate to the flexible substrate.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 23, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Marco Scofet
  • Publication number: 20140294400
    Abstract: An optical module includes a first light-guide element, an optical element, a first optical fiber, and a beam splitter. The first light-guide element includes a first surface and a second surface. The optical element corresponds to the first surface. The first optical fiber is contacted with the second surface. The beam splitter is attached to the first surface, the beam splitter partially reflects and partially transmits a light beam striking thereon. A refractive index of the beam splitter is different from a refractive index of the first light-guide element.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 2, 2014
    Inventors: Yu-Hsien LIAO, Ming-Yi HUANG, Te-Hsuan YANG
  • Patent number: 8847147
    Abstract: An optical-electrical module includes a base board, a laser diode, an integrated circuit, and a lens unit. The laser diode and the integrated circuit are both fixed on the base board. The lens unit and the base board cooperatively define a receiving space to receive the laser diode and the integrated circuit. The laser diode has a transmitting window at an end of the laser diode away from the base board. The integrated circuit drives the laser diode to transmit optical signals. The lens unit has an inner surface facing the base board, and the inner surface of the lens unit has a light transmitting area. The lens unit includes a metal film formed on the inner surface of the lens unit except on the light transmitting area.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: September 30, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Patent number: 8849120
    Abstract: Consistent with the present disclosure, an optical communication system, such as a passive optical network (PON), is provided that includes an optical line terminal (OLT) and a plurality of optical network units (ONUs). The OLT includes a plurality of photonic integrated circuits that have both optical transmitters and receivers provided therein. Accordingly, the OLT may have fewer components and a simpler, more reliable and cost-effective design than a conventional OLT including discrete components. In addition, various ONU configurations are provided that also have a simple design and fewer components. Thus, ONUs consistent with the present disclosure may also have reduced costs.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: September 30, 2014
    Assignee: Infinera Corporation
    Inventors: Radhakrishnan L. Nagarajan, Christopher C. Liou, Masaki Kato
  • Publication number: 20140286647
    Abstract: Methods and systems for a low-voltage integrated silicon high-speed modulator may include an optical modulator comprising first and second optical waveguides and two optical phase shifters, where each of the two optical phase shifters may comprise a p-n junction with a horizontal section and a vertical section and an optical signal is communicated to the first optical waveguide. A portion of the optical signal may then be coupled to the second optical waveguide. A phase of at least one optical signal in the waveguides may be modulated utilizing the optical phase shifters. A portion of the phase modulated optical signals may be coupled between the two waveguides, thereby generating two output signals from the modulator. A modulating signal may be applied to the phase shifters which may include a reverse bias.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 25, 2014
    Applicant: Luxtera, Inc.
    Inventors: Ali Ayazi, Kam-Yan Hon, Gianlorenzo Masini
  • Publication number: 20140255043
    Abstract: An optical communication device includes a planar optical waveguide, a first substrate, a light emitting element, and a light receiving element. The planar optical waveguide includes a top surface and a light guide portion. The light guide portion includes a first sloped surface and a second sloped surface. The first substrate includes a mounting surface. The first substrate is supported on the top surface. An end of the first substrate defines a first receiving hole. The other end of the first substrate defines a second receiving hole. The light emitting element is received in the first receiving hole and faces the first sloped surface at about a 45 degree angle. The light receiving element is received in the second receiving hole and faces the second sloped surface at about a 45 degree angle.
    Type: Application
    Filed: August 30, 2013
    Publication date: September 11, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: KUO-FONG TSENG
  • Patent number: 8831434
    Abstract: A computer data transmission system includes a CPU, a photoelectrical conversion module electrically connected to the CPU, a plurality of I/O interface cards, and a plurality of first optical fibers. The photoelectrical conversion module includes a plurality of photoelectrical conversion units. Each I/O interface card includes at least one photoelectrical conversion unit for converting electrical signals to optical signals or converting optical signals to electrical signals. The first optical fibers connect the photoelectrical conversion units of the I/O interface cards and the photoelectrical conversion units of the photoelectrical conversion module. The photoelectrical conversion unit of the photoelectrical conversion module receives electrical signals outputted by the CPU, and convert the electrical signals to optical signals.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: September 9, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Bing-Heng Lee
  • Patent number: 8831432
    Abstract: An apparatus and method are provided for two-channel bidirectional communications between devices for enhanced data signals. In particular, the techniques describe a first transceiver channel configured to receive first data communications from a first transceiver port. A second transceiver channel is also configured to receive second data communications from a second transceiver port. A set of signal pins are configured to receive the first data communications from the first transceiver port at a first group of signal pins and to receive the second data communications from the second transceiver port at a second group of signal pins. The first group of signal pins comprises signal pins in a signal-signal-ground configuration and the second group of signal pins comprises signal pins in a ground-signal-signal-ground configuration.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: September 9, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Norman Tang, Liang Ping Peng, David Lai, Anthony Nguyen
  • Patent number: 8831437
    Abstract: Methods and systems for a photonic interposer are disclosed and may include receiving one or more continuous wave (CW) optical signals in a silicon photonic interposer from an external optical source, either from an optical source assembly or from optical fibers coupled to the silicon photonic interposer. The received CW optical signals may be processed based on electrical signals received from the electronics die. The modulated optical signals may be received in the silicon photonic interposer from optical fibers coupled to the silicon photonic interposer. Electrical signals may be generated in the silicon photonic interposer based on the received modulated optical signals, and may then be communicated to the electronics die via copper pillars. Optical signals may be communicated into and/or out of the silicon photonic interposer utilizing grating couplers. The electronics die may comprise one or more of: a processor core, a switch core, or router.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: September 9, 2014
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Greg Young, Mark Peterson
  • Patent number: 8831433
    Abstract: A temperature controlled multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A temperature control system may be used to control the temperature of both the array of lasers and the AWG with the same temperature control device, e.g., a thermoelectric cooler (TEC). The multi-channel optical transceiver may also include a multi-channel receiver optical subassembly (ROSA). The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: September 9, 2014
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Justin Lii
  • Patent number: 8824897
    Abstract: A system for transmitting data packets over a network. The system includes a plurality of first nodes, wherein each first node has a first transceiver configured to transmit a data packet at at least one of a plurality of first wavelengths and receive a data packet at an assigned first wavelength, wherein each first node is configured to pass incoming data packets not transmitted at the assigned first wavelength, a plurality of second nodes, wherein each second node has a second transceiver configured to transmit a data packet at least one of a plurality of second wavelengths and receive a data packet at an assigned second wavelength, wherein each second node is configured to pass incoming data packets not transmitted at the assigned second wavelength, and at least one optical fiber operably connecting the transceivers.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: September 2, 2014
    Assignee: Accipiter Systems, Inc.
    Inventor: David Markham Drury
  • Publication number: 20140241731
    Abstract: A free space optical communication system (10) including first and second mono-static transceivers (20a, 20b). Each transceiver (20a, 20b) includes a reflective assembly (40) defining a reflective surface (44) about a receiving end of a respective optical fiber (32) and configured to reflect optical signals (26) within a field of view of the transceiver (20a, 20b) as a modulated retro-reflective signal (28). Each mono-static transceiver (20a, 20b) includes an acquisition system (60) configured to detect a modulated retro-reflective signal (28) and adjust the alignment of the respective transceiver (20a, 20b) in response to a detected modulated retro-reflective signal (28). A mono-static transceiver and a method of aligning a mono-static transceiver are also provided.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: HARRIS CORPORATION
    Inventors: Robert C. Peach, Geoffrey L. Burdge, Terry Tidwell, John Grady Vickers
  • Publication number: 20140241734
    Abstract: The light emitting device includes an active layer formed on a semiconductor substrate for emitting light, a semiconductor layer of a first conductivity type electrically connected to one end of the active layer, a semiconductor layer of a second conductivity type electrically connected to the other end of the active layer, first and second electrodes, a feedback mechanism for laser oscillation, and a waveguide for guiding the light emitted from the active layer, in which the active layer is made of a semiconductor having an affinity with a silicon CMOS process, and the semiconductor layer of the first conductivity type and the semiconductor layer of the second conductivity type, and the waveguide are each made of silicon as a part of the semiconductor substrate.
    Type: Application
    Filed: November 24, 2013
    Publication date: August 28, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Misuzu Sagawa, Katsuya Oda, Kazuki Tani
  • Patent number: 8811824
    Abstract: A digital burst mode communication system operates at a fixed wavelength for transmission and reception of burst mode signals using a pair of transceivers and a single optical cable. The stray noise level in the system is significantly reduced by use of angled plate absorbers that receive scattered transmission burst signal from a 45 degree partially reflecting mirror. Isolation of received burst signal from transmitted burst signal is increased to better than 30 dB. The system operates by sending only data bits across the single optical cable without scrambling or encoding preambles, significantly improving the efficiency of high speed communication.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: August 19, 2014
    Assignee: Golfoton Holdings, Inc.
    Inventors: Yusuke Ota, Kenichiro Takeuchi
  • Publication number: 20140226988
    Abstract: An optical transceiver module includes at least one light source configured to emit an optical transmit signal having a transmit wavelength, at least one light detector configured to detect an optical receive signal having a receive wavelength, and an optical coupling system having at least one reflective-and-focusing (RAF) lens and at least one optical filter that discriminates the first and second wavelengths. The optical coupling system defines a transmit path and a receive path, each formed within one or more contiguous regions of the optical coupling system.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventors: Bing Shao, Xiaozhong Wang, Ye Chen, Seng-Kum Chan
  • Publication number: 20140205282
    Abstract: An optical transceiver and an optical network system for performing a data communication and monitoring an optical link are disclosed. The optical transceiver may simultaneously perform the data communication and monitor the optical link, and a wavelength of an optical signal for the data communication and a wavelength of an optical signal for monitoring the optical link may be differently set.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 24, 2014
    Applicants: KOREA ELECTRONICS TECHNOLOGY INSTITUTE, Electronics and Telecommunications Research Institute
    Inventors: Seung Il MYONG, Jyung Chan LEE, Won Kyoung LEE, Sang Soo LEE, Jun Ho LEE
  • Patent number: 8787766
    Abstract: A chip scale fiber-optic device that includes a transducer that sends and receives information signals, a submount that holds the transducer in a substantially fixed position, and a multimode fiber lens that conveys the information signals between the transducer and an optical fiber.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: July 22, 2014
    Assignee: Teledyne Technologies Incorporated
    Inventors: Golden G. Shu, Ronald Hays
  • Patent number: 8774568
    Abstract: Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is less than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Tak Han, Jang Uk Shin, Sang-Pil Han, Sang Ho Park, Yongsoon Baek
  • Patent number: 8774639
    Abstract: An enhanced small form-factor pluggable (SFP+) transceiver module and an SFP+ host port are provided. The enhanced SFP+ transceiver module receives a reception data signal at a data rate of 40 gigabits per second (40G). The reception data signal is sent to a transceiver bidirectional transmission unit. The transceiver bidirectional transmission unit comprises a first SFP+ connector unit configured to interface with a second SFP+ connector unit of an SFP+ host port. The reception data signal is sent from the transceiver bidirectional transmission unit to the second SFP+ connector unit of the SFP+ host port via the first SFP+ connector unit.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: July 8, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Norman Tang, Liang Ping Peng, David Lai, Anthony Nguyen
  • Publication number: 20140186054
    Abstract: A method and apparatus for transporting multiple low-speed data streams across a high-speed communication channel or link. In one embodiment of the method, first and second data streams are transmitted at first and second data transmission rates, respectively, via an optical cable, wherein the first and second data transmission rates are distinct. Components of the first data stream are transmitted via the optical cable between transmission of components of the second data stream via the optical cable, and components of the second data stream are transmitted via the optical cable between transmission of components of the first data stream via the optical cable.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 3, 2014
    Applicant: Renesas Electronics America Inc.
    Inventors: Peter Chu Tin Teng, Senthil K. Krishnamoorthy
  • Patent number: 8768166
    Abstract: Adaptive power setting techniques for optical transceivers are provided. Optical signals are received at a first optical transceiver device that are transmitted from a second optical transceiver device. A receive power of the optical signals received at the first optical transceiver device from the second optical transceiver device is determined. A characteristic of optical signals transmitted by the first optical transceiver device to the second optical transceiver device is modulated to indicate to the second optical transceiver device a disparity of the receive power with respect to a target receive power level at the first optical transceiver device. Conversely, the first optical transceiver device adjusts a power level of optical signals transmitted by the first optical transceiver device to the second optical transceiver device based on a characteristic of the optical signals received at the first optical transceiver device.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: July 1, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Mahan Movassaghi, Norman Tang, Liang Ping Peng
  • Publication number: 20140178079
    Abstract: An optical module includes: a first circuit board that has a first edge connector and a connector socket; and an optical transceiver module that is electrically connected to the first circuit board via the connector socket. The optical transceiver module includes a second circuit board on which an E/O converter, a drive circuit that drives the E/O converter, an O/E converter, and a current-to-voltage conversion circuit that converts an output current of the O/E converter into a voltage signal are mounted. The second circuit board has a second edge connector corresponding to the connector socket mounted on the first circuit board. Signal lines of the drive circuit are pulled out from the drive circuit in a first direction. Signal lines of the current-to-voltage conversion circuit are pulled out from the current-to-voltage conversion circuit in a second direction that is substantially opposite to the first direction.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: FUJITSU LIMITED
    Inventors: TAKATOSHI YAGISAWA, Takashi Shiraishi
  • Patent number: 8761605
    Abstract: Even in a network system including a transmission line of which dominant cause of delay is a transmission line delay, controlling communication speed of the network system as a whole efficiently and suppressing the delay is made possible.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: June 24, 2014
    Assignee: NEC Corporation
    Inventors: Tatsuhiro Nakada, Yohei Hasegawa
  • Publication number: 20140169801
    Abstract: Described herein are technologies related to a semiconductor package that is installed in a portable device for data communications. More particularly, the semiconductor package that contains a memory, a digital logic chip, and an optical port in a single module or mold is described.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Inventors: Robert L. Sankman, Johanna M. Swan, Dmitri E. Nikonov, Raseong Kim
  • Patent number: 8744270
    Abstract: An avionics device able to be installed on board an aircraft, including means of processing information and a connector able to receive and/or transmit information, the aforementioned connector including an electrical coupling interface able to transmit and/or receive information in the form of electrical signals, and an electro-optical connection interface able to convert electrical signals into optical signals and to transmit information in the form of optical signals and/or receive information in the form of optical signals and convert these optical signals into electrical signals.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: June 3, 2014
    Assignee: Airbus Operations (S.A.S)
    Inventors: Jean-Pierre Andreu, Joseph Rival