Having Particular Modulation Patents (Class 398/183)
  • Patent number: 12237914
    Abstract: Systems and methods are described for transmitting information optically in free space. For instance, a system may include an optical signal generator to generate an amplified beam of light. A telescope transmits the amplified beam through the medium and receives an inbound beam of light. A detector system may include one or more (or multiple) detectors and a routing system that transmits the inbound beam to a selected set of detectors. In some cases, the system can determine a re-configuration condition based on control parameters and perform a system re-configuration to direct the inbound beam to a different set of detectors. In some cases, the system includes a remote fiber head or wavelength division multiplexing.
    Type: Grant
    Filed: January 8, 2024
    Date of Patent: February 25, 2025
    Assignee: Attochron, LLC
    Inventors: Thomas M. Chaffee, Wayne H. Knox, Brian M. Gregory, Taz M. Colangelo
  • Patent number: 12218268
    Abstract: An optical device useful for spatial light modulation.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: February 4, 2025
    Assignee: President and Fellows of Harvard College
    Inventors: Trond I. Andersen, Ryan J. Gelly, Giovanni Scuri, Bo L. Dwyer, Dominik S. Wild, Rivka Bekenstein, Andrey Sushko, Susanne F. Yelin, Philip Kim, Hongkun Park, Mikhail D. Lukin
  • Patent number: 12199742
    Abstract: A communication system that includes a master communication device at a first location in a defined indoor area, a service communication device at a second location in the defined indoor area, and passive optical routing devices at a plurality of locations in the defined indoor area. The master communication device obtains first signal from data source or modem and directs first laser beam carrying the first signal in a downstream path to the service communication device directly or via the plurality of passive optical routing devices. The master communication device receives Laser Beam Network Control instructions from a cloud server, and dynamically changes a laser beam-based communication route from the master communication device to the service communication device by changing a path of laser communication from first set of passive optical routing devices to second set of passive optical routing devices to reach to the service communication device.
    Type: Grant
    Filed: October 17, 2023
    Date of Patent: January 14, 2025
    Assignee: Wireless Photonics LLC
    Inventors: Ahmadreza Rofougaran, Bahram Jalali, Mehdi Hatamian, Arman Rofougaran, Milan Rofougaran
  • Patent number: 12149290
    Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.
    Type: Grant
    Filed: June 27, 2024
    Date of Patent: November 19, 2024
    Assignee: Attochron, LLC
    Inventors: Thomas M. Chaffee, Wayne H. Knox
  • Patent number: 12132539
    Abstract: Disclosed is a transmission scheme for transmitting a first modulated signal and a second modulated signal over the same frequency at the same time. According to the transmission scheme, a precoding weight multiplying unit multiplies a baseband signal after a first mapping and a baseband signal after a second mapping by a precoding weight and outputs the first modulated signal and the second modulated signal. In the precoding weight multiplying unit, precoding weights are regularly hopped.
    Type: Grant
    Filed: August 8, 2023
    Date of Patent: October 29, 2024
    Assignee: SUN PATENT TRUST
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 12132522
    Abstract: An optical full-field transmitter for an optical communications network includes a primary laser source configured to provide a narrow spectral linewidth for a primary laser signal, and a first intensity modulator in communication with a first amplitude data source. The first intensity modulator is configured to output a first amplitude-modulated optical signal from the laser signal. The transmitter further includes a first phase modulator in communication with a first phase data source and the first amplitude-modulated optical signal. The first phase modulator is configured to output a first two-stage full-field optical signal. The primary laser source has a structure based on a III-V compound semiconductor.
    Type: Grant
    Filed: June 26, 2023
    Date of Patent: October 29, 2024
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Haipeng Zhang, Junwen Zhang, Mu Xu, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 12124872
    Abstract: Systems, methods and apparatus are provided for a reusable, client-server based ecosystem designed to support content-aware, LiFi-powered transfer of large-scale, semi-structured data files. Containerized client-side applications may include a LiFi communication engine (LCE), a job control engine (JCE), and an execution hub that is configured to interface with the JCE, the LCE, job stakeholders and downstream applications. A central server may include a server-side LCE configured for two-way communication with the client-side LCE. Each LCE may be configured to cluster semi-structured data into data packets, broadcast data packets using an LED array, receive data packets using an array of photoreceptors and synchronize received data packets.
    Type: Grant
    Filed: February 1, 2024
    Date of Patent: October 22, 2024
    Assignee: Bank of America Corporation
    Inventors: Madhusudhanan Krishnamoorthy, Nithya C, Meenakshi Meenakshishisundaram, Sivasankari Abirami Karthikeyan
  • Patent number: 12113577
    Abstract: Methods and systems for encoding multi-level pulse amplitude modulated signals using integrated optoelectronics are disclosed and may include generating a multi-level, amplitude-modulated optical signal utilizing an optical modulator driven by first and second electrical input signals, where the optical modulator may configure levels in the multi-level amplitude modulated optical signal, drivers are coupled to the optical modulator; and the first and second electrical input signals may be synchronized before being communicated to the drivers. The optical modulator may include optical modulator elements coupled in series and configured into groups. The number of optical modular elements and groups may configure the number of levels in the multi-level amplitude modulated optical signal. Unit drivers may be coupled to each of the groups. The electrical input signals may be synchronized before communicating them to the unit drivers utilizing flip-flops.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: October 8, 2024
    Assignee: Cisco Technology, Inc.
    Inventors: Daniel Kucharski, Sherif Abdalla, Brian Welch
  • Patent number: 12074645
    Abstract: An optical signal transmission method according to an embodiment of the disclosure is an optical signal transmission method in which a processor performs at least part of each operation, and may include an operation of receiving a data stream, an operation of separating at least part of the data stream into three channels, modulating the separated data streams respectively according to M-ary frequency shift keying (M-FSK) scheme so as to produce an FSK modulated signal, an operation of combining a plurality of FSK modulated signals modulated respectively in the three channels, and producing a color modulated signal according to a bit-color mapping table set in advance, and an operation of transmitting the color modulated signal by controlling a light source of the same optical channel based on the color modulated signal.
    Type: Grant
    Filed: June 21, 2023
    Date of Patent: August 27, 2024
    Assignee: Kookmin University Industry Academy Cooperation Foundation
    Inventors: Yeong Min Jang, Ngoc Huy Nguyen
  • Patent number: 12052059
    Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.
    Type: Grant
    Filed: February 28, 2024
    Date of Patent: July 30, 2024
    Assignee: Attochron, LLC
    Inventors: Thomas M. Chaffee, Wayne H. Knox
  • Patent number: 12034488
    Abstract: An optical communication device 1 is provided with: a plurality of light-receiving elements 11 each configured to receive light and output a light detection signal; a plurality of optical fibers 13 provided to correspond to the plurality of light-receiving elements 11, respectively, the plurality of optical fibers each being configured to guide the light to the corresponding light-receiving element 11; a plurality of amplifiers 18 provided to correspond to the plurality of light-receiving elements 11, respectively, the plurality of amplifiers each being configured to generate optical communication information by performing signal processing on the light detection signal; a light intensity information collection unit 25 configured to collect intensity of the light received by each of the plurality of optical fibers 13 as light intensity information; an optical fiber identification unit 27 configured to identify the optical fiber 13 that is receiving relatively strong light out of the plurality of optical fiber
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: July 9, 2024
    Assignee: Shimadzu Corporation
    Inventors: Keiko Sato, Naoki Nishimura
  • Patent number: 12003625
    Abstract: A method of generating a verification code includes measuring a time of arrival and a corresponding first or second state value of a plurality of first photons and a plurality of second photons, where respective ones of the plurality of first photons are entangled with respective ones of a plurality of second photons in a first basis, which is time, and entangled in a second basis. A first and a second ordered list of the measured times of arrival of the plurality of respective first and second photons is generated. Time-of-arrival matches between the first ordered list and the second ordered list are determined. First or second state values that correspond to the determined time-of-arrival matches between the first ordered list and the second ordered list are determined. A verification code using some of the determined first or second state values that correspond to the determined time-of-arrival matches is generated.
    Type: Grant
    Filed: February 26, 2023
    Date of Patent: June 4, 2024
    Assignee: Qubit Moving and Storage, LLC
    Inventors: Gary Vacon, Kristin A. Rauschenbach
  • Patent number: 12003967
    Abstract: An object may include at least one microtransponder (MTP) configured with an identifier. The identifier of the MTP may be indexed to the object. Indexing information associated with the MTP and the object may be stored in a database of a security system. The MTP may be read, and data reported by the MTP may be processed to determine authenticity of the object.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: June 4, 2024
    Assignee: P-CHIP IP HOLDINGS INC.
    Inventors: William E. Eibon, Conrad Styczen
  • Patent number: 11996892
    Abstract: A communication system that includes a cloud server that obtains first sensor data associated with a defined indoor area and second sensor data associated with each of a plurality of optical nodes in defined indoor area. The plurality of optical nodes includes a master communication device, a plurality of optical routing devices, and one or more service communication devices. The cloud server further obtains location coordinates of each of the plurality of optical nodes. The cloud server then causes the master communication device to form a laser beam-based wireless communication network in the defined indoor area. The laser beam-based wireless communication network is one of a Laser Beam Mesh Network (LBMN) or a Laser Beam Cascaded Network (LBCN).
    Type: Grant
    Filed: September 22, 2023
    Date of Patent: May 28, 2024
    Assignee: Wireless Photonics LLC
    Inventors: Ahmadreza Rofougaran, Bahram Jalali, Mehdi Hatamian, Arman Rofougaran, Milan Rofougaran
  • Patent number: 11996887
    Abstract: Systems and methods are described for transmitting information optically in free space. For instance, a system may include an optical signal generator to generate an amplified beam of light. A telescope transmits the amplified beam through the medium and receives an inbound beam of light. A detector system may include one or more (or multiple) detectors and a routing system that transmits the inbound beam to a selected set of detectors. In some cases, the system can determine a re-configuration condition based on control parameters and perform a system re-configuration to direct the inbound beam to a different set of detectors. In some cases, the system includes a remote fiber head or wavelength division multiplexing.
    Type: Grant
    Filed: January 8, 2024
    Date of Patent: May 28, 2024
    Assignee: Attochron, LLC
    Inventors: Thomas M. Chaffee, Wayne H. Knox, Brian M. Gregory, Taz M. Colangelo
  • Patent number: 11987274
    Abstract: Purpose is to enable communication with a vehicle installation installed in a vehicle in a manner that facilitates implementation of a security measure and with high sensitivity and at low cost. An in-vehicle communication system includes an interior light with communication function, a seat and a display device, the interior light with communication function including a LED configured to transmit information to the seat and the display device via visible light communication, and the seat and the display device including light receiving units configured to receive information transmitted from the interior light with communication function and control units configured to control themselves based on the information received by the light receiving units.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: May 21, 2024
    Assignee: Koito Electric Industries, Ltd.
    Inventors: Kazuya Sasaki, Takayuki Araki, Shuhei Kojima, Junichi Kusano
  • Patent number: 11982884
    Abstract: There is provided an optical signal processing device that generates a mask function in an optical domain to enable high-speed RC processing. For light emitted from a laser light source, an optical modulator modulates at a modulation period at least one of the intensity and phase values of the optical electric field. Thereby, the light emitted from the laser light source becomes an input signal. The input signal is entered into an optical FIR filter unit. For the input signal, the term corresponding to the mask function is multiplied at the optical FIR filter unit and weighted. Thereby, the input signal is converted into an input signal modulated. The modulated input signal enters via an optical coupler, an optical circulation circuit which is loaded with a variable attenuator and a nonlinear response element. The circulating optical signal is branched into two by an optical coupler. One branched light is converted into an intermediate signal at an optical receiver.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: May 14, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Mitsumasa Nakajima, Toshikazu Hashimoto
  • Patent number: 11979187
    Abstract: A node (200) is provided for use in a LiFi system (100) to provide LiFi signals to an endpoint device (130). The node (200) comprises a visible light source (220) for emitting modulated visible light and non-modulated visible light to provide illumination, and an infrared light source (210) for emitting modulated infrared light. The node (200) is configured to output a LiFi signal at a first one or more frequencies via the infrared light source (210) for reception by said endpoint device (130). In response to receiving input to provide illumination, the node (200) turns on the visible light source (220) to provide said illumination and automatically transfers an output of the LiFi signal from the infrared light source (210) to the visible light source (220) by outputting the LiFi signal at said first one or more frequencies via the visible light source (220) for reception by said endpoint device (130), and turning off the infrared light source (210).
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: May 7, 2024
    Assignee: SIGNIFY HOLDING B.V.
    Inventors: Matthias Wendt, Karnekumar Arulandu
  • Patent number: 11968760
    Abstract: The disclosure provides a method and a system for adjusting an irradiation angle of a lamp and a lamp with adjustable irradiation angle. The lamp includes a plurality of infrared receivers and a driving motor. The method comprises: receiving an infrared signal from a remote controller via the plurality of infrared receivers; determining an irradiation angle adjustment value of the lamp based on a plurality of infrared signal intensity values of the plurality of infrared receivers; adjusting an irradiation angle of the lamp via the driving motor based on the irradiation angle adjustment value. In the technical scheme provided by the example of the disclosure, when the irradiation angle of the lamp needs to be adjusted, the irradiation angle of the lamp is controlled only by operating the remote controller.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: April 23, 2024
    Assignee: OPPLE LIGHTING CO., LTD.
    Inventors: Zhijun Li, Jun Wu, Zhenghua Zhang
  • Patent number: 11956021
    Abstract: A communication system that includes a cloud server that obtains first sensor data associated with a defined indoor area and second sensor data associated with each of a plurality of optical nodes in defined indoor area. The plurality of optical nodes includes a master communication device, a plurality of optical routing devices, and one or more service communication devices. The cloud server further obtains location coordinates of each of the plurality of optical nodes. The cloud server then causes the master communication device to form a laser beam-based wireless communication network in the defined indoor area. A free-space optical backhaul is constructed by establishing a point-to-point free-space laser link between each pair of optical nodes of the plurality of optical nodes and a RF supervisory link is established between each pair of optical nodes of the plurality of optical nodes for a network monitoring and control function.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: April 9, 2024
    Assignee: WIRELESS PHOTONICS LLC
    Inventors: Ahmadreza Rofougaran, Bahram Jalali, Mehdi Hatamian, Arman Rofougaran, Milan Rofougaran
  • Patent number: 11949457
    Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.
    Type: Grant
    Filed: November 20, 2023
    Date of Patent: April 2, 2024
    Assignee: Attochron, LLC
    Inventors: Thomas M. Chaffee, Wayne H. Knox
  • Patent number: 11942974
    Abstract: A method for calibrating a radio transceiver begins by injecting a low-frequency tone at a transmit power amplifier input of the radio transceiver, where the low frequency tone is at least an order of magnitude lower than the operating frequency of a local oscillator coupled to the transmitter input. The method continues by upconverting the low-frequency tone to produce a plurality of tones at a transmit power amplifier output and then determining which tone of the plurality of tones is a local oscillator feedthrough tone associated with a transmit power amplifier output and which tone of the plurality of tones is representative of an in-phase and quadrature (I/Q) imbalance associated with the transmit power amplifier output.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: March 26, 2024
    Assignee: Pharrowtech BV
    Inventors: Khaled Khalaf, Ahmet Tekin, Biagio Bisanti, Qixian Shi, Eric Duvivier
  • Patent number: 11942946
    Abstract: A system comprises quantum control interconnect circuitry configured to receive a plurality of fixed-frequency signals, a variable-frequency signal, a quantum control pulse, a quantum element readout pulse, and a quantum element return pulse. The circuitry is operable to upconvert the quantum control pulse using the fixed-frequency signals. The circuitry is operable to upconvert the readout pulse using the variable-frequency signal. The circuitry is operable to downconvert the return pulse using the variable-frequency signal.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: March 26, 2024
    Assignee: Quantum Machines
    Inventors: Ramon Szmuk, Lior Ella, Yonatan Cohen, Itamar Sivan, Nissim Ofek
  • Patent number: 11942695
    Abstract: A plurality of digital processors may be used to adjust phases in a plurality of phase modulators. The plurality of digital processors may receive a periodic pulse, or heartbeat signal, from a synchronization controller in order to control the digital processors. The synchronization controller may output an additional signal used to determine and to control the phase of the signals output from the plurality of phase modulators.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: March 26, 2024
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Amjed Hallak, Matthew Gallion
  • Patent number: 11915581
    Abstract: A system and method are provided herein for communicating with and controlling various devices using visible light communication (VLC). According to one embodiment, a method is provided for extending a communication range of a VLC system comprising a plurality of controlled devices and a remote-control device. Such a method may include, for example, transmitting a communication message from a remote-control device to a first controlled device located within range of the remote-control device, wherein the communication message is transmitted through free space using visible light, and extending the communication range of the VLC system to a second controlled device, which is located outside of the range of the remote-control device, by using the first controlled device to retransmit the communication message through free space using visible light to the second controlled device.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: February 27, 2024
    Assignee: Lutron Technology Company, LLC
    Inventors: David J. Knapp, Horace C. Ho
  • Patent number: 11909450
    Abstract: A communication system that includes a cloud server that obtains first sensor data associated with a defined indoor area and second sensor data associated with each of a plurality of optical nodes in defined indoor area. The plurality of optical nodes includes a master communication device, a plurality of optical routing devices, and one or more service communication devices. The cloud server further obtains location coordinates of each of the plurality of optical nodes. The cloud server then causes the master communication device to form a laser beam-based wireless communication network in the defined indoor area. A free-space optical backhaul is constructed by establishing a point-to-point free-space laser link between each pair of optical nodes of the plurality of optical nodes and a RF supervisory link is established between each pair of optical nodes of the plurality of optical nodes for a network monitoring and control function.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: February 20, 2024
    Assignee: WIRELESS PHOTONICS LLC
    Inventors: Ahmadreza Rofougaran, Bahram Jalali, Mehdi Hatamian, Arman Rofougaran, Milan Rofougaran
  • Patent number: 11860308
    Abstract: An integrated chip packaging for a LIDAR sensor mounted to a vehicle includes a laser assembly configured to output a beam, an optical amplifier array chip configured to amplify a beam, and a transceiver chip coupled to the laser assembly and the optical amplifier array chip. The transceiver chip may be configured to emit the beam with reference to a first surface of the transceiver chip through an optical window and receive a reflected beam from a target through the optical window. The integrated chip packaging for the LIDAR sensor defines the configuration of optical components for providing a path for the optical signal to travel in and out of the LIDAR sensor and dissipating the heat generated by the optical components for improved performance.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Aurora Operations, Inc.
    Inventors: Colin Delaney, James Ferrara, Stefan Heinemann, Amir Hosseini, Pruthvi Jujjavarapu, Yongxuan Liang, Parth Panchal, Zhizhong Tang
  • Patent number: 11853871
    Abstract: A system includes a first unit configured to generate a plurality of modulator control signals, and a processor unit. The processor unit includes: a light source or port configured to provide a plurality of light outputs, and a first set of optical modulators coupled to the light source or port and the first unit. The optical modulators in the first set are configured to generate an optical input vector by modulating the plurality of light outputs provided by the light source or port based on digital input values corresponding to a first set of modulator control signals in the plurality of modulator control signals, the optical input vector comprising a plurality of optical signals. The processor unit also includes a matrix multiplication unit that includes a second set of optical modulators.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: December 26, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Huaiyu Meng, Yichen Shen, Arash Hosseinzadeh, Yelong Xu, Yanfei Bai, Ronald Gagnon, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman
  • Patent number: 11855695
    Abstract: A communication system that includes a cloud server that obtains first sensor data associated with a defined indoor area and second sensor data associated with each of a plurality of optical nodes in defined indoor area. The plurality of optical nodes includes a master communication device, a plurality of optical routing devices, and one or more service communication devices. The cloud server further obtains location coordinates of each of the plurality of optical nodes. The cloud server then causes the master communication device to form a laser beam-based wireless communication network in the defined indoor area. A free-space optical backhaul is constructed by establishing a point-to-point free-space laser link between each pair of optical nodes of the plurality of optical nodes and a RF supervisory link is established between each pair of optical nodes of the plurality of optical nodes for a network monitoring and control function.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: December 26, 2023
    Assignee: WIRELESS PHOTONICS LLC
    Inventors: Ahmadreza Rofougaran, Bahram Jalali, Mehdi Hatamian, Arman Rofougaran, Milan Rofougaran
  • Patent number: 11849512
    Abstract: A lighting fixture having a light source, a light sensor, a communication interface, and circuitry is described. In addition to controlling the light source, the circuitry is adapted to monitor for a light signal provided from a handheld device via the light sensor; upon receiving the light signal, measure a signal level associated with the light signal; and effect transmission of the signal level to the handheld device via the communication interface. In one embodiment, the circuitry is further configured to receive an instruction to monitor for the light signal from the handheld device via the communication interface such that the circuitry begins monitoring for the light signal upon receiving the instruction.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 19, 2023
    Assignee: IDEAL Industries Lighting LLC
    Inventors: Brian Carrigan, John J. Trainor, Joseph P. Chobot, Matthew Deese, Keith Bryan
  • Patent number: 11843219
    Abstract: A fiber-based master optical power amplifier (MOPA) is configured to utilize a pump source that operates in pulse mode with the arrival time of the pump pulses coordinated with the arrival time of the input pulses. The width of the pump pulses is also controlled, thus providing a mechanism for controlling both the amount of pump energy injected into the fiber amplifier, as well as the overlap in time between the pump pulse and the seed pulse. As the pulse repetition interval (PRI) of the input seed pulse changes, the timing of the pump pulses and their width are also changed so that a “constant gain” environment is created within the amplifying medium, providing an essentially constant energy output pulse, regardless of differences in ASE generated during different PRIs.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: December 12, 2023
    Inventors: Martin R. Williams, Timothy K. Zahnley, Thomas W. McNamara, Aravanan Gurusami, Scott Dahl, Siegfried Fleischer
  • Patent number: 11831401
    Abstract: A communication system that includes a master communication device at a first location in a defined indoor area, a service communication device at a second location in the defined indoor area, and passive optical routing devices at a plurality of locations in the defined indoor area. The master communication device obtains a first signal from a data source or a modem and directs a first laser beam carrying the first signal in a downstream path to a service communication device directly or via the plurality of passive optical routing devices based on defined connectivity criterions. The service communication device demodulates the first signal from the first laser beam, distributes one or more wireless signals to end-user devices, and further obtains one or more second signals from end-user devices and re-transmits obtained signals over second laser beam in upstream path to master communication device directly or via the passive optical routing devices.
    Type: Grant
    Filed: March 24, 2023
    Date of Patent: November 28, 2023
    Assignee: WIRELESS PHOTONICS LLC
    Inventors: Ahmadreza Rofougaran, Bahram Jalali, Mehdi Hatamian, Arman Rofougaran, Milan Rofougaran
  • Patent number: 11831354
    Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.
    Type: Grant
    Filed: August 2, 2023
    Date of Patent: November 28, 2023
    Assignee: Attochron, LLC
    Inventors: Thomas M. Chaffee, Wayne H. Knox
  • Patent number: 11817899
    Abstract: An optical wireless communication system and method An optical wireless communication (OWC) system comprises: a multiple input multiple output (MIMO) device configured to provide a plurality of signals each representing a respective data stream; conditioning circuitry configured to receive the plurality of signals from the MIMO device and process the plurality of signals to produce at least one conditioned signal representative of the data stream(s) and suitable for transmission using an OWC transmission device; an OWC transmission device comprising at least one transmitter for transmitting light and configured to be responsive to the at least one conditioned signal to transmit light representative of the data stream(s) using the at least one transmitter.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 14, 2023
    Assignee: PURELIFI LIMITED
    Inventors: Stephan Berner, Mostafa Afgani, Harald Haas
  • Patent number: 11728897
    Abstract: An optical signal transmission method according to an embodiment of the disclosure is an optical signal transmission method in which a processor performs at least part of each operation, and may include an operation of receiving a data stream, an operation of separating at least part of the data stream into three channels, modulating the separated data streams respectively according to M-ary frequency shift keying (M-FSK) scheme so as to produce an FSK modulated signal, an operation of combining a plurality of FSK modulated signals modulated respectively in the three channels, and producing a color modulated signal according to a bit-color mapping table set in advance, and an operation of transmitting the color modulated signal by controlling a light source of the same optical channel based on the color modulated signal.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: August 15, 2023
    Assignee: Kookmin University Industry Academy Cooperation Foundation
    Inventors: Yeong Min Jang, Ngoc Huy Nguyen
  • Patent number: 11728899
    Abstract: Consistent with an aspect of the present disclosure, electrical signals or digital subcarriers are generated in a DSP based on independent input data streams. Drive signals are generated based on the digital subcarriers, and such drive signals are applied to an optical modulator, including, for example, a Mach-Zehnder modulator. The optical modulator modulates light output from a laser based on the drive signals to supply optical subcarriers corresponding to the digital subcarriers. These optical subcarriers may be received by optical receivers provided at different locations in an optical communications network, where the optical subcarrier may be processed, and the input data stream associated with such optical subcarrier is output. Accordingly, instead of providing multiple lasers and modulators, for example, data is carried by individual subcarriers output from an optical source including one laser and modulator. Thus, a cost associated with the network may be reduced.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Infinera Corporation
    Inventors: Kuang-Tsan Wu, Matthew L. Mitchell
  • Patent number: 11705965
    Abstract: An ONU includes a communication unit, an abnormal light emission prevention unit, and a control unit that transmits a data signal and a transmission permission signal to the communication unit and transmits the transmission permission signal to the abnormal light emission prevention unit between a transmission start time and a transmission end time. When the transmission permission signal is received, the communication unit, transmits an optical signal to an OLT, and transmits an operation signal to the abnormal light emission prevention unit during the transmission of the optical signal. The abnormal light emission prevention unit transmits a stop signal to the communication unit when a difference between a time for which the transmission permission signal is received and a time for which the operation signal is received is greater than or equal to a threshold value. The communication unit stops when the stop signal is received.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: July 18, 2023
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yuji Yokohama
  • Patent number: 11683101
    Abstract: A method and structure for probabilistic shaping and compensation techniques in coherent optical receivers. According to an example, the present invention provides a method and structure for an implementation of distribution matcher encoders and decoders for probabilistic shaping applications. The techniques involved avoid the traditional implementations based on arithmetic coding, which requires intensive multiplication functions. Furthermore, these probabilistic shaping techniques can be used in combination with LDPC codes through reverse concatenation techniques.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: June 20, 2023
    Assignee: Marvell Asia Pte, Ltd.
    Inventors: Damian Alfonso Morero, Mario Alejandro Castrillon, Ramiro Rogelio Lopez, Cristian Cavenio, Gabriel Infante, Mario Rafael Hueda
  • Patent number: 11641248
    Abstract: Coherent optical communications technology for recovery of 1D and 2D formatted optical signals. For example, 1D or 2D formatted signals that travel through fiber optic media may be recovered by separating the light into X- and Y-polarization components, rotating one polarization component (e.g., Y-component) into the polarization space of the other component (e.g., Y-component into the X-polarization space), delaying the rotated component enough to avoid destructive interference and combining the delayed component with the undelayed component to form a folded optical signal, which may then be processed as a X-polarized signal.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: May 2, 2023
    Assignee: Google LLC
    Inventors: Xiang Zhou, Cedric F. Lam, Ryohei Urata, Hong Liu
  • Patent number: 11630368
    Abstract: Devices, methods and systems for generating wideband, high-fidelity arbitrary radio frequency (RF) passband signals are described. A voltage tunable optical filter for arbitrary RF passband signal generation includes a first input configured to receive a broadband optical pulse train, a second input configured to receive a first control voltage representative of an amplitude signal, an electrooptic modulator to receive the broadband optical pulse train and the first control voltage, to modulate the broadband optical pulse train in accordance with the amplitude signal, and to produce two complementary optical outputs that form two arms of an interferometer, an optical delay component to impart an optical path difference into one of the complementary outputs of the electrooptic modulator, and a combiner or a splitter to receive two complementary optical outputs of the electrooptic modulator after impartation of the optical path difference and to produce an output interference pattern of fringes.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: April 18, 2023
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Apurva Shantharaj Gowda, Jacky Chak-Kee Chan, Peter Thomas Setsuda DeVore, David Simon Perlmutter, Jason Thomas Chou
  • Patent number: 11575445
    Abstract: An optical wireless transmission device according to an embodiment of the present invention comprises: a modulation unit for receiving input of a first input signal and outputting a first output signal; and a light source control unit for controlling a first light source in accordance with the first output signal. The first output signal repeats “0” and “1” in a first phase during clock time if a binary value of the first input signal is 0, and repeats “0” and “1” in a phase opposite from the first phase during the clock time if a binary value of the first input signal is 1.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: February 7, 2023
    Assignee: KOOKMIN UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION
    Inventors: Yeong Min Jang, Van Trang Nguyen
  • Patent number: 11573123
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: February 7, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Patent number: 11569915
    Abstract: An example system includes a first network device having first circuitry. The first network device is configured to perform operations including receiving data to be transmitted to a second network device over an optical communications network, and transmitting first information and second information to the second device. The first information is indicative of the data, and is transmitted using a first communications link of the optical communications network and using a first subset of optical subcarriers. The second information is indicative of the data, and is transmitted using a second communications link of the optical communications network and using a second subset of optical subcarriers. The first subset of optical subcarriers is different from the second subset of optical subcarriers.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: January 31, 2023
    Assignee: Infinera Corporation
    Inventor: Steven Joseph Hand
  • Patent number: 11483069
    Abstract: An optical network component and method are herein described. The system and method include determining a first power of an optical modulator using a first photodetector and a second power of the transmitter using a second photodetector, determining a contrast ratio based on the first power and the second power, and determining a modulation loss based on the contrast ratio.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: October 25, 2022
    Assignee: Infinera Corporation
    Inventors: Amir Rashidinejad, Matthew Fisher
  • Patent number: 11467467
    Abstract: Reflection between a Mach-Zehnder modulator and a termination resistor is suppressed. An optical modulator includes a differential drive open collector driver IC, a differential drive semiconductor Mach-Zehnder modulator, and a differential terminator. The Mach-Zehnder modulator includes waveguides and a differential high-frequency line. The differential terminator includes a differential high-frequency line and termination resistors. The differential high-frequency line includes a capacity provided at least one of between signal lines and between a signal line and a ground line.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: October 11, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Josuke Ozaki, Shigeru Kanazawa, Hiromasa Tanobe
  • Patent number: 11418259
    Abstract: Cost-effective high-data-rate optical data transceivers are presented, comprising an electronic analog transversal filter simultaneously providing one or more of bandwidth compensation and forward impairment compensations for the transmitted optical signal.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: August 16, 2022
    Assignee: NeoPhotonics Corporation
    Inventors: Winston I. Way, Raghavendra V. Juluri, Konstantin Gennadiyevich Kuzmin
  • Patent number: 11405113
    Abstract: A hyperspectral radiometer may comprise one or more antennas, a electro-optical modulator modulating the received RF signal onto an optical carrier to generate a modulated signal having at least one sideband; a filter filtering the modulated signal to pass the sideband to a photodetector; and a photodetector producing an electrical signal from which information of the RF signal can be extracted. In some examples, the optical sideband may be spatially dispersed to provide a plurality of spatially separate optical components to the photodetector, where the spatially separate optical components having different frequencies and correspond to different frequencies of the received RF signal. In some examples, the passed sideband may be mixed with an optical beam having a frequency offset from the optical carrier to form a combined beam having at least one optical signal component having a beat frequency from which information of the RF signal can be extracted.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: August 2, 2022
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Tom Dillon, Christopher Schuetz, Dennis Prather
  • Patent number: 11405024
    Abstract: A system comprises quantum control interconnect circuitry configured to receive a plurality of fixed-frequency signals, a variable-frequency signal, a quantum control pulse, a quantum element readout pulse, and a quantum element return pulse. The circuitry is operable to upconvert the quantum control pulse using the fixed-frequency signals. The circuitry is operable to upconvert the readout pulse using the variable-frequency signal. The circuitry is operable to downconvert the return pulse using the variable-frequency signal.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: August 2, 2022
    Inventors: Ramon Szmuk, Lior Ella, Yonatan Cohen, Itamar Sivan, Nissim Ofek
  • Patent number: 11397341
    Abstract: An initial change and a secular change in an optical characteristic and a high frequency characteristic in a case where an optical modulator is mounted in a package of an optical transmission apparatus are suppressed while improving a space utilization rate in the package of the optical transmission apparatus. An optical modulator that is electrically connected to an electric circuit configured on a circuit board, includes: a package that houses an optical modulation element; and a signal input part or the like for inputting an electric signal for causing the optical modulation element to perform an modulation operation from the electric circuit, in which the package has, on a part of a bottom surface facing the circuit board, a first protrusion portion protruding from the bottom surface, and the signal input part is provided on an upper surface of the first protrusion portion.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: July 26, 2022
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Norikazu Miyazaki, Toru Sugamata
  • Patent number: 11342993
    Abstract: Systems, methods, and devices are disclosed for implementing photonic links. Methods include transmitting light using an optical emitter, splitting, using an input coupler, the light into a first path and a second path, the first path being provided to a modulator, and the second path being provided to a phase shifter, and combining, using an output coupler, an output of the modulator and an output of the phase shifter. Methods further include identifying a modulator phase angle that reduces a third order distortion at an output of the output coupler, applying a first bias voltage to a modulator to maintain the identified modulator phase angle, and applying a control signal to the phase shifter to maintain a phase difference between an output of the modulator and an output of a phase shifter.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: May 24, 2022
    Assignee: The Boeing Company
    Inventor: Daniel Yap