Including Compensation Patents (Class 398/192)
  • Patent number: 8873970
    Abstract: A method for generating a 400 Gb/s single channel optical signal from multiple modulated subchannels includes carving respective modulated subchannels into return-to-zero RZ modulated subchannels having non-overlapping peaks with intensity modulators having a duty cycle less than 50%, and combining the subchannels into a single channel signal aggregating the bit rate of each of the subchannels. The subchannels are combined with a flat top optical component for increased subsequent receiver sensitivity.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 28, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Jianjun Yu, Dayou Qian, Philip Nan Ji, Ting Wang
  • Patent number: 8867924
    Abstract: A method is provided to lower the overall power consumption of small form-factor pluggable (SFP) transceivers. The method includes receiving an indication to operate the SFP transceiver in a low power mode, and setting the SFP transceiver to a low power mode in response to the indication by at least switching off a thermal electric cooler (TEC) that controls a temperature of a laser diode of the SFP transceiver. The proposed method may be implemented whenever a reach is not more than a predetermined distance, for example, 65 kilometers. At such reduced distances, the TEC of the SFP transceiver can be switched off while still guaranteeing link functionality. The instant low power mode has the benefit of reducing the power consumption of the SFP transceiver so that, for example, host platforms with lower power delivery budgets can support the SFP transceiver for at least some applications.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 21, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Carlo Mariotti, Damiano Rossetti, Carlo Tosetti, Federico Fontanella
  • Publication number: 20140301742
    Abstract: A digital signal processing method has steps of pre-emphasizing a digital signal, and then processing the pre-emphasized digital signal through a non-linear device. In the pre-emphasizing step, an undershoot is applied to a first level of the digital signal at a positive signal transition or an overshoot is applied to the digital signal at a negative first signal transition.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 9, 2014
    Applicant: TYCO ELECTRONICS SVENSKA HOLDINGS AB
    Inventors: Marek Grzegorz Chacinski, Nicolae Pantazi Chitica
  • Patent number: 8824898
    Abstract: For providing circuit arrangement and method for transmitting signals from a data source to a data sink, the signals being TMDS encoded, the driver circuit is supplied by a connection interface, connected upstream, assigned to data source, with supply voltage, electrical TMDS encoded signals are electro-optically converted by an LED connected downstream of the driver circuit and coupled into an optical fiber as light supplied with TMDS encoded signals, the direct current portion supplied from TMDS transmitter to connection interface, to data source, is converted by driver circuit to a modulated signal current for controlling LED.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: September 2, 2014
    Assignee: SILICON LINE GmbH
    Inventors: Martin Groepl, Holger Hoeltke
  • Patent number: 8818193
    Abstract: An embodiment of the invention includes a tunable optical dispersion compensator (TODC) comprising a first beam displacer on an optical path, wherein the first beam displacer separates an optical signal into a first beam and a second beam, and one or more polarizing beam splitters on the optical path, wherein the one or more polarizing beam splitters keep the first beam and the second beam on the optical path. The TODC also comprises one or more etalons on the optical path, wherein the one or more etalons are tunable to introduce a group delay in the first beam and the second beam, and a reflecting mirror on the optical path, wherein the reflecting mirror returns the optical signal back along the optical path. The TODC further comprises a second beam displacer, wherein the second beam displacer combines the first beam and the second beam into an output optical signal.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 26, 2014
    Assignee: Finisar Corporation
    Inventors: Fan Chen, Yongkang Hu, Zhenli Wen, Dongshen Han, Fahua Lan, Kevin Dapeng Zhang
  • Patent number: 8818206
    Abstract: The present disclosure provides electrical domain suppression of linear crosstalk in optical communication systems using single-carrier implementations. This electrical domain suppression applies spectral shaping in the electronic radio frequency (RF) domain. Advantageously, spectral shaping in the electronic RF domain transfers system complexity from the bulk optical domain into the highly integrated CMOS (or equivalent) domain. The spectral shaping can include electronic circuitry including an electrical filtering block and a signal linearization block prior to optical modulation. The electrical filtering block suppresses coherent interference terms and can include an RF-domain low pass filter. The signal linearization block linearizes modulator response to compensate spectral regrowth due to nonlinear mixing in the modulator.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: August 26, 2014
    Assignee: Ciena Corporation
    Inventor: Michael Y. Frankel
  • Patent number: 8818203
    Abstract: An optical modulator includes a light input/output unit receiving an incident optical signal which has not been modulated, splitting the incident optical signal into a first optical signal and a second optical signal, and transmitting the first and second optical signals to a first path and a second path, respectively, of an optical waveguide. A phase shifter is positioned in at least one of the first and second paths and modulates a phase of at least one of the first and second optical signals, which have been received through the first and second paths, respectively, in response to an electrical signal. A phase-modulated signal is output. A reflective grating coupler reflects signals respectively received through the first and second paths back along the first and second paths respectively.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: August 26, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-Chul Ji, Kyoung Ho Ha, Dong Jae Shin, Jung Hyung Pyo, Kwang Hyun Lee
  • Patent number: 8805198
    Abstract: An optical transmission and reception system in which a plurality of tributary signals are converted into multilevel modulated light for transmission and reception. An apparatus for transmitting multilevel modulated light includes: FECs which perform error correction processing including addition of a tributary identifier; and a GEAR BOX which performs rate conversion on the processed signals.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takashi Mizuochi
  • Patent number: 8805209
    Abstract: In one embodiment, a method for performing nonlinearity compensation on a dispersion-managed optical signal that was transmitted over an optical communication link, the method including virtually dividing the communication link into a plurality of steps, performing lumped dispersion compensation on a received optical signal to obtain a waveform upon which digital backward propagation (DBP) can be performed, performing DBP by performing dispersion compensation and nonlinearity compensation for each step, and generating an estimate of the transmitted signal based upon the performed DBP.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: August 12, 2014
    Inventors: Guifang Li, Likai Zhu
  • Patent number: 8805196
    Abstract: A communications link for carrying data between a transmitter and a receiver operates according to a communications protocol (such as PCI Express (PCIe)) specifying a reduced-power link operating state in which the transmitter generates a reduced-amplitude electrical output signal and the receiver is to operate in a power-save mode. The communications link includes an electro-optical link and a circuit coupling an output of the transmitter to an electrical input of the electro-optical link. The circuit is configured to detect initiation of the reduced-power operating state and to send messages to the receiver to maintain a normal amplitude of an optical signal on the electro-optical link.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: August 12, 2014
    Assignee: Teradyne, Inc.
    Inventor: Marlon Zbigniew Kasprzyk
  • Patent number: 8792792
    Abstract: [PROBLEM] Providing an optical source that outputs optical frequency modulated light having a constant output optical intensity. [MEANS FOR SOLVING THE PROBLEM] Provided is a light source apparatus that outputs an optical signal having an optical frequency corresponding to a frequency control signal, the light source apparatus including a laser light source section that outputs laser light having an optical frequency corresponding to the frequency control signal; and an optical intensity adjusting section that compensates for intensity change of the laser light to output laser light in which the intensity change caused by a change in the optical frequency is restricted.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: July 29, 2014
    Assignee: Advantest Corporation
    Inventors: Shin Masuda, Kazunori Shiota
  • Patent number: 8787757
    Abstract: An optical communication network includes a plurality of optical transmission devices, a communication path, an optical repeater, and a supervisory controller that includes a supervisory control information sender which is installed on at least one of one of the optical transmission devices and the optical repeater and controls a drive signal supplied to a semiconductor optical amplifier that amplifies and outputs input signal light onto the communication path on the basis of the supervisory control information, and a supervisory control information receiver that receives the light which has been output from a semiconductor optical amplifier and transmitted through the communication path, converts the received light to an electric signal and identifies the supervisory control information on the basis of an intensity-modulated component of the total power of the electric signal in at least the other of one of the optical transmission devices and the optical repeater.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: July 22, 2014
    Assignee: Fujitsu Limited
    Inventor: Yutaka Kai
  • Patent number: 8781327
    Abstract: An apparatus comprising at least one processor configured to receive a wavelength-division-multiplexed (WDM) signal from a remote node, wherein the WDM signal comprises a first channel carrying a first remotely generated signal, a second channel carrying a second remotely generated signal, and a third channel, adapt the WDM signal into a composite WDM signal by: dropping the first remotely generated signal from the first channel; adding a first locally generated signal to the first channel; and adding a second locally generated signal to the third channel, and provide wavelength locking to the first locally generated signal and the second locally generated signal without providing wavelength locking to the second remotely generated signal.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: July 15, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xiao A. Shen, Hongbing Lei, Yu Sheng Bai
  • Patent number: 8774568
    Abstract: Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is less than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Tak Han, Jang Uk Shin, Sang-Pil Han, Sang Ho Park, Yongsoon Baek
  • Publication number: 20140161442
    Abstract: The present invention relates to a fiber transmission field and provides a data sending or receiving method, device, and apparatus used in optical fiber transmission. The method includes: detecting data to be transmitted; encoding one bit pulse width to M parts if the to-be-transmitted data is 0, wherein the first part is a high-level, the later M?1 part is a low-level; encoding one bit pulse width to N parts if the to-be-transmitted data is 1, wherein the first part is a high level, and the later N?1 part is a low-level, the M is not equal to the N but both are integer which is greater than or equal to 2; and sending the encoded level signal.
    Type: Application
    Filed: August 8, 2012
    Publication date: June 12, 2014
    Applicant: AEROSPACE SCIENCE & INDUSTRY SHENZHEN (GROUP) CO., LTD.
    Inventors: Jun Yang, Lin Cheng
  • Patent number: 8744274
    Abstract: An optical transmitter device includes a laser source, a driving circuit, and an optical modulator. The driving circuit is connected to the laser source. The driving circuit includes a thermistor configured for compensating the temperature variation of the laser source to stabilize the frequency of a laser beam output from the laser source. The optical modulator is configured for modulating the laser beam to form a plurality of second laser beams which have different frequencies.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: June 3, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yu-Chao Hsiao
  • Patent number: 8743448
    Abstract: The disclosure discloses a method and an apparatus for determining a bias point of a modulator, wherein the method includes: adding pilot signals to the bias voltages of the modulator; adjusting the bias point of the modulator at a predetermined step and acquiring a first harmonic amplitude value corresponding to each bias point in a backlight detection current signal output by the modulator; and determining a bias point corresponding to the maximum value of the first harmonic amplitude values associated with multiple bias points as the bias point of the modulator. By virtue of the disclosure, the detection of a difference frequency signal can be eliminated, thereby reducing the complexity and cost of a periphery control circuit while ensuring the control accuracy, effectively improving the stability and reliability of the control process, and improving the modulation and transmission performance of optical signals in the whole system.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: June 3, 2014
    Assignee: ZTE Corporation
    Inventors: Jianhua Chen, Hong Yi
  • Publication number: 20140140708
    Abstract: An emphasis signal generating circuit includes: a branch circuit configured to split a signal into a plurality of paths; a delay circuit provided in one or more of the paths into which the signal has been split by the branch circuit, the delay circuit being configured to delay one or more signals; a phase compensation circuit provided in one or more of the paths into which the signal has been split by the branch circuit, the phase compensation circuit having such characteristics that a transmission intensity of a signal is low in a low frequency band and is high in a high frequency band; and an addition/subtraction circuit configured to perform addition and/or subtraction of signals from the plurality of paths and output a result.
    Type: Application
    Filed: August 22, 2013
    Publication date: May 22, 2014
    Applicant: FUJITSU LIMITED
    Inventor: Yukito TSUNODA
  • Publication number: 20140126916
    Abstract: An optical transmission system includes an optical transmitter, an optical receiver, and an optical transmission path connecting the optical transmitter and the optical receiver, wherein the optical transmitter has a first polarization scrambler to change a polarization state of an optical transmission signal in a first direction at a first polarization scrambling frequency synchronized with a transmission signal frequency, and the optical receiver has a second polarization scrambler to change a polarization state of an optical signal received from the optical transmission path at a second scrambling frequency synchronized with a received signal frequency in a second direction opposite to the first direction.
    Type: Application
    Filed: October 2, 2013
    Publication date: May 8, 2014
    Applicant: Fujitsu Limited
    Inventor: Kenji OTA
  • Patent number: 8718487
    Abstract: An optical transmitter for converting an input data series into an optical multi-level signal and for outputting the same, includes an LUT in which data for executing optical multi-level modulation is stored and from which first modulation data and second modulation data are output based on the input data series. A DAC converts the first modulation data by D/A conversion to generate a first multi-level signal. A DAC converts the second modulation data by D/A conversion to generate a second multi-level signal. A dual-electrode MZ modulator includes a first phase modulator for modulating light from a light source in accordance with the first multi-level signal and a second phase modulator for modulating light from the light source in accordance with the second multi-level signal, and combines an optical signal from the first phase modulator and an optical signal from the second phase modulator to output the optical multi-level signal.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: May 6, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Sugihara, Soichiro Kametani, Takashi Mizuochi, Yoshiaki Konishi
  • Patent number: 8712252
    Abstract: To efficiently apply jitter to an optical signal using a simple configuration, provided is an optical signal output apparatus that outputs an optical pulse pattern signal including jitter, the optical signal generating apparatus comprising a light source section that outputs an optical signal having an optical frequency corresponding to a frequency control signal; an optical modulation section that modulates the optical signal output by the light source section, according to a designated pulse pattern; and an optical jitter generating section that delays an optical signal passed by the optical modulation section according to the optical frequency, to apply jitter to the optical signal.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 29, 2014
    Assignee: Advantest Corporation
    Inventors: Shin Masuda, Kazunori Shiota
  • Patent number: 8712251
    Abstract: Aspects of the invention provide transmitters and receivers for managing multiple optical signals. High order modulation, such as phase and/or amplitude modulation, is used to achieve multiple bits per symbol by transporting multiple asynchronous data streams in an optical transport system. One or more supplemental multiplexing techniques such as time division multiplexing, polarization multiplexing and sub-carrier multiplexing may be used in conjunction with the high order modulation processing. This may be done in various combinations to realize a highly spectrally efficient multi-data stream transport mechanism. The system receives a number of asynchronous signals which are unframed and synchronized, and then reframed and tagged prior to the high order modulation. Differential encoding may also be performed. Upon reception of the multiplexed optical signal, the receiver circuitry may employ either direct detection without a local oscillator or coherent detection with a local oscillator.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: April 29, 2014
    Assignee: Google Inc.
    Inventors: Bikash Koley, Vijayanand Vusirikala, Hong Liu
  • Patent number: 8705900
    Abstract: Disclosed is an optical modulator which substantially lowers loss and has little attenuation in the intensity of an optical signal after modulation. The optical modulator includes a 1×2 RZ pulse carver wherein optical phase shifters used for modulation are arranged along two arm waveguides held between a 1×2 coupler and a 2×2 coupler, two interferometric modulators connected respectively to two output ports of the 2×2 coupler, and a 2×1 coupler for combining the outputs of the interferometric modulators.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 22, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Goh, Takashi Yamada, Hiroshi Yamazaki, Yoshiyuki Doi
  • Patent number: 8705982
    Abstract: A digital filter processes an input signal to be conveyed through an optical communications system. The processing generates a predistorted signal using a compensation function that mitigates impairments of the optical communications system. The input signal has a sample period of T, while the predistorted signal has a sample period of T/2. The digital filter has a first branch including a respective first T-spaced filter for processing the input signal using the compensation function to generate a corresponding first output signal comprising nT/2 samples with n odd. A second branch includes a respective second T-spaced filter for processing the input signal with a delay of T relative to the first branch using the compensation function to generate a corresponding second output signal comprising nT/2 samples with n even. A combiner operates to combine the first and second output signals to generate the predistorted signal having a sample period of T/2.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Ciena Corporation
    Inventors: Ahmed M. Awadalla, Maurice O'Sullivan
  • Patent number: 8693876
    Abstract: A high-speed signal generator. A digital signal processing (DSP) block generates a set of N (where N is an integer and N?2) parallel digital sub-band signals, each digital sub-band signal having frequency components within a spectral range between 0 Hz and ±Fs/2, where Fs is a sample rate of the digital sub-band signals. A respective Digital-to-Analog Converter (DAC) processes each digital sub-band signal to generate a corresponding analog sub-band signal, each DAC having a sample rate of Fs/2. A combiner combines the analog sub-band signals to generate an output analog signal having frequency components within a spectral range between 0 Hz and ±NFs/2.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: April 8, 2014
    Assignee: Ciena Corporation
    Inventors: David Krause, Charles Laperle, Kim B. Roberts
  • Patent number: 8693870
    Abstract: The present invention provides a control apparatus including: an output monitor which monitors polarization-multiplexed output light output from a polarization multiplexing light modulator which modulates light of two systems independent of each other, polarization-multiplexes light signals of the two systems subjected to the light modulation, and outputs the polarization-multiplexed light signals; and a control unit which controls a delay time difference at a stage where the light signals of the two systems forming the polarization multiplexing light modulator are polarization-multiplexed based on a monitor result of the output monitor. The control apparatus controls a delay time difference between polarization channels easily or surely.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: April 8, 2014
    Assignee: Fujitsu Limited
    Inventor: Masahiro Yuki
  • Patent number: 8687973
    Abstract: A voltage generator (400) includes a resistor ladder including resistors (4000-4008) which divide a supplied voltage to generate a plurality of reference voltages, a resistor (4009) provided between a power supply voltage (VCC) and one terminal of the resistor ladder, and a resistor (4010) provided between a power supply voltage (VEE) and the other terminal of the resistor ladder.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: April 1, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hideyuki Nosaka, Munehiko Nagatani, Shogo Yamanaka, Kimikazu Sano, Koichi Murata, Kiyomitsu Onodera, Takatomo Enoki
  • Patent number: 8687974
    Abstract: Compensation for in-phase (I) and quadrature (Q) timing skew and offset in an optical signal may be achieved based on the correlation between derivatives of I and Q samples in the optical signal. The magnitude of the correlation between derivatives is measured to determine the presence of skew. Correlation between derivatives may be coupled with frequency offset information and/or with trials having additional positive and negative skew to determine presence of skew. Correlations are determined according to pre-defined time periods to provide for continued tracking and compensation for timing skew that may result from, for example, thermal drift.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: April 1, 2014
    Assignee: ViaSat, Inc.
    Inventors: Yuri Zelensky, Fan Mo
  • Publication number: 20140079395
    Abstract: A network element comprising a phase matched or phase controlled interconnect configured to receive a data signal sample, a Raman equalization transmitter, and a Raman crosstalk equalization conditioning circuit configured to generate a Raman mitigation signal using the data signal sample to be transmitted by the Raman equalization transmitter. Included is a method comprising multiplexing incoherent data signals with a video signal and a Raman mitigation signal to be co-propagated on a single optical fiber, wherein the Raman mitigation signal is selected to destructively interfere with Raman crosstalk noise induced on the video signal. Also included is a system comprising a video signal component configured to transmit a video signal, data stream signal components configured to transmit a data stream signals, a Raman crosstalk equalization system configured to transmit a Raman mitigation signal, and an optical multiplexer configured to multiplex the signals for co-propagation onto a single transmission fiber.
    Type: Application
    Filed: April 13, 2013
    Publication date: March 20, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventor: Futurewei Technologies, Inc.
  • Patent number: 8676062
    Abstract: In an optical transmission apparatus, a light-emitting laser varies its output wavelength when applied with a wavelength control signal for switching wavelengths. A wavelength controller outputs the wavelength control signal, and a filter unit subjects the wavelength control signal to a filtering process to remove high-frequency noise superimposed on the wavelength control signal. The filter unit stops the filtering process during the wavelength control and executes the filtering process during the operation.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Limited
    Inventors: Kenichi Nakamoto, Kazuyuki Mori
  • Patent number: 8666261
    Abstract: A photoelectric encoder includes a scale; a detector; alight application section; a pair of origin signal reception sections; and a signal processing section adapted to provide the maximum value of the signal level output from the origin signal reception sections by side lobe light occurring as reflected on the origin mark as a stipulated value, provide an effective area of origin detection between the first position at which output of one of the origin signal reception sections for outputting a larger signal level than the stipulated value earlier than the relative displacement becomes a larger signal level than the stipulated value and the first position at which output of the other origin signal reception section exceeds the stipulated value and then becomes a smaller signal level than the stipulated value, and configured to generate the origin detection signal in the effective area.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Mitutoyo Corporation
    Inventor: Tomotaka Takahashi
  • Patent number: 8660434
    Abstract: A printed circuit board includes a substrate, a signal output circuit formed on the substrate for outputting a clock signal, a shield for covering the signal output circuit, a power supply wiring for connecting the signal output circuit and a power source, and a trap filter provided to the power supply wiring and provided inside the shield, for attenuating a frequency component corresponding to a frequency of clock signal. The trap filter includes a resonance circuit having one portion of the power supply wiring, an inner-layer wiring of the substrate located below the one portion of the power supply wiring, an inner-layer ground wiring of the substrate located below the inner-layer wiring, and a via hole for connecting the one portion of the power supply wiring and the inner-layer wiring.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: February 25, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Osamu Kagaya, Koyu Takahashi, Taichi Kogure
  • Patent number: 8655188
    Abstract: A driver circuit includes a plurality of delay circuits and an inverter. The plurality of delay circuits delay branched driving signals. The inverter inverts at least one of the branched driving signals. At least one of the plurality of delay circuits is at least one variable delay circuit delaying a variable amount of delay. The output driving signal is output by combining the inverted signal of the branched driving signal output via at least one inverter and at least one non-inverted signal of the branched driving signals output from the delay circuits.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: February 18, 2014
    Assignee: Fujitsu Limited
    Inventors: Hideki Oku, Yukito Tsunoda
  • Publication number: 20140029957
    Abstract: An optical transmitter configured to perform digital signal equalization directed at mitigating the detrimental effects of a frequency roll-off in the transmitter's optical I-Q modulator. In various embodiments, a frequency-dependent spectral-correction function used for the digital signal equalization can be constructed to cause the spectrum of the modulated optical signal generated by the transmitter to have a desired degree of flatness in the vicinity of an optical carrier frequency and/or to at least partially mirror the frequency roll-off in the optical I-Q modulator.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: ALCATEL-LUCENT USA INC.
    Inventors: Chandrasekhar Sethumadhavan, Xiang Liu, Peter J. Winzer, Andrew Chraplyvy
  • Publication number: 20140021655
    Abstract: A drawing apparatus that performs drawing on a substrate with a plurality of charged particle beams includes a blanker array configured to blank the plurality of charged particle beams, respectively; a generating device configured to generate a blanking signal for controlling the blanker array and an error detection signal for the blanking signal; and a plurality of transmission paths for transmitting signals between the generating device and the blanker array. The plurality of transmission paths include a first transmission path for transmitting the blanking signal and a second transmission path for transmitting the error detection signal. The generating device is configured to transmit a blanking signal and an error detection signal corresponding to the blanking signal via the first transmission path and the second transmission path, respectively, to the blanker array in parallel.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 23, 2014
    Inventors: Yoshihiro Hirata, Hiro Norikane
  • Patent number: 8634724
    Abstract: The invention relates to the field of optical transmission systems. In particular, the invention relates to a system and a method for adjusting an optical OFDM transmission system in a power optimized manner. An optical OFDM transmitter (310) operating at an overall bit-rate is provided. It comprises an adjustable mapping unit (314) associated with one of N OFDM subcarriers, operable to map M bits of a digital input signal (360) into a constellation point, thereby yielding a subcarrier signal of the corresponding OFDM subcarrier. Furthermore, it comprises an adjustable transformation unit (315, 316), operable to transform the subcarrier signal to yield an electrical output signal. In addition, the OFDM transmitter comprises an electrical-to-optical converter (324, 325), operable to convert the electrical output signal into an optical output signal.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: January 21, 2014
    Assignee: Alcatel Lucent
    Inventor: Henning Buelow
  • Patent number: 8630545
    Abstract: Disclosed is an optical system including a polychromatic optical source emitting multiple transverse modes, an optical link having at least one portion of multimode optical fiber, and an optical device positioned between the optical source and the input of the multimode optical fiber. The optical device can modify the distribution of the energy coupling of the transverse modes emitted by the source in the propagation modes of the multimode optical fiber. The optical system makes it possible to use low-cost transverse multimode optical sources for producing high-bandwidth Ethernet transmission networks having excellent performance.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: January 14, 2014
    Assignee: Draka Comteq, B.V.
    Inventors: Asghar Gholami, Denis Molin, Pierre Sillard, Yves Lumineau
  • Patent number: 8620158
    Abstract: A communications device includes a transmitter device including first and second optical sources, a first optical coupler coupled to the first and second optical sources, and a first modulator coupled to the first optical coupler and to modulate a combined carrier signal including the first and second optical carrier signals with an RF input signal. The communications device includes a receiver device having a second modulator to further modulate the modulated combined carrier signal with an LO signal, a FM-PM discriminator coupled to the second modulator and to convert the modulated combined carrier signal to an intensity modulated combined carrier signal based upon the LO signal, a second optical coupler coupled to the FM-PM discriminator and to generate first and second intensity modulated carrier signals, and an optical-to-electrical converter coupled to the second optical coupler and to generate an IF signal.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: December 31, 2013
    Assignee: Harris Corporation
    Inventors: Robert C. Peach, Charles Middleton, Richard DeSalvo, Scott L. Meredith
  • Patent number: 8611763
    Abstract: A method (10) of compensating phase noise in a coherent optical communications network. The method comprises: receiving a traffic sample (12); receiving an optical carrier and determining a phase noise estimate for the optical carrier (14); and removing the phase noise estimate from the traffic sample to form a phase noise compensated traffic sample (16).
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: December 17, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Marco Secondini, Tommaso Foggi, Giulio Colavolpe, Gianluca Meloni, Luca Poti, Enrico Forestieri
  • Patent number: 8606114
    Abstract: The present invention provides a method and apparatus for phase aligning two optical signals within an optical transmitter to each other (and, in some embodiments, to a pulse carved optical signal) using integrated complimentary taps and a dither signal. The phase of a first signal may be intentionally offset relative to the phase of a second signal. Based on the offset, a correction factor may be calculated. The correction factor may be used to shift the phase of the first signal and/or the second signal in order to generally align the signals. This procedure may be automatically performed in a feedback loop to cause the signals to come into alignment and maintain the alignment of the signals during operation of the transmitter.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: December 10, 2013
    Assignee: Oclaro Technology Limited
    Inventors: Amyas Daniel Holroyd, Anthony George Foster, Robert Griffin
  • Patent number: 8599051
    Abstract: A time-interleaved A/D converter apparatus has a primary signal A/D converter circuit group that is time-interleaved with a combination of N A/D converter circuits, a correction signal generation part operable to receive the input analog signal and a 1/m-sampling signal having a speed that is 1/m of a rate of the sampling signal inputted to the primary signal A/D converter circuit group, to extract a dispersion of a transmission line that is immanent in the input analog signal, and to output the dispersion as a dispersion compensation control signal used for digital signal compensation, and a signal processing part operable to convert the N digital signals into one digital signal based upon the dispersion compensation control signal and to compensate a dispersion included in the converted digital signal.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: December 3, 2013
    Assignee: NEC Corporation
    Inventors: Nobuhide Yoshida, Hidemi Noguchi
  • Patent number: 8594511
    Abstract: A method and apparatus for accounting for phase differences in a transmit path of an optical system is provided. A transmit control system nullifies phase errors in signals propagating from a coherent source to phase samplers and back to a transmitter sensor. A small time-dependent length modulation is applied to a feed fiber of each aperture and this modulation enables a hill-climbing servo loop to increase, or in some cases even maximize, a detected intensity. This results in a particular relationship between the phases at all the phase-sampling points. The optical system is then calibrated so that this relationship corresponds to in-phase beams when the optical system is aimed at boresight.
    Type: Grant
    Filed: November 30, 2008
    Date of Patent: November 26, 2013
    Assignee: Raytheon Company
    Inventors: Irl W. Smith, Kirk L. Fisher, Evelyn W. Kapusta
  • Publication number: 20130302038
    Abstract: A dispersion correction circuit is provided for use with an input driving signal. The dispersion correction circuit includes an input portion, an output portion and a filter portion. The input portion is arranged to receive the input driving signal. The output portion can output an output signal based on the input driving signal. The filter portion is disposed between the input portion and the output portion. The filter portion includes a varactor, a DC bias portion, and a transformer. The DC bias portion provides a DC bias to the varactor.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Applicant: GENERAL INSTRUMENT CORPORATION
    Inventor: Jun Wang
  • Publication number: 20130302039
    Abstract: A dispersion correction circuit is provided for use with an input driving signal. The dispersion correction circuit includes an input portion an output portion and a filter portion. The input portion is arranged to receive the input driving signal. The output portion can output an output signal based on the input driving signal. The filter portion is disposed between the input portion and the output portion. The filter portion includes a first varactor, a DC bias portion, and a second varactor. The DC bias portion provides a DC bias to the first varactor. The first varactor is arranged in a first polarity direction, and the second varactor is arranged in a second polarity direction that is the same as the first direction.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Applicant: General Instrument Corporation
    Inventor: Jun Wang
  • Patent number: 8571137
    Abstract: Distortion and aliasing reduction for digital to analog conversion. Synthesis of one or more distortion terms made based on a digital signal (e.g., one or more digital codewords) is performed in accordance with digital to analog conversion. The one or more distortion terms may correspond to aliased higher-order harmonics, distortion, nonlinearities, clipping, etc. Such distortion terms may be known a priori, such as based upon particular characteristics of a given device, operational history, etc. Alternatively, such distortion terms may be determined based upon operation of a device and/or based upon an analog signal generated from the analog to conversion process. For example, frequency selective measurements made based on an analog signal generated from the digital to analog conversion may be used for determination of and/or adaptation of the one or more distortion terms. One or more DACs may be employed within various architectures operative to perform digital to analog conversion.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 29, 2013
    Assignee: Broadcom Corporation
    Inventors: Thomas J. Kolze, Bruce J. Currivan, Ramon A. Gomez, Kevin Lee Miller
  • Patent number: 8559828
    Abstract: Methods, systems, and devices are described for formatting of data streams to be transmitted over fiber optic channels, and for processing received optical signals. A data transmission device may include a digital coding and modulation module that encodes a digital data stream, inserts unique words into the digital data stream, and modulates the encoded data stream and unique words onto optical channels for transmission over an optical fiber. A demodulation and decoding device may include a unique word identification module that identifies the unique words inserted in each optical channel stream, determines one or more characteristics of the plurality of optical channels based on the unique words, and provides the one or more characteristics to one or more other modules in the demodulator and decoding device.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: October 15, 2013
    Assignee: ViaSat, Inc.
    Inventors: Fan Mo, Sameep Dave
  • Patent number: 8559820
    Abstract: A complex orthogonal code in the present invention is one in which each row of a square matrix of N rows and N columns in which an element of an mth row and nth column is exp[2?j(m?1)(n?1)/N] (where j is an imaginary unit) is adopted as a code word. An optical orthogonal code for Optical Code Division Multiplexing/Optical Code Division Multiple Access (OCDM/OCDMA) is realized by a train of N-number of optical pulses corresponding to the argument (phase) of the code elements. An optical transmitter or optical receiver includes an optical correlator provided with a sampled Bragg grating having a plurality of Bragg gratings disposed serially at regular intervals inside an optical waveguide. The optical correlator is allocated any one of the code words. In the optical transmitter, an optical signal to be transmitted is encoded by the optical correlator. In the receiver, a received optical signal is decoded by the optical correlator.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: October 15, 2013
    Assignee: University of Yamanashi
    Inventor: Masanori Hanawa
  • Publication number: 20130243442
    Abstract: A characteristic compensation method includes obtaining compensation information when degradation of a transmission characteristic of an optical transmission path of a received light signal is compensated for by using digital signal processing with respect to an electric signal obtained by photoelectrically converting the light signal, calculating an compensation value for a characteristic compensation device that optically compensates for degradation of the transmission characteristic to start characteristic compensation, based on the compensation information with respect to the light signal, setting the compensation value in the characteristic compensation device, and switching a state in which compensation is done using the digital signal processing to a state in which compensation is done using the characteristic compensation device after the setting of the compensation value is completed.
    Type: Application
    Filed: December 14, 2012
    Publication date: September 19, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Kiyotoshi NOHEJI
  • Patent number: 8526817
    Abstract: A communications device includes a transmitter device having an optical source to generate an optical carrier signal, and a first modulator coupled to the optical source and to modulate the optical carrier signal with a radio frequency (RF) input signal, and an optical waveguide coupled to the transmitter device. The communications device includes a receiver device coupled to the optical waveguide and including a second modulator to further modulate the modulated optical carrier signal with a local oscillator (LO) signal, a frequency modulation-phase modulation (FM-PM) discriminator coupled to the second modulator and to convert the modulated optical carrier signal to an intensity modulated optical carrier signal based upon the LO signal, and an optical-to-electrical converter coupled to the FM-PM discriminator and to generate an intermediate frequency (IF) signal based upon the intensity modulated optical carrier signal.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 3, 2013
    Assignee: Harris Corporation
    Inventors: Charles Middleton, Richard DeSalvo, Scott L. Meredith, Robert C. Peach
  • Patent number: RE44647
    Abstract: An optical transmitter for generating a modulated optical signal for transmission over a fiber optic link to a remote receiver including a laser; an input coupled to the laser for directly amplitude modulating the laser with an analog RF signal to produce an output optical signal including an amplitude modulated information-containing component; and a phase modulator coupled to the output of the laser for reducing the distortion present in the received optical signal at the remote receiver.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: December 17, 2013
    Assignee: Emcore Corporation
    Inventor: John Iannelli