Including Optical Waveguide Patents (Class 398/141)
  • Patent number: 7978984
    Abstract: The present invention enables device downsizing by utilizing a light-emitting diode as a plurality of interfaces. A light-emitting diode 11 of a data communication unit using a light-emitting diode for data communication outputs light when a current flows therethrough. A transmission circuit 13 applies a forward bias to the light-emitting diode 11 based on transmission data. A separation circuit 14 outputs a voltage that changes according to a voltage which is generated in the light-emitting diode 11 when the transmission circuit 13 does not apply the forward bias to the light-emitting diode 11.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: July 12, 2011
    Assignee: Nittoh Kogaku K.K.
    Inventor: Yoshinori Shinohara
  • Publication number: 20110164882
    Abstract: A solution for detecting and recovering from a failure in a protected single-fiber passive optical network. A detector is used to detect the degradation in power level of optical signals. Furthermore, the invention discloses a variable symmetric split ratio approach to improve the number of splits (e.g. the number of ONUs). A single-fiber passive optical network is disclosed that uses a plurality of passive nodes connected in the optical fiber between the interfaces, wherein in the passive nodes 2-by-2 splitters/combiners are used to couple optical power from and into the optical fiber at a predetermined split ratio.
    Type: Application
    Filed: March 10, 2011
    Publication date: July 7, 2011
    Inventors: Yinghua YE, Antti PIETILÄINEN
  • Publication number: 20110163891
    Abstract: Subterranean oilfield high-temperature devices configured or designed to facilitate downhole monitoring and high data transmission rates with remotely pumped lasers that are configured for operation downhole, within a borehole, at temperatures in excess of 115 degrees Celsius.
    Type: Application
    Filed: January 5, 2010
    Publication date: July 7, 2011
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Colin A. Wilson, Arthur H. Hartog
  • Publication number: 20110164883
    Abstract: An optoelectronic module for converting and coupling an information-containing electrical signal with an optical fiber including a housing having an electrical input for coupling with an external cable or information system device and for transmitting and receiving information-containing electrical signals over such input, and a fiber optic connector adapted for coupling with an external optical fiber for transmitting and receiving an optical signal; an electro-optic subassembly coupled to the information containing electrical signal and converting it to and/or from a modulated optical signal corresponding to the electrical signal; means disposed in the housing for determining the electrical and/or optical protocols or packet formats in use; and a processor for adapting the module to utilize the electrical and optical protocol or packet format.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Applicant: Emcore Corporation
    Inventors: Clay E. Hudgins, Daniel McGlynn
  • Patent number: 7970248
    Abstract: Included among the many structures described herein are photonic bandgap fibers designed to provide a desired dispersion spectrum. Additionally, designs for achieving wide transmission bands and lower transmission loss are also discussed. For example, in some fiber designs, smaller dimensions of high index material in the cladding and large core size provide small flat dispersion over a wide spectral range. In other examples, the thickness of the high index ring-shaped region closest to the core has sufficiently large dimensions to provide negative dispersion or zero dispersion at a desired wavelength. Additionally, low index cladding features distributed along concentric rings or circles may be used for achieving wide bandgaps.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: June 28, 2011
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Xiang Peng
  • Patent number: 7970241
    Abstract: A modulator includes an electro-optical substrate and a first and second waveguide formed of a doped semiconductor material positioned on a surface of an electro-optical substrate forming a slot therebetween. A doping level of the semiconductor material being chosen to make the first and second waveguide conductive. A dielectric material is positioned in the slot which increases confinement of both an optical field and an electrical field inside the slot. A refractive index of the semiconductor material and a refractive index of the dielectric material positioned in the slot being chosen to reduce the V?·L product of the modulator.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: June 28, 2011
    Assignee: Photonic Systems, Inc.
    Inventors: Jianxiao Chen, Charles Cox
  • Publication number: 20110150497
    Abstract: An apparatus for enabling transmission of signals and data via means of infrared (IR) light for a wind turbine includes a plurality of IR data communication elements configured to provide unidirectional and bidirectional IR data exchange between non-rotating portions of the wind turbine and the rotatable wind turbine hub.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jan Erich Hemmelmann, Stefan Brandhoff, Alexander Felix Fiseni
  • Publication number: 20110142454
    Abstract: An optical transmission and reception control apparatus is provided. The present invention relates to an optical transmission and reception control apparatus for enabling smooth optical transmission and reception when a photo diode and/or a laser diode fail. The apparatus includes a plurality of laser diodes, a laser driver, a first switching unit, a plurality of photo diodes, an optical power amplifier, a second switching unit, an optical power detection module, and a control module.
    Type: Application
    Filed: January 29, 2010
    Publication date: June 16, 2011
    Applicant: KAIST (Korea Advanced Institute of Science and Technology)
    Inventors: Hyo Hoon PARK, Tae Woo LEE, Mu Hee CHO, Jong Hun KIM
  • Patent number: 7961990
    Abstract: Embodiments of a system are described. This system includes an array of chip modules (CMs) and a baseplate, where the baseplate is configured to communicate data signals via optical communication. Moreover, the array includes first CMs mechanically coupled to first alignment features on the baseplate, and adjacent second CMs mechanically coupled to second alignment features on the baseplate. In this array, a given first CM is electrically coupled to a given set of electrical proximity connectors. Additionally, the array includes bridge components, wherein a given bridge component is electrically coupled to the second SCM and another set of electrical proximity connectors, which is electrically coupled to the set of electrical proximity connectors, thereby facilitating communication of other data signals between adjacent first CMs and second CMs via electrical proximity communication.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 14, 2011
    Assignee: Oracle America, Inc.
    Inventors: Ashok V. Krishnamoorthy, James G. Mitchell, John E. Cunningham, Brian W. O'Krafka
  • Publication number: 20110129231
    Abstract: An optical engine for providing a point-to-point optical communications link between a first computing device and a second computing device. The optical engine includes a modulated hybrid micro-ring laser formed on a substrate and configured to generate an optical signal traveling parallel to the plane of the substrate. The optical engine further includes a waveguide, also formed in a plane parallel to the plane of the substrate, that is configured to guide the optical signal from the modulated ring laser to a defined region, a waveguide coupler at the defined region configured for coupling the optical signal into a multi-core optical fiber, and a multi-core optical fiber at the defined region that is configured to receive and transport the optical signal to the second computing device.
    Type: Application
    Filed: May 7, 2008
    Publication date: June 2, 2011
    Inventors: Marco Fiorentino, Qianfan Xu, Sagi Varghese Mathai, Raymond G. Beausoleil
  • Publication number: 20110129229
    Abstract: In a receiver suitable for an optical fiber link and comprising an optical receiver unit (1), which includes a radiation-sensitive detector (4) and a signal processing circuit (6,8), and an electrical receiver unit (2), the optical receiver unit comprises a power draining circuit (16) that drains power from a pull-up stage (R1-R4; Vpu) of the electrical receiver unit and supplies power to the electrical circuit of the optical receiver unit.
    Type: Application
    Filed: July 27, 2009
    Publication date: June 2, 2011
    Applicant: FOCE Technology Internatioal BV
    Inventor: Marcel F. Schemmann
  • Patent number: 7953325
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: May 31, 2011
    Assignee: Enablence USA FTTX Networks, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7949261
    Abstract: An optical receiver includes a demodulator having a delay interferometer comprising an optical input that receives a phase modulated optical signal from a bandwidth limited transmission system. The delay interferometer has a free spectral range that is larger than a symbol rate of the phase modulated optical signal by an amount that improves receiver performance. The receiver also includes a differential detector having a first and a second photodetector. The first photodetector is optically coupled to the constructive optical output of the delay interferometer. The second photodetector is optically coupled to the destructive optical output of the delay interferometer. The differential detector combines a first electrical detection signal generated by the first photodetector and a second electrical detection signal generated by the second photodetector to generate an electrical reception signal.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: May 24, 2011
    Assignee: Mintera Corporation
    Inventors: Benny Mikkelsen, Pavel Mamyshev, Christian Rasmussen, Fenghai Liu
  • Publication number: 20110110667
    Abstract: An optical network and an optical signal modulation method thereof are provided. The optical network includes an optical fiber and a remote node (RN). The RN receives a continuous carrier wave from the optical fiber and modulates the continuous carrier wave to generate a first frequency offset carrier wave The frequency of the first frequency offset carrier wave is different from that of the continuous carrier wave. A first user device re-modulates and loads data to the first frequency offset carrier wave to generate a first upstream signal. The frequency of the first upstream signal is the same as that of the first frequency offset carrier wave. The RN inputs the first upstream signal into the optical fiber.
    Type: Application
    Filed: December 22, 2009
    Publication date: May 12, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chien-Hung Yeh, Chi-Wai Chow
  • Patent number: 7941053
    Abstract: An optical transceiver for converting and coupling an information-containing electrical signal with an optical fiber including a housing having an electrical connector with a plurality of XFI electrical interfaces for coupling with an external electrical cable or information system device and for transmitting and/or receiving an information-containing electrical signal having a data rate of at least 10 Gigabits per second on each interface, and a fiber optic connector adapted for coupling with an external optical fiber for transmitting and/or receiving an optical communications signal having a data rate at least 40 Gigabits per second; and at least one electro-optical subassembly in the housing for converting between an information-containing electrical signal and a modulated optical signal corresponding to the electrical signals.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 10, 2011
    Assignee: Emcore Corporation
    Inventor: John Dallesasse
  • Patent number: 7941022
    Abstract: In one embodiment, a fiber optic link includes a combined optical link for transmitting high optical power and wide bandwidth signal through a single optical fiber. In one embodiment, a means is provided for combining a high power optical signal and a low power data signal with wavelength selective directional couplers so as to inhibit the low power data transmitter and the low power data receiver from being overloaded with too much power. In one implementation, a method of using double clad fiber is provided, which includes transmitting an optical data signal at an optical data wavelength along an inner core, the inner core being single mode at the optical data wavelength and simultaneously transmitting an optical power signal at a optical power wavelength through a cladding, the cladding serving as a multimode core for a power optical link at the optical power wavelength.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: May 10, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: James H. Schaffner, Dennis C. Jones
  • Publication number: 20110103802
    Abstract: An apparatus comprises an optical transmitter; an optical detector configured to receive optical signals from an optical fiber; an optical splitter having a first port, a second port coupled to the optical detector by the optical fiber, and a third port coupled to the optical transmitter; and a two stage amplifier system connected to an output of the optical detector. An input surface of the optical detector may have a diameter that is substantially equal to a diameter of a core in the optical fiber. The diameter of the input surface of the optical detector reduces capacitance and reduces signal distortion. The optical splitter may be configured to receive a first optical signal at the first port. The optical splitter may be configured to send the first optical signal to the second port and send a second optical signal received at the third port to the first port.
    Type: Application
    Filed: November 5, 2009
    Publication date: May 5, 2011
    Applicant: The Boeing Company
    Inventor: Eric Yuen-Jun Chan
  • Publication number: 20110103796
    Abstract: A bidirectional interface for multimode optical fiber includes a receive/transmit optical fiber port operable to connect to a multimode optical fiber, a wavelength separating module in communication with the receive/transmit optical fiber port, an optical receiver module in communication with the wavelength separating module and configured to receive optical signals at a first wavelength via the wavelength separating module and the receive/transmit optical fiber port, and an optical transmit module in communication with the wavelength separating module and configured to transmit at a second wavelength via the wavelength separating module and the receive/transmit optical fiber port.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Marco Mazzini, Cristiana Muzio, Alessandro Sguazzotti, Federico Fontanella
  • Patent number: 7925166
    Abstract: An avionics system for a plane includes a plurality of nodes disposed throughout the plane, each node performing a function. The system includes an optical network in communication with the nodes and through which the nodes communicate. The system includes at least one of the nodes having a hardwired interpreter that interprets the information transmitted from another one of the nodes via the optical network. A method for operating a plane includes the steps of communicating information through an optical network between a plurality of nodes disposed throughout the plane, each node performing a function. There is the step of interpreting with at least one of the nodes having a hardwired interpreter the information transmitted from another one of the nodes via the optical network. A phostonic stack.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 12, 2011
    Inventors: Wilbur C. Vogley, Paul Stoner
  • Publication number: 20110076028
    Abstract: In an integrated circuit device, such as a microprocessor, a device internal optical communication system is provided in order to enhance signal transfer capabilities while relaxing overall thermal conditions. Furthermore, the device internal optical data or signal transfer capabilities may result in superior operating speed and a high degree of design flexibility. The optical communication system may be applied as a chip internal system in single chip systems or as an inter-chip optical system in three-dimensional chip configurations provided in a single package.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 31, 2011
    Inventors: Uwe Griebenow, Kai Frohberg, Jan Hoentschel
  • Publication number: 20110076029
    Abstract: A device other than a projectile including: a casing, at least a portion of which contains a potting material acting as the optical waveguide material; a transmitter for transmitting a pulse based signal at least partially through the potting material; and a receiver for receiving the pulse based signal after one or more reflections of the pulse based signal from interior surfaces of the casing; the pulse based signal having a pulse rate configured such that a subsequent pulse doesn't interfere with reflections from an immediately previous pulse.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Applicant: OMNITEK PARTNERS LLC
    Inventors: Jahangir S. Rastegar, Thomas Spinelli
  • Publication number: 20110076027
    Abstract: The system includes: a two-light wave generator for generating light beams having wavelengths ?1 and ?2 that are spaced apart by a frequency of a signal M1 from a laser; a photodetector for detecting a signal M2 from the light beams transmitted through an optical fiber; an optical modulator for frequency-shifting the light beams by a frequency of a signal M3; a Faraday reflector for reflecting the light beams; an optical coupler for mixing the light beams that have been returned to a polarization beam splitter, with the generated light beams; a photodetector for converting the light beams into microwave signals; an image rejection mixer for frequency-converting the signals obtained through the conversion by using the signal M1 to output a two side bands; and a phase difference detector for detecting a phase difference between the side bands, and controlling a phase shifter so that the phase difference becomes 0.
    Type: Application
    Filed: February 4, 2010
    Publication date: March 31, 2011
    Inventor: Hitoshi KIUCHI
  • Publication number: 20110069970
    Abstract: Input data is encoded using a look-up table and then transmitted over a transmission medium as a series of pulses. The look-up table includes data elements. The length of each pulse is calibrated to correspond to one of the data elements in the look-up table. Upon receipt at another end of the transmission medium, the data is decoded using a look-up table. This decoding includes measuring the length of each received pulse to match the measured length to a corresponding one of data elements in the look-up table.
    Type: Application
    Filed: November 29, 2010
    Publication date: March 24, 2011
    Inventors: Gene Fein, Edward Merritt
  • Publication number: 20110069969
    Abstract: Systems and methods for manipulating light with high index contrast waveguides clad with substances having that exhibit large nonlinear electro-optic constants such as ?3. Waveguides fabricated on SOI wafers and clad with electro-optic polymers are described. Embodiments of waveguides having slots and input waveguide couplers are discussed. Waveguides having closed loop structures (such as rings and ovals) as well as linear or serpentine waveguides, are described. All-optical signal processing systems and methods for implementing devices such as variable delay lines, optical logic gates (for example an AND gate), optical multiplexers, optical self-oscillators, and optical clock generators are disclosed.
    Type: Application
    Filed: March 5, 2009
    Publication date: March 24, 2011
    Applicant: University of Washington Through its Center for Co mmercialization
    Inventors: Michael J. Hochberg, Thomas W. Baehr-Jones
  • Patent number: 7907849
    Abstract: A communication system, the communication system includes: a first decision entity; and a long laser that includes a first reflector and a second reflector; wherein a lasing characteristic of the long laser is responsive to: (i) first data unit that is provided by a first user and affects a reflection spectrum of the first reflector, and (ii) second data unit that is provided by a second user and affects a reflection spectrum of the second reflector; and wherein the first decision entity is adapted to receive the first data unit and information representative of the lasing characteristic, as well as to determine (i) a relationship between the first data unit and the second data unit, or (ii) a content of the second data unit.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 15, 2011
    Assignee: Ramot At Tel-Aviv University Ltd.
    Inventor: Jacob Scheuer
  • Patent number: 7907848
    Abstract: An optical signal low energy method for coupling electrical signals on-chip between component circuits of for example a CMOS circuit array. The described coupling method employs infrared signals communicated along a nano-scale resonant semiconductor waveguide between for example PIN diode signal transducers. The coupling may employ an electrically pumped laser, an electro absorption modulator and a photodetector all for typically the 1.5 to 2.0 micrometer spectral region with each formed using for example PIN heterodiode semiconductor devices. Each of these three devices includes active semiconductor crystal material situated in a resonator within a strip waveguide. The resonator is defined by two fabricated mirrors having a tapered location one dimensional photonic crystal lattice of oxide hole or slot apertures.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Richard A. Soref
  • Patent number: 7907850
    Abstract: An optical communication apparatus that can perform stable intensity and phase modulation on an optical pulse at high speed is provided, as well as a quantum key distribution system using the apparatus. Using multilevel signals for the electric signals (RF1, RF2) to be applied to two arms of a two-electrode Mach-Zehnder modulator, phase modulation is performed on an optical pulse in accordance with the average of the levels of the signals (RF1, RF2), and intensity modulation is performed on the optical pulse in accordance with the voltage difference between the signals (RF1, RF2), whereby stable high-speed multilevel modulation can be realized. The cryptographic key generation rate in a decoy quantum key distribution system is enhanced.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: March 15, 2011
    Assignee: NEC Corporation
    Inventors: Akihiro Tanaka, Akio Tajima, Seigo Takahashi, Wakako Maeda
  • Patent number: 7902526
    Abstract: An imaging system is provided that includes a optical pulse generator for providing an optical pulse having a spectral bandwidth and includes monochromatic waves having different wavelengths. A dispersive element receives a second optical pulse associated with the optical pulse and disperses the second optical pulse at different angles on the surface of the dispersive element depending on wavelength. One or more focal elements receives the dispersed second optical pulse produced on the dispersive element. The one or more focal element recombine the dispersed second optical pulse at a focal plane on a specimen where the width of the optical pulse is restored at the focal plane.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: March 8, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Daekeun Kim, Peter T. C. So
  • Publication number: 20110052204
    Abstract: Embodiments of the present invention relate to systems and methods for distributing an intentionally skewed optical-clock signal to nodes of a source synchronous computer system. In one system embodiment, a source synchronous system comprises a waveguide, an optical-system clock optically coupled to the waveguide, and a number of nodes optically coupled to the waveguide. The optical-system clock generates and injects a master optical-clock signal into the waveguide. The master optical-clock signal acquiring a skew as it passes between nodes. Each node extracts a portion of the master optical-clock signal and processes optical signals using the portion of the master optical-clock signal having a different skew for the respective extracting node.
    Type: Application
    Filed: April 30, 2008
    Publication date: March 3, 2011
    Inventors: Nathan Binkert, Norman P. Jouppi, Robert S. Schreiber, Jung Ho Ahn
  • Patent number: 7894699
    Abstract: Various embodiments of the present invention are directed to photonic-based interconnects for transmitting data encoded in electromagnetic signals between electronic mosaics. In one embodiment of the present invention, a photonic-based interconnect comprises a first photonic node coupled to a second photonic node via a waveguide. The first photonic node is coupled to a first electronic mosaic and is configured to transmit electromagnetic signals encoding data generated by the first electronic mosaic to a second electronic mosaic and receive electromagnetic signals encoding data generated by the second electronic mosaic. The second photonic node is coupled to the second electronic mosaic and is configured to transmit electromagnetic signals encoding data generated by the second electronic mosaic to the first electronic mosaic and receive electromagnetic signals encoding data generated by the first electronic mosaic.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: February 22, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Raymond G. Beausoleil
  • Patent number: 7889994
    Abstract: The present invention relates to an installation for conveying electrical signals carried by a first triaxial cable (1) to a second triaxial cable (18). It comprises: a first interface (15) between the first triaxial cable (1) and a fiber optic cable (9) and a second interface (16) between the fiber optic (9) cable and the second triaxial cable (18). A television camera (17) is connected to a remote camera control unit (14) via this installation. The first triaxial cable (1) connects CCU (14) with the interface (15). The interface (15) comprises an adapter converting electrical signals, conveyed by the triaxial cable (1), to optical signals. The fiber optic cable (9) transmits optical signals to the second interface (16). The interface (16) comprises an adapter converting optical signals to electrical signals. The second triaxial cable (18) transmits the electrical signals to the television camera (17). A mirror image of the adapters allows transmitting electrical signals from the camera (17) to the CCU (14).
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: February 15, 2011
    Assignee: Interlemo Holding S.A.
    Inventors: Philip Longhurst, Chris Hamblin, Gareth Foster, Keith Jenkins, Gary Wordsworth
  • Publication number: 20110026932
    Abstract: A head-end circuit comprises first and second continuous light sources, first and second modulators. The first and the second continuous light sources provide first and second optical signals respectively corresponding to first wavelength and second wavelength, which is different from the first wavelength. The first modulator modulates the first optical signal based on first clock signal to generate an optical clock signal. The second modulator modulates the second optical signal based on downlink data to generate optical downlink data with the carrier of the second optical signal. The optical clock signal and the optical down link data are outputted to a remote antenna unit via first fiber path.
    Type: Application
    Filed: October 9, 2009
    Publication date: February 3, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chien-Hung Yeh, Chi-Wai Chow, Sien Chi
  • Patent number: 7881620
    Abstract: An arrangement for generating beat notes with a relatively high signal-to-noise ratio (SNR) utilizes a pulsed laser source coupled into a section of post-processed highly-nonlinear optical fiber (HNLF) to generate a frequency comb having one or more regions of enhanced spectral power. A second laser signal source is overlapped with the frequency comb to form one or more “beat notes” at difference frequencies(y) between the second source and the continuum comb. By virtue of the post-processing, areas of spectral enhancement are formed along the comb, and are positioned to interact with the second laser signal to generate optical beat notes. The second laser signal may be from an external source (forming beat notes from a signal “outside” of the comb), or may be a frequency-multiplied version of the generated supercontinuum (forming beat notes from a signal “within” the comb).
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 1, 2011
    Assignee: OFS Fitel, LLC
    Inventors: Jeffrey W. Nicholson, Paul S. Westbrook
  • Publication number: 20110020009
    Abstract: Various embodiments of the present invention are directed to methods and systems for transmitting optical signals from a source to a plurality of receiving devices. In one method embodiment, an optical enablement signal is transmitted (401) from the source to the plurality of receiving devices. The target receiving device responds to receiving the optical enablement signal by preparing to receive one or more optical data signals. The source transmits the one or more optical data signals to the target receiving device. The remaining receiving devices do not receive the one or more optical data signals.
    Type: Application
    Filed: March 10, 2008
    Publication date: January 27, 2011
    Inventors: Jung Ahn Ho, Moray Mclaren, Alan L. Davis
  • Publication number: 20110020006
    Abstract: An optical link for communicating a payload data stream between a near end transceiver and a far end transceiver via an optical communication channel, the near end transceiver including a near end receiver (near-Rx) and a near end transmitter (near-Tx) and the far end transceiver including a far end receiver (far-Rx) and a far end transmitter (far-Tx), wherein the far-TX is adapted to transmit a link data stream to the near-RX beside the payload data stream from the far end to the near end.
    Type: Application
    Filed: July 27, 2010
    Publication date: January 27, 2011
    Applicant: IPtronics A/S
    Inventor: Steen Bak Christensen
  • Publication number: 20110020008
    Abstract: Included among the many structures described herein are photonic bandgap fibers designed to provide a desired dispersion spectrum. Additionally, designs for achieving wide transmission bands and lower transmission loss are also discussed. For example, in some fiber designs, smaller dimensions of high index material in the cladding and large core size provide small flat dispersion over a wide spectral range. In other examples, the thickness of the high index ring-shaped region closest to the core has sufficiently large dimensions to provide negative dispersion or zero dispersion at a desired wavelength. Additionally, low index cladding features distributed along concentric rings or circles may be used for achieving wide bandgaps.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 27, 2011
    Applicant: IMRA AMERICA, INC.
    Inventors: Liang Dong, Xiang Peng
  • Patent number: 7877015
    Abstract: An optical to radio frequency detector comprises an optical guide for receiving two optical signal components having frequencies that differ by an amount corresponding to a radio frequency, and a radio signal guide coupled with an interaction zone of the optical guide for propagating a radio signal from the interaction zone at the radio frequency. The material of the interaction zone presents a second-order non-linear optical polarization characteristic to the propagation of the optical signal components, and the radio signal guide is in travelling-wave coupling with the interaction zone. A radio signal output is coupled with the radio signal guide.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: January 25, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Patrick Labbe, Arianna Filoramo, Eric Toussaere, Joseph Zyss
  • Publication number: 20100329693
    Abstract: A system may comprise a single wavelength laser; a modulator optically coupled to said laser; a length of multi-mode fiber optically coupled to said modulator; and a phase mask optically coupled to said fiber. The phase mask may be configured to filter out modes other than a selected mode.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: Verizon Patent and Licensing Inc.
    Inventor: David Zhi Chen
  • Patent number: 7860398
    Abstract: Simplified laser drivers for closed path digital optical cables and digital optical cables including the simplified laser drivers. The laser driver can include less transistors than conventional laser drivers for optical communication cables. The laser can include a bias source and modulation source. The bias source can have a single constant current bias point for all laser diodes. The modulation current source can have a single temperature coefficient for all laser diodes. The laser driver can exclude, for example, any one of or combination of temperature compensation of the modulation or bias current sources, external programming of the modulation or bias current sources, power control based on output of the laser diode, and/or control based on feedback received from a monitor device or other sensor within the cables.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: December 28, 2010
    Assignee: Finisar Corporation
    Inventors: Jimmy A. Tatum, James K. Guenter
  • Publication number: 20100316391
    Abstract: An optical interconnection arrangement for use in high data applications is presented that eliminates the need for extensive serialization/de-serialization (SERDES) functionality by utilizing pulse amplitude modulation (PAM) techniques to represent the data in the optical domain while utilizing a separate channel for transmitting an optical clock signal, eliminating the need for clock recovery circuitry on the receive end of the arrangement.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 16, 2010
    Inventors: Kalpendu Shastri, Bipin Dama, Mark Webster
  • Patent number: 7848655
    Abstract: The present invention relates to advances in the field of reconfigurable optical networks. In particular, the present invention provides improvements in the technology of light sources for use in optical networks. The optical network according to the present invention includes a single light source that can be used to emit all of the bands and channels needed for transmission. In particular, the single light source in the optical network of the present invention is a mode-locked laser.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: December 7, 2010
    Assignees: Telcordia Technologies, Inc., University of Central Florida
    Inventors: Shahab Etemad, Peter Delfyett
  • Patent number: 7835387
    Abstract: Digital signal processing based methods and systems for receiving electrical and/or optical data signals include electrical receivers, optical receivers, parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a single path receiver. Alternatively, the present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and/or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 16, 2010
    Assignee: Broadcom Corporation
    Inventors: Oscar Agazzi, Venugopal Gopinathan
  • Publication number: 20100284700
    Abstract: A communication includes an analog input configured to receive an analog signal. An analog to digital converter is configured to provide a digital signal output based upon the analog input. A modulator is configured to modulate a laser based upon the digital signal thereby generating a modulated optical signal. An optical fiber carries the modulated optical signal and an optical detector arranged to receive the modulated optical signal from the optical fiber and provide a received output. A digital to analog converter digitizes the received output and provides an analog output based respective of the analog signal provided to the analog input.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 11, 2010
    Applicant: KG Technology Associates, Inc.
    Inventor: Anand Gopinath
  • Publication number: 20100265349
    Abstract: Provided is a digital camera module. The digital camera module includes an image sensor generating an electrical signal including a video signal and a clock signal and an optical interconnection unit converting the at least one of the video and clock signals into an optical signal to transmit the converted optical signal. The digital camera module further includes an image signal processor receiving the video signal restored from the optical signal to the electrical signal to convert the received video signal into a signal that is visually displayable.
    Type: Application
    Filed: December 28, 2009
    Publication date: October 21, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jin Tae KIM, Jung Jin Ju, Suntak Park, Seung Koo Park, Min-su Kim
  • Patent number: 7817312
    Abstract: An image acquiring device includes a scanning module, an optical signal transmission medium and a mainboard module. In the scanning module having a rechargeable battery, a scanning unit scans a document to obtain an electrical document signal, a first signal converter is connected to the scanning unit and converts the electrical document signal into an optical document signal, and a first signal transmitting unit is connected to the first signal converter and receives and outputs the optical document signal. The optical signal transmission medium is connected to the first signal transmitting unit. On a mainboard of the mainboard module, a second signal input/output unit is connected to the optical signal transmission medium and receives the optical document signal, and a second signal converter is connected to the second signal input/output unit and converts the optical document signal into the electrical document signal.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: October 19, 2010
    Assignee: Avision Inc.
    Inventor: Chuang-Hua Chueh
  • Patent number: 7817880
    Abstract: Embodiments of a system are described. This system includes an array of single-chip modules (CMs), which includes a first CM and a second CM which are coupled to each other. A given CM, which can be either the first CM or the second CM, includes a semiconductor die that is configured to communicate data signals with other CMs by capacitively coupled proximity communication and optical proximity communication using proximity connectors. These proximity connectors are proximate to a surface of the semiconductor die, and the semiconductor die includes an optical signal path configured to communicate on-chip optical signals.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: October 19, 2010
    Assignee: Oracle America, Inc.
    Inventors: Robert J. Drost, Ronald Ho, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 7801447
    Abstract: A signal processing system is disclosed having a detector for detecting an RF signal, wherein the detector has plural detection channels. A modulator modulates an optical signal with the detected RF signal and a processor processes the modulated optical signal to determine an azimuth or an elevation of the detected RF signal.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 21, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Brett A. Williams
  • Publication number: 20100232791
    Abstract: A communication device includes an enclosure including a recess member including a bottom wall and an accommodating portion, a circuit board mounted on the bottom wall, and a light guiding member received in the accommodating portion. The circuit board includes a plurality of light sources arranged in a circular array. The light guiding member includes a light guiding portion to transmit light from the light sources to an outer surface of the communication device and a light shielding portion to shield the light to the outer surface and fix the light guiding portion in the accommodating portion. The light guiding portion includes a light guiding bottom wall surrounding the light sources and a light guiding sidewall. The light guiding sidewall includes an annular end surface to indicate signal strength and a strong signal orientation received by an antenna of the communication device.
    Type: Application
    Filed: July 22, 2009
    Publication date: September 16, 2010
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: SHIH-CHANG HSU
  • Publication number: 20100226657
    Abstract: Various embodiments of the present invention are directed to systems and methods for all optical distributed arbitration for computer system components (1801-1804) communicatively coupled via a photonic interconnect in a computer system device. The embodiments of the optical arbitration in the computer system provides arbitration schemes with fixed priority (2000) and non-fixed priority (1830, 2200). The non-fixed priority scheme embodiments can provide fairness in arbitration. In some embodiments, delivery of light power and arbitration are combined (1830, 2001).
    Type: Application
    Filed: October 23, 2008
    Publication date: September 9, 2010
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Beausoleil G. Raymond, Fíorentín Marco, Jouppi Paul Norman, Binkert Lorenzo Nathan, Schreiber Samuel Robert, Xu Qianfan
  • Patent number: RE42095
    Abstract: The control of the transmission of useful optical signals on different line paths of an optical transmission device is accomplished via at least one of the following features: using signal sources and signal sinks, the useful optical signals are coupled into the line paths, or are coupled out of them; at least one portion of the optical line paths is configured as normal line paths having coupling nodes via which a switchover to an alternative line path can be undertaken if a normal line path is disturbed; in addition to the useful optical signals, test signals, whose evaluation is used for the switchover between the line paths, are transmitted bidirectionally section-by-section; at least two types of test signals can be transmitted, of which a first type is used as an indicator for an intact line path and a second type as an indicator for a disturbed line path; and any switchover to an alternative line path is only undertaken if, before the detection of the disturbance, a test signal of the first type has be
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: February 1, 2011
    Assignee: Nola Semiconductor LLC
    Inventors: Jan Koeppen, Guenter Neumann, Helmut Tiltmann