Intensity Modulation Patents (Class 398/186)
  • Publication number: 20130064557
    Abstract: According to a first aspect of the present invention there is provided an apparatus for performing power equalisation and phase correction of two signals (400). The apparatus comprises a first hybrid coupler (401) configured to operate as a power combiner, and a second hybrid coupler (402) configured to operate as a power divider, wherein the apparatus is configured to provide an output (406) of the first hybrid coupler as an input (407) to the second hybrid coupler.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 14, 2013
    Inventors: Wenfei Hu, Jonathan Stuart Drake
  • Patent number: 8391724
    Abstract: Included are a first modulator, a second modulator, a first optical amplifier that amplifies an output of the first modulator at an amplification factor based on a first bias signal, a second optical amplifier that amplifies an output of the second modulator at an amplification factor based on a second bias signal, an optical phase adjuster that phase-rotates an output of the second optical amplifier, an optical multiplexer that multiplexes an output of the first optical amplifier with an output of the optical phase adjuster, and a second bias corrector that generates a first pulse signal and a second pulse signal, which are complementary to each other, and obtains a first bias value and a second bias value based on a change of strength of an output signal of the optical multiplexer. The first and second pulse signals are superimposed on the first and second bias signals, respectively.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: March 5, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroshi Aruga, Keita Mochizuki, Atsushi Sugitatsu
  • Patent number: 8380084
    Abstract: A polarization multiplexing and transmitting apparatus generates polarization multiplexed light by multiplexing modulated signal components that having varying intensities and are in polarization states orthogonal to each other. The polarization multiplexing and transmitting apparatus includes a converting unit that converts light generated by a light source into signal components having a varying intensity synchronized with a clock signal input thereto and a varying intensity inversely synchronized with the clock signal, respectively; a modulating unit that modulates the signal components, respectively; and a polarization adjusting unit that orthogonalizes polarization states of the signal components.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: February 19, 2013
    Assignee: Fujitsu Limited
    Inventors: Takahito Tanimura, Takeshi Hoshida
  • Patent number: 8380085
    Abstract: A method of processing data is provided that includes receiving a plurality of binary electronic signals and generating an optical signal by a number of lasers that is equal to or greater than the number of binary electronic signals. The optical signal is generated at one of a plurality of intensity levels, and each intensity level represents a particular combination of bit values for the plurality of binary electronic signals. The optical signal is converted into an electronic signal having the plurality of intensity levels. An apparatus for processing data is provided that includes a plurality of lasers configured to emit light at a plurality of frequencies, and a plurality of modulators configured to receive a plurality of binary electronic signals and to modulate the light emitted by the lasers. An apparatus for transmitting data is provided that includes a photo receiver and an electronic signal generator.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: February 19, 2013
    Assignee: NEC Laboratories America, Inc.
    Inventors: Shalabh Gupta, Yue-Kai Huang
  • Publication number: 20120321324
    Abstract: The present method is for generating a 4-level optical signal and it includes providing a continuous wave CW optical source; modulating the CW optical source with a first intensity modulator driven by a binary electrical signal a n Gbits/s to generate an optical signal; employing a second intensity modulator as a pulse carving modulator that is driven by an RF signal at n GHz thereby generating a 4 level optical signal for subsequent detection by a receiver.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Applicant: NEC Laboratories America, Inc.
    Inventors: Jianjun Yu, Ming-Fang Huang
  • Publication number: 20120315036
    Abstract: Methods and systems for encoding multi-level pulse amplitude modulated signals using integrated optoelectronics are disclosed and may include generating a multi-level, amplitude-modulated optical signal utilizing an optical modulator driven by two or more electrical input signals. The optical modulator may include optical modulator elements coupled in series and configured into groups. The number of optical modular elements and groups may configure the number of levels in the multi-level amplitude modulated optical signal. Unit drivers may be coupled to each of the groups. The electrical input signals may be synchronized before communicating them to the unit drivers. Phase addition may be synchronized utilizing one or more electrical delay lines. The optical modulator may be integrated on a single substrate, which may include one of: silicon, gallium arsenide, germanium, indium gallium arsenide, polymers, or indium phosphide.
    Type: Application
    Filed: August 7, 2012
    Publication date: December 13, 2012
    Inventors: Daniel Kucharski, Brian Welch, Sherif Abdalla
  • Publication number: 20120308240
    Abstract: An optical transmitter includes an optical modulator having first and second waveguides to modulate carrier light at each of the waveguides using a driving signal with 2*n intensity levels (n is an integer 1 or greater); and a phase shifter to cause a phase difference between a first optical signal and a second optical signal output from the first waveguide and the second waveguide, respectively. A photodetector converts a portion of a multilevel optical modulation signal acquired by combining the first optical signal and the second optical signals into an electrical signal. A monitor detects a change in an alternating current component in the detected modulation signal. A controller controls at least one of a first bias voltage and a second bias voltage being supplied to the first waveguide and the second waveguide, respectively, so as to increase the power value of the alternating current component.
    Type: Application
    Filed: March 30, 2012
    Publication date: December 6, 2012
    Applicant: FUJITSU LIMITED
    Inventor: Yuichi AKIYAMA
  • Patent number: 8326158
    Abstract: Disclosed are a device and a method for transmitting an optical data signal over an optical transmission channel, comprising a differential phase shift keying unit for differential phase shift keying of at least one serial data stream to generate a differential phase shift keying coded data stream; an amplitude shift keying unit for amplitude coding of at least two further serial data streams that can be selectively activated to generate an amplitude shift keying coded data stream; and a modulation unit for generating an optical data signal in accordance with a control signal that is, formed from the generated differential phase shift keying coded data stream and from the generated amplitude shift keying coded data stream.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: December 4, 2012
    Assignee: ADVA AG Optical Networking
    Inventors: Michael Eiselt, Brian Teipen
  • Patent number: 8320775
    Abstract: The present invention discloses a method and device for the bias control of an MZ modulator. The method comprises: during startup of an MZ modulator, inputting a linearly changing bias control voltage to the bias electrode of the MZ modulator and obtaining the output optical power of the MZ modulator so as to determine a bias control voltage corresponding to a preset operating point; then enabling a communication electrical signal to be input to the radio frequency electrode of the MZ modulator, carrying out an amplitude modulation on the communication electrical signal by a low-frequency sinusoidal pilot signal, and inputting the determined bias control voltage to the bias electrode simultaneously; and sampling the output optical signals of the MZ modulator, comparing the sampled optical signal with the pilot signal, and adjusting the bias control voltage input to the bias electrode according to the result of the comparison.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 27, 2012
    Assignee: ZTE Corporation
    Inventor: Jianqing Shen
  • Publication number: 20120288284
    Abstract: An optical transmitter generating an arbitrary optical waveform including an analog optical waveform, which is capable of controlling a bias to a Null point easily. The optical transmitter modulates light from a light source by an optical modulator with use of a data sequence being an electric signal, to thereby generate the arbitrary optical waveform, and includes: a light intensity detector detecting intensity of output light of the optical modulator; a data signal generator generating the data sequence; an average modulation degree calculator calculating an average modulation degree of the data sequence based on the data sequence; and a bias controller performing bias control on the optical modulator based on the intensity of the output light detected by the light intensity detector and the average modulation degree of the data sequence calculated by the average modulation degree calculator.
    Type: Application
    Filed: February 25, 2010
    Publication date: November 15, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tsuyoshi Yoshida, Takashi Sugihara
  • Patent number: 8306433
    Abstract: There is provided an optical modulation signal generating device in which an operation speed is not limited by a relaxation oscillation frequency of a laser, and high-speed modulation and long-distance transmission can be performed. The optical modulation signal generating device converts a signal from a signal source into an optical signal and outputs the optical signal to a transmission medium having frequency dispersion. The optical modulation signal generating device includes an optical source (102) for performing frequency modulation by the signal from the signal source to generate an optical signal having only a frequency modulation component, and a frequency filter (103) for converting the frequency modulation component of the optical signal into an intensity modulation component and a frequency modulation component.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 6, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takaaki Kakitsuka, Shinji Matsuo, Toru Segawa, Hiroyuki Suzuki
  • Patent number: 8290375
    Abstract: An optical spectrum analyzer and a method of spectrally analyzing an optical signal. The optical spectrum analyzer includes a wave shaper such as an optical modulator that shapes an optical signal, a dispersive element such as a dispersive fiber in which the shaped optical signal is dispersed, a detector that provides an output signal indicative of the dispersed shaped optical signal, and a signal processor that analyzes the output signal, for example by calculating a transform such as an inverse Fourier transform or a Fourier transform of the output signal, to provide a frequency spectrum of the optical signal.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: October 16, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Bogdan Szafraniec, Douglas M. Baney
  • Publication number: 20120251128
    Abstract: An optical transmitter includes: a modulator driver to generate a drive signal from an input signal; a modulator to generate a modulated optical signal according to the drive signal; an amplitude detector to detect an input amplitude representative of an amplitude of the input signal; and a controller to generate a waveform control signal according to the input amplitude detected by the amplitude detector. The modulator driver controls a waveform of the drive signal according to the waveform control signal.
    Type: Application
    Filed: March 12, 2012
    Publication date: October 4, 2012
    Applicant: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventor: Toshio Ishii
  • Patent number: 8270846
    Abstract: A plurality of inductors are connected in series between a load resistor and a first transistor, and a plurality of second transistors provided in parallel are connected to the plurality of inductors.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: September 18, 2012
    Assignee: Fujitsu Limited
    Inventor: Yukito Tsunoda
  • Patent number: 8270783
    Abstract: The present invention is directed towards systems and methods for adjusting intensity, wavelength and higher and lower frequency components of an optical signal. Photonic apparatus receives a first and a second optical signal. A waveguide provides an anomalous group velocity dispersion the first optical signal or the second optical signal and adjusts intensity or wavelength of the first optical signal or the second optical signal, in response to the anomalous group velocity dispersion. In some embodiments photonic apparatus receives an optical signal comprising a lower frequency component received an amount of time prior to a higher frequency component of the optical signal. A waveguide provides an anomalous group velocity dispersion for the optical signal and adjusts the amount of time between the higher frequency component and the lower frequency component in response to the anomalous group velocity dispersion.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: September 18, 2012
    Assignee: Cornell University
    Inventors: Mark Foster, Alexander Gaeta, Michal Lipson, Jay Sharping, Amy Foster
  • Patent number: 8265489
    Abstract: It is provided an optical field transmitter comprising a light source, a DA converter and an optical field modulator. The optical field transmitter modulates an information signal into an optical field signal. The information signal includes one of multilevel signals arranged irregularly on a complex plane and multilevel signals arranged by combining mutually different numbers of phase values in at least two amplitude values. The optical field transmitter further comprises a phase pre-accumulation circuit for outputting phase pre-accumulation complex information obtained by previously accumulating a phase component of the information signal at predetermined time intervals. The DA converter converts the information signal including the output phase pre-accumulation complex information into an analog signal, and inputs the converted analog signal to the optical field modulator.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: September 11, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Nobuhiko Kikuchi
  • Publication number: 20120224866
    Abstract: A method for processing data in an optical network element. A multi-carrier signal is linear pre-coded and the linear pre-coded signal is modulated. A corresponding optical network element is also described.
    Type: Application
    Filed: December 18, 2009
    Publication date: September 6, 2012
    Applicant: NOKIA SIEMENS NETWORKS OY
    Inventors: Oscar Gaete, Leonardo Coelho, Bernhard Spinnler, Norbert Hanik, Ernst-Dieter Schmidt
  • Patent number: 8249460
    Abstract: An apparatus for generating an RF signal is provided includes a driver configured to generate a timing control for two optical signals. The apparatus further includes at least one optical pulse source configured to generate the two optical signals based on the timing control. In addition, the apparatus includes a photodetector configured to receive the two optical signals as input and further configured to generate an RF signal based on the two optical signals. A method for generating an RF signal is also provided.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: August 21, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Michael Enoch, Parmijit Samra, Anthony C. Kowalczyk
  • Patent number: 8238758
    Abstract: A modulator is disclosed that includes three arms between a splitter portion and a coupler portion. The modulator typically requires at most a ?/2 phase shift between constellation points. Accordingly, the modulator is more efficient and consumes less power.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: August 7, 2012
    Assignee: Infinera Corporation
    Inventors: Charles H. Joyner, Scott Corzine, Masaki Kato, Mehrdad Ziari
  • Patent number: 8238757
    Abstract: An optical network transmitter comprising a fractional-bit delay module, an optical modulator coupled to the fractional-bit delay module, and a band-limiting optical filter coupled to the optical modulator. Also disclosed is a transmission system comprising a source configured to generate two complementary binary data streams, a fractional-bit delay module in communication with the source and configured to delay one of the complementary binary data streams, a modulation module in communication with the source and the fractional-bit delay module and configured to convert the undelayed complementary binary data streams and the delayed complementary binary data streams into a fractional-bit delayed optical duobinary signal, and a band-limiting node in communication with the modulation module and configured to filter and transmit the optical duobinary signal.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: August 7, 2012
    Assignee: Futurewei Technologies, Inc.
    Inventors: Yu Sheng Bai, Yanjun Zhu, Rong Zhang, Jizhong Liu, Jian Deng
  • Patent number: 8213798
    Abstract: An optical transmission apparatus for suppressing deterioration of transmission quality due to XPM in a wavelength division multiplexing optical communication system in which an intensity modulation optical signal and a phase modulation optical signal exist in a mixed form. The apparatus has an intensity inversion signal light output section which outputs light having an intensity pattern obtained by inverting intensity changes of the intensity modulation optical signal near a wavelength of the intensity modulation optical signal in arrangement on wavelength axis of optical wavelengths that can be multiplexed as a wavelength division multiplexed signal as intensity inversion signal light, and a wavelength division multiplexed optical signal output unit which wavelength-division-multiplexes the intensity modulation optical signal, the phase modulation optical signal and light from the intensity inversion signal light output section and outputs a wavelength division multiplexed optical signal.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 3, 2012
    Assignee: Fujitsu Limited
    Inventors: Hiroki Ooi, Hiroshi Onaka, George Ishikawa
  • Patent number: 8208817
    Abstract: An optical transmitter having a quantum-well (QW) modulator and a method of operating the same. The QW modulator is configurable to perform both amplitude and phase modulation. Using the disclosed methods, the length of the QW modulator, one or more drive voltages, and/or an operating wavelength can be selected to enable the optical transmitter to generate a modulated optical signal having a relatively high bit rate, e.g., an optical duobinary signal having a bit rate greater than about 80 Gb/s.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: June 26, 2012
    Assignee: Alcatel Lucent
    Inventor: Christopher R. Doerr
  • Patent number: 8204386
    Abstract: Apparatus and methods for driving a transmitter to generate DNPSK signals is disclosed including generating N data streams comprising data symbols and for each of a plurality of sets of N simultaneous data symbols of the N data streams, imposing signals are on L of a plurality of signal lines, with the value of L corresponding to values of the N simultaneous data symbols. Signals on the plurality of signal lines are ANDed with a clock signal synchronized with the N data streams to produce RZ signals. The RZ signals are summed and the summed signal is input to a laser that produces an output having frequency modulation corresponding to the magnitude of the summed signal. The output of the laser is passed through an optical discriminator.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: June 19, 2012
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Kevin J. McCallion, The'Linh Nguyen, David Allouche
  • Patent number: 8190032
    Abstract: An O/E conversion element converts an input NRZ optical signal into an electric signal. A clock recovery circuit recovers a clock signal from the electric signal obtained by the O/E conversion element. A phase modulator applies phase modulation to the NRZ optical signal, using the recovered clock signal. An intensity modulator applies intensity modulation to the NRZ optical signal, using the recovered clock signal. A dispersion medium compensates for a frequency chirp of an optical signal output from the intensity modulator.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: May 29, 2012
    Assignee: Fujitsu Limited
    Inventors: Fumio Futami, Shigeki Watanabe
  • Patent number: 8165472
    Abstract: Disclosed herein is a visible light communication system, in which the visible light emitted from the light-emitting element is superposed with a signal in order to accomplish communication. The system has a transmitter and a receiver. The transmitter has a modulation circuit whose the demodulating mode can be changed during the communication in accordance with the state of the visible light. The receiver receives the visible light emitted from the transmitter and has a demodulation circuit that demodulates the modulated signal received from the transmitter.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouichi Takene, Tooru Takanaka
  • Patent number: 8165476
    Abstract: A single sideband modulator uses a radio-frequency signal output by a voltage controlled oscillator to modulate a reference optical signal output by a local light source, thereby obtaining several sideband signals, and combines the sideband signals into a single reproduced optical signal. The optical coupler couples the reproduced optical signal with a received optical signal to generate an optical beat signal, from which a photoelectric transducer and loop filter generate a control voltage for the voltage controlled oscillator. These components operate as an optical phase locked loop that efficiently locks the reproduced optical signal in frequency and phase with the received optical signal by using the energy of all sidebands of the reference optical signal. The phase locked loop is useful for coherent detection of the received optical signal.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: April 24, 2012
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Akihiro Fujii
  • Patent number: 8155534
    Abstract: According to one embodiment of the invention, a 16-QAM optical modulator has a Mach-Zehnder modulator (MZM) coupled to a drive circuit that drives the MZM based on two electrical binary signals. The output of the MZM corresponds to an intermediary constellation consisting of four constellation points arranged on a straight line in the corresponding in-phase/quadrature-phase (I-Q) plane. Two of these constellation points correspond to a zero phase, and the remaining two constellation points correspond to a phase of ? radian. The 16-QAM optical modulator further has a phase shifter that modulates the output of the MZM based on two additional electrical binary signals. The resulting optical output signal corresponds to a star 16-QAM constellation, which is produced by incremental rotation of the intermediary constellation.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 10, 2012
    Assignee: Alcatel Lucent
    Inventor: Peter J. Winzer
  • Patent number: 8155533
    Abstract: A waveform converting unit gives a change to a clock signal as a periodic voltage fluctuation that drives a pulse carver unit carrying out shaping into an RZ waveform. The pulse carver unit receives a bias voltage applied thereto from a bias voltage applying unit, is driven by the clock signal that is given a change by the waveform converting unit and that is amplified by an amplifying unit, and outputs an RZ pulse whose duty has been changed.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: April 10, 2012
    Assignee: Fujitsu Limited
    Inventor: Hiroshi Nakamoto
  • Patent number: 8145067
    Abstract: An optical transmitter includes a light source that outputs light superposed with a pilot signal having a predetermined frequency; an optical modulating unit that modulates the light from the light source according to an input electric signal; a detecting unit that detects a high-output-side maximum value of signal light output from the optical modulating unit, a fluctuation width of the high-output-side maximum value, and a fluctuation width of a low-output-side minimum value; a bias-potential adjusting unit that adjusts a bias potential of an electric signal to be input to the optical modulating unit based on the detected maximum value; and an amplitude adjusting unit that adjusts an amplitude of the electric signal to be input to the optical modulating unit based on the fluctuation width of the high-output-side maximum value and the fluctuation width of the low-output-side minimum value.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 27, 2012
    Assignee: Fujitsu Limited
    Inventors: Akira Nagayama, Kazuyoshi Shimizu
  • Patent number: 8139953
    Abstract: There is provided a signal transmission device which transmits, in the form of an optical signal, multivalued data which shifts through three or more plurality of logical values, and includes: a light emitting element which outputs light having an intensity corresponding to a power supply current supplied thereto; a current source which is capable of supplying the light emitting element with the power supply current which has a plurality of current values corresponding to the plurality of values through which the multivalued data shifts; and a modulating section which modulates the current value of the power supply current supplied from the current source, in response to a shift of the multivalued data.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: March 20, 2012
    Assignee: Advantest Corporation
    Inventors: Toshiyuki Okayasu, Daisuke Watanabe
  • Patent number: 8135287
    Abstract: A method includes modulating lightwaves to provide first and second OFDM signal sidebands at a first polarization direction and first and second OFDM signal sidebands at a second polarization direction, and combining sidebands that are oppositely positioned and joined from the first and second OFDM signal sidebands at each polarization direction to provide a polarization multiplexing OFDM signal.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 13, 2012
    Assignee: NEC Laboratories America, Inc.
    Inventors: Jianjun Yu, Ting Wang
  • Publication number: 20120057882
    Abstract: The device is structured to have a first electric modulation signal generator, a second electric modulation signal generator, a two-mode beat light source and an optical intensity modulator. The first electric modulation signal generator generates and outputs a first electric modulation signal. The second electric modulation signal generator generates and outputs a second electric modulation signal of a same frequency as the first electric modulation signal and to which a phase difference of ? radians is provided (? is a real number satisfying 0????). The two-mode beat light source is driven by the first electric modulation signal, and generates and outputs two-mode beat light. The two-mode beat light is inputted to the optical intensity modulator, and the optical intensity modulator generates and outputs a CS optical pulse train. Light transmittance of the optical intensity modulator is modulated by the second electric modulation signal.
    Type: Application
    Filed: November 10, 2011
    Publication date: March 8, 2012
    Applicant: OKI ELECTRIC INDUSTRY CO., LTD.
    Inventor: Shin ARAHIRA
  • Publication number: 20120045220
    Abstract: A multi-channel encoder, demodulator, modulator and transmission system for digital video insertion in network edge applications includes a circuit comprising slots for receiving a plurality of plug-in demodulator and encoder cards, a transmission stream multiplexer in communication with the slots, a QAM modulator in communication with the transmission stream modulator, a optical transmission section in communication with the QAM modulator, and a monitor and control system for monitoring and controlling the circuit. The system also includes a power supply for powering the circuit, and a lockable cabinet for enclosing the circuit, the plug-in demodulator and encoder cards, and the power supply, the lockable cabinet enclosing space for a cable modem connectable to the circuit.
    Type: Application
    Filed: November 1, 2011
    Publication date: February 23, 2012
    Inventors: Sasa Veljkovic, John Joseph Lee
  • Patent number: 8121492
    Abstract: An optical transmitting apparatus includes a modulating unit that branches an input light and performs independent phase modulation to branched optical signals of arms, a phase adjusting unit that changes a phase difference between the optical signals of respective arms according to a control signal, a combining unit that combines modulated lights having the phase difference, an acquiring unit that acquires a positive-phase signal and a negative-phase signal from the combining unit, a subtracting unit that obtains a difference between the positive-phase signal and the negative-phase signal acquired by the acquiring unit, a detecting unit detecting a power of a differential signal from subtraction by the subtracting unit, and a control unit that changes the control signal according to signal component intensity detected by the detecting unit.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: February 21, 2012
    Assignee: Fujitsu Limited
    Inventors: Yuichi Akiyama, Hideyuki Miyata, Noriaki Mizuguchi
  • Patent number: 8116635
    Abstract: A polarization multiplexing and transmitting apparatus generates polarization multiplexed light by multiplexing modulated signal components that having varying intensities and are in polarization states orthogonal to each other. The polarization multiplexing and transmitting apparatus includes a converting unit that converts light generated by a light source into signal components having a varying intensity synchronized with a clock signal input thereto and a varying intensity inversely synchronized with the clock signal, respectively; a modulating unit that modulates the signal components, respectively; and a polarization adjusting unit that orthogonalizes polarization states of the signal components.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 14, 2012
    Assignee: Fujitsu Limited
    Inventors: Takahito Tanimura, Takeshi Hoshida, Hisao Nakashima, Shoichiro Oda
  • Publication number: 20120027413
    Abstract: A method and apparatus for transmission of data on bandwidth limited fiber optic channels. A multilevel signaling alphabet having multiple levels of optical intensity are used to transmit signals on optical channels. In order to counteract the decrease in signal to noise ratio resulting from the use of a multilevel signaling alphabet over a bilevel signaling alphabet trellis encoding of the data to be transmitted is employed. To counteract intersymbol interference due to signaling faster than the Nyquist Rate, equalization methods such as Tomlinson-Harashima preceding and decision feedback equalization are employed.
    Type: Application
    Filed: July 14, 2011
    Publication date: February 2, 2012
    Inventor: Oscar E. Agazzi
  • Publication number: 20120027420
    Abstract: This present disclosure provides an optical transmission method and system. The system includes a pre-coder for pre-coding an input signal into a first pre-coded signal, an encoder/separator coupled to the first pre-coded signal and arranged to encode the first and second pre-coded signals into a first encoded signal with 0 degree phase shift and a second encoded signal with 180 degree phase shift, and an optical modulator for providing optical modulation to the first and second encoded signals with a light source such that the intensity of an output optical duo-binary (ODB) signal with frequency chirp has identical logic sequence as the input signal.
    Type: Application
    Filed: May 23, 2011
    Publication date: February 2, 2012
    Inventor: Yu Sheng Bai
  • Patent number: 8098998
    Abstract: A technology to automatically control the biasing of an optical duobinary transmitter using a single-drive LN-MZ modulator is provided. A low-frequency signal is amplitude modulated onto a voltage signal input into a Mach-Zehnder optical modulator 22. The optical output from the optical modulator 22 is detected by an optical detection subsystem 30. In a bias control subsystem 40, the low-frequency signal component amplitude modulated onto the electrical signal is detected from the optical output, and a DC bias voltage applied to the optical modulator is controlled such that the low-frequency signal component is either minimized or maximized.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: January 17, 2012
    Assignee: Opnext Japan, Inc.
    Inventors: Shigehiro Takashima, Takayoshi Fukui, Yoshikuni Uchida, Kazuyoshi Yamaki, Youichi Honzawa
  • Patent number: 8059968
    Abstract: The present invention discloses a modulation device for generating an optical signal with quadruple frequency and the modulation method thereof. The modulation device in the present invention utilizes a commercial integrated modulator, a RF signal generator and a phase shifter to generate an optical signal with quadruple frequency. When the RF signal generator generates a first modulation signal, and the phase shifter shifts the first modulation signal by 90 degrees to generate a second modulation signal, the integrated modulator is biased to transmit the optical signal in maximum value and to modulate the first and second modulation signal so as to generate a output optical signal with quadruple frequency.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: November 15, 2011
    Assignee: National Chiao Tung University
    Inventors: Jye Hong Chen, Chun-Ting Lin, Po Tsung Shih, Peng-Chun Peng, Sheng Peng Dai, Wen Qiang Xue, Sien Chi
  • Patent number: 8055137
    Abstract: Embodiments of the present invention provide a method and apparatus for producing a phase coded non-return-to-zero (PC-NRZ) optical signal. The method includes providing an input optical signal; providing first and second drive signals, the first drive signal having a first data pattern of first and second signal levels, the second drive signal having a second data pattern, the second data pattern having third and fourth signal levels that toggle at least when the first drive signal changes from the first signal level to the second signal level; and modulating amplitude of the input optical signal with the first drive signal and modulating phase of the input optical signal with the second drive signal to produce the PC-NRZ optical signal. A PC-NRZ optical transmitter and an optical transmission system applying the PC-NRZ optical transmitter are also provided.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 8, 2011
    Inventors: Tongqing Wang, Jinghui Li
  • Patent number: 8041219
    Abstract: A method of optical communication includes generating an amplified optical signal from at least a portion of a first optical signal having a first carrier wavelength, ?1. The amplified optical signal is applied to Brillouin media to stimulate generation of a Brillouin effect signal at a wavelength ?2. The Brillouin effect signal is modulated to produce a second optical signal having a second carrier wavelength, ?2. In one embodiment, the first optical signal is a downstream optical signal and the second optical signal is an upstream optical signal of a passive optical network.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: October 18, 2011
    Assignee: Tellabs Operations, Inc.
    Inventors: José Antonio Lázaro Villa, Josep Joan Prat Gomá, Mireia Esther Omella Cancer
  • Patent number: 8041157
    Abstract: The present invention is directed towards systems and methods for adjusting intensity, wavelength and higher and lower frequency components of an optical signal. Photonic apparatus receives a first and a second optical signal. A waveguide provides an anomalous group velocity dispersion the first optical signal or the second optical signal and adjusts intensity or wavelength of the first optical signal or the second optical signal, in response to the anomalous group velocity dispersion. In some embodiments photonic apparatus receives an optical signal comprising a lower frequency component received an amount of time prior to a higher frequency component of the optical signal. A waveguide provides an anomalous group velocity dispersion for the optical signal and adjusts the amount of time between the higher frequency component and the lower frequency component in response to the anomalous group velocity dispersion.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: October 18, 2011
    Assignee: Cornell University
    Inventors: Mark Foster, Alexander Gaeta, Michal Lipson, Jay Sharping, Amy Turner
  • Patent number: 8032035
    Abstract: A light detecting apparatus receives input light branched and output by a branching device, to calculate transmittance and reflectivity from the input light, acquires a wavelength corresponding to the calculated transmittance and reflectivity to calculate a gain value corresponding to input light intensity, acquires a driving current value corresponding to a calculated gain value and an acquired wavelength, and outputs an acquired driving current value.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: October 4, 2011
    Assignee: Fujitsu Limited
    Inventor: Kyosuke Sone
  • Patent number: 8027587
    Abstract: A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N×1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M×N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: September 27, 2011
    Assignee: Sandia Corporation
    Inventor: Michael R. Watts
  • Patent number: 8023775
    Abstract: An optical frequency COM generator generating an optical frequency COM having flat spectrum characteristics using a single modulator. The optical frequency COM generator has a drive signal system (11) and a bias signal system (14) which drive a first drive signal (9), a second drive signal (10) and bias signals (12, 13) to satisfy the following expression (I). ?A+??=?/2 (I). (where, ?A and ?? are defined as ?A?(A1?A2)/2 and ???(?1??2)/2, respectively, A1 and A2 represent the amplitudes of the first and second drive signals when they are inputted to the electrodes of the first and second drive signals, respectively, and ?1 and ?2 represent the phases of bias voltages applied to first and second waveguides, respectively.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: September 20, 2011
    Assignee: National Institute of Information and Communications Technology
    Inventors: Takahide Sakamoto, Tetsuya Kawanishi, Masahiro Tsuchiya, Masayuki Izutsu
  • Patent number: 8014683
    Abstract: A transmitter for an optical RZ-DPSK communication signal comprises a source for an optical carrier, an electro-optical modulator which comprises at least one element having an optical path length adapted to be varied by an electrical driver signal for intensity modulating the optical carrier based on the driver signal, and a driver circuit for generating the driver signal from an electrical communication signal. The driver signal is an impulse-type signal having two types of impulses spaced in time by a neutral signal state, wherein in the presence of the neutral state of the driver signal at the modulator, the transmission of the modulator becomes zero, and the two types of impulses each cause a transmission different from zero and a phase which is specific for the type of the impulses in the modulator.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: September 6, 2011
    Assignee: Ericsson AB
    Inventors: Horst Wernz, Joerg-Peter Elbers, Helmut Griesser
  • Patent number: 8014636
    Abstract: A phase modulation waveguide structure includes one of a semiconductor and a semiconductor-on-insulator substrate, a doped semiconductor layer formed over the one of a semiconductor and a semiconductor-on-insulator substrate, the doped semiconductor portion including a waveguide rib protruding from a surface thereof not in contact with the one of a semiconductor and a semiconductor-on-insulator substrate, and an electrical contact on top of the waveguide rib. The electrical contact is formed of a material with an optical refractive index close to that of a surrounding oxide layer that surrounds the waveguide rib and the electrical contact and lower than the optical refractive index of the doped semiconductor layer. During propagation of an optical mode within the waveguide structure, the electrical contact isolates the optical mode between the doped semiconductor layer and a metal electrode contact on top of the electrical contact.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: September 6, 2011
    Assignee: Oracle America
    Inventors: Ivan Shubin, Guoliang Li, John E. Cunningham, Ashok Krishnamoorthy, Xuezhe Zheng
  • Patent number: 8009988
    Abstract: Provided herein are at least one embodiment of a system and method for reducing or eliminating crosstalk and associated distortion in a wavelength-division multiplexed optical signal transmitted over a fiber optic network by inversion of the RF signals that are inputs to the system.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: August 30, 2011
    Inventors: Mary R. Phillips, Kuang-yi Wu, Fernando Xavier Villarruel
  • Patent number: 7991298
    Abstract: It is an object of the present invention to provide an optical modulation system capable of suppressing a carrier component (f0) and a high order component (such as a second order component (f0±2fm)). The optical modulation system includes Mach-Zehnder waveguide (8), a first intensity modulator (9) provided on a first arm (4), a second intensity modulator (10) provided on a second arm (5), a first main Mach-Zehnder electrode (MZCA electrode) (13a), and a second main Mach-Zehnder electrode (MZCB electrode) (13b). Non-desired components propagating the respective arms are made to have reverse phase before optical signals are combined, whereby the optical modulation system is capable of suppressing the non-desired components when the optical signals are combined.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 2, 2011
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya
  • Publication number: 20110182590
    Abstract: A 2n-QAM (e.g. 16-QAM) optical modulator comprising cascaded I-Q modulators. The first I-Q modulator applies 2n?2 (e.g. 4) QAM to an optical signal, having a constellation diagram with the 2n?2 (e.g., 4) constellation points located in quadrant I. The second I-Q modulator subsequently applies a quaternary phase-shift keying (QPSK) modulation scheme to the optical signal, thereby rotating the constellation points of the 2n?2-QAM modulation scheme to quadrants II, III and IV, to produce a 2n-QAM modulation constellation diagram. The rotation causes the 2n-QAM modulator to inherently apply four quadrant differential encoding to the optical signal. A method of 2n-QAM optical modulation is also provided and optical signal transmission apparatus comprising the 2n-QAM optical modulator.
    Type: Application
    Filed: September 8, 2008
    Publication date: July 28, 2011
    Inventors: Marco Secondini, Fbio Cavalieri