Including Optical Element (e.g., Lens, Mirror, Etc.) Patents (Class 398/212)
  • Patent number: 8861983
    Abstract: Analog transport of a wideband RF signal is effectively and efficiently provided using a coherent, narrowband optical carrier. The wideband RF signal is phase modulated onto the carrier at a first location. Non-coherent discrimination is applied to the modulated carrier at a second, different location to generate an amplitude modulated optical signal where the amplitude modulation represents the original wideband RF signal. A photo-detector is then used to regenerate a representation of the original wideband RF signal. The method and apparatus of the invention can be applied in systems dedicated to the analog RF transport or in wavelength division multiplexed systems which also provide transport for other analog or digital data.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: October 14, 2014
    Assignee: 3 Phoenix, Inc.
    Inventor: Michael J. Dickerson
  • Publication number: 20140270811
    Abstract: A multi-channel optical receiving module includes a first substrate disposed on a bench, optical fibers disposed in grooves of the first substrate, a first lens disposed on the first substrate and collimating optical signals through the optical fibers, a second substrate disposed on the bench at a side of the first substrate, a light receiving device disposed on the second substrate, a second lens disposed over the light receiving device, a mirror reflecting the optical signals between the first lens and the second lens, and a block fixing the mirror. The block includes through-holes transmitting the optical signals between the first and second lenses without refraction of the optical signals.
    Type: Application
    Filed: July 11, 2013
    Publication date: September 18, 2014
    Inventors: Mi-Ran PARK, Hyun Soo Kim, Jong Sool Jeong, O-Kyun Kwon
  • Patent number: 8811829
    Abstract: A photon detection system including a photon detector configured to detect single photons, the photon detector being gated such that it produces a periodic output signal and the gating signal having a frequency of at least 50 MHz. The system further includes a combiner for combining the signal from one period with signals from other periods such that periodic variations in the output signal of the detector are suppressed.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: August 19, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Zhiliang Yuan, Andrew James Shields
  • Patent number: 8805206
    Abstract: In a coherent optical receiver of an optical communications system, methods and systems for receiving a data signal x(t) modulated on an optical signal. A linearly polarized LO light is generated, which has a frequency of f1=f0±?f, where f0 is a frequency of a narrowband carrier of the optical signal, and ?f corresponds with a band-width fB of the data signal x(t). The LO light and a received light of the optical signal are heterodyned on a photodetector. An analog signal generated by the photodetector is low-pass filtered to generate a filtered signal, using a filter characteristic having a sharp cut-off at a frequency of ?f+nfB, where n is an integer multiple. An analog-to digital (A/D) converter samples the filtered signal at a sample rate of 2(?f+nfB) to generate a corresponding multi-bit digital sample stream. The multi-bit digital sample stream is digitally processed to recover respective In-Phase and Quadrature components of the received light of the optical signal.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: August 12, 2014
    Assignee: Ciena Corporation
    Inventors: Kim B. Roberts, Shahab Oveis Gharan
  • Patent number: 8805193
    Abstract: According to one exemplary embodiment, an apparatus, system and method for a remotely powered optical output label is disclosed. The system includes a transmitting device including at least one transmitting antenna and a power source. A receiving label is in remote communication with the transmitting device, the receiving label including a receiving antenna and a capacitor connected to at least one optical element. The optical element may be selectively controlled and powered to variably emit light using energy transmitted by the transmitting device.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: August 12, 2014
    Assignee: Avery Dennison Corporation
    Inventors: Ian J. Forster, Craig W. Potter, Victor P. Holbert
  • Patent number: 8787775
    Abstract: In one embodiment, the opto-electronic assembly is a hybrid integrated circuit having an array of avalanche photodiodes (APDs) that are electrically coupled to a corresponding array of transimpedance amplifiers (TIAs), with both the APDs and TIAs being mounted on a common ceramic substrate. The opto-electronic assembly further has an optical subassembly comprising an arrayed waveguide grating (AWG) and an array of turning mirrors, both attached to a temperature-control unit in a side-by-side arrangement and flip-chip mounted on the substrate over the APDs. The opto-electronic assembly employs a silicon-based submount inserted between the APDs and the substrate to accommodate the height difference between the APDs and the TIAs. The submount advantageously enables the placement of APDs in relatively close proximity to the turning mirrors while providing good control of the APD's tilt and offset distance with respect to the substrate.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 22, 2014
    Assignee: Alcatel Lucent
    Inventor: Mark P. Earnshaw
  • Patent number: 8787713
    Abstract: According to aspects of embodiments, an optical device includes a first coupler configured to split an optical signal; a second coupler configured to cause optical signals to interfere with each other, a first waveguide configured to couple the first coupler to the second coupler, the first waveguide includes a first phase shifter region having a section narrower in width than an end of the first phase shifter region, the second waveguide includes a second phase shifter region having a section wider in width than an end of the second phase shifter region.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: July 22, 2014
    Assignee: Fujitsu Limited
    Inventor: Seok-Hwan Jeong
  • Publication number: 20140199064
    Abstract: An optical module include a first substrate including a first surface over which a light emitting element is mounted, an optical waveguide provided with a second surface of the first substrate, a mirror configured to reflect output light of the light emitting element to the optical waveguide, a second substrate, and a light receiving element configured to receive leakage light produced when the output light from the light emitting element is transmitted through the mirror disposed in the optical waveguide, the light receiving element being mounted over the second substrate different from the first substrate.
    Type: Application
    Filed: November 14, 2013
    Publication date: July 17, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Takatoshi YAGISAWA, Takashi SHIRAISHI
  • Patent number: 8781324
    Abstract: A coherent optical receiver circuit is disclosed in which various components of the optical receiver may be provided or integrated, in one example, on a common substrate. Further integration is achieved by incorporating various optical demultiplexer designs that are relatively compact and conserve space on the surface of the substrate. The optical receiver circuit may be used to demultiplex quadrature phase shift keying (QPSK) optical signals.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: July 15, 2014
    Assignee: Infinera Corporation
    Inventors: Radhakrishnan L. Nagarajan, Masaki Kato, Jeffrey T. Rahn
  • Publication number: 20140193165
    Abstract: Embodiments of the invention are generally directed to electronic alignment of optical signals. An embodiment of an apparatus includes an array of photo sensors; a bus coupled with the array, the bus including detection circuitry for each photo sensor to generate a signal in response to the photo sensor receiving an optical signal; and a processing component to process a group of signals, the group of signals being signals generated by the detection circuitry for a subset of the photo sensors in response to the photo sensors receiving the optical signal, to generate an output signal.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 10, 2014
    Applicant: Silicon Image, Inc.
    Inventor: Kihong Kim
  • Patent number: 8774641
    Abstract: The first photon in single-photon state is divided into two components by the half beam splitter, and the first component is sent to the sender while the second component is sent to the receiver. The sender measures the first component of the first photon when he sends “1”. The sender doesn't measure the first component of the first photon when he sends “0”. The receiver makes the second component of the first photon enter into the Sagnac interferometer, and the receiver also makes the reference light enter into the Sagnac interferometer at the same time. The receiver makes the second component of the first photon interact with the reference light in the nonlinear optical medium arranged in the Sagnac interferometer. The receiver knows the signal from the phase modulation of the reference light caused by the interaction with the second component of the first photon.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: July 8, 2014
    Inventor: Narumi Ohkawa
  • Patent number: 8768180
    Abstract: An optical sampling arrangement for high-speed measurement of the time-varying electric field of an optical input signal utilizes coherent mixing of the optical input signal with a reference laser source in a phase-diverse optical hybrid solution, followed by optical sampling of the coherently-mixed fields at the output of the optical hybrid. The generated streams of optical samples are then detected and signal processed in order to reconstruct a sampled version of the electric field of the original optical input signal.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 1, 2014
    Assignee: ExFo, Inc.
    Inventors: Mathias Westlund, Mats Skold, Henrik Sunnerud, Peter Andrekson, Bernard Ruchet
  • Patent number: 8755696
    Abstract: A control apparatus for controlling an optical receiver having delay paths comprises an optical variable attenuator configured to generate a variable signal and provide the variable signal to the optical receiver; a fine control voltage controller configured to generate a variable fine control voltage and input the variable fine control voltage to one path of the delay paths of the optical receiver; a photo-diode voltage monitor configured to detect a first voltage value and a second voltage value; a bit error rate (BER) checker configured to estimate a bit error rate (BER) according to a signal output from the optical receiver; and a controller configured to set a value of the variable signal and a value of the variable fine control voltage and to estimate the fine control voltage that makes the bit error rate a minimum according to the first voltage value and the second voltage value.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: June 17, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Jyung-Chan Lee
  • Patent number: 8750727
    Abstract: A particular method includes directing wave energy toward a collection region inside a collector by receiving the wave energy from outside the collector through an at least partially transparent portion of the collector and reflecting the wave energy toward the collection region using an at least partially reflective portion of the collector. The method also includes receiving the wave energy at a receiver disposed in the collection region.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: June 10, 2014
    Assignee: The Boeing Company
    Inventor: Nathan D. Hiller
  • Patent number: 8737841
    Abstract: The sender and the receiver prepare two photons in the entangled state of polarization. The first photon of the two photons is sent to the sender and the second photon of the two photons is sent to the receiver. The sender measures the first photon after the first photon pass the polarizer in which the vertical polarized photon can pass, when the sender sends the signal “1”. The sender measures the first photon after the first photon pass the polarizer in which the 45 degrees polarized photon can pass, when the sender sends the signal “0”. The receiver measures the second photon by the balanced homodyne measurement. And, the receiver knows the signal from the absolute value of the result of the balanced homodyne measurement.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 27, 2014
    Inventor: Narumi Ohkawa
  • Patent number: 8731414
    Abstract: The present invention relates to an optical receiver (1) for receiving alternating-light data signals and for storing electrical energy obtained from extraneous light, having a photodiode (2) for receiving light, which comprises extraneous light and an alternating-light data signal component with a higher frequency in comparison to the extraneous light, and for converting the light into a photocurrent (IP) which comprises a data signal current (IN) and an extraneous light current (IF) said receiver additionally comprises a coupling unit (3) for coupling in and separating the data signal current generated by the optical alternating-light data signal component from the extraneous light current generated by the extraneous light, an amplifying unit (4) for amplifying the data signal current and an energy storage unit (5) which is charged by the extraneous light current (IF) and which includes a circuit for increasing voltage, wherein the energy charged in the energy storage unit (5) is used for at least partially
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: May 20, 2014
    Assignee: Mechaless Systems GmbH
    Inventors: Rolf Melcher, Uwe Hill
  • Publication number: 20140133871
    Abstract: An optical receiver module capable of increasing the range in which the error in distance between a collecting lens and a light receiving section is allowed is provided. In the optical receiver module according to the invention, the optical receiver includes a semiconductor substrate to which the light from the collecting lens is input, and through which the light passes, and a light receiving section disposed on a side (a reverse side) of the semiconductor substrate, the side being further from the collecting lens, and adapted to receive the light transmitted through the semiconductor substrate, and then convert the light into an electrical signal. On a side (an obverse side) of the semiconductor substrate, the side being nearer to the collecting lens, there is formed a lens surface adapted to converge light from the collecting lens toward the light receiving section.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: Oclaro Japan, Inc.
    Inventors: Koki IEMURA, Takashi TOYONAKA, Hiroshi HAMADA
  • Patent number: 8718476
    Abstract: There is provided a method and apparatus for tuning an optical discriminator to the carrier frequency of an optical signal to allow superior reception of said signal. The carrier frequency of the signal is dithered during a test phase in order to provide information that allows a subsequent tuning phase to optimise the reception of the optical signal, as measured by a signal quality metric. The tuning phase may comprise adjustment of one or both of the carrier frequency and the optical discriminator.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: May 6, 2014
    Assignee: Xtera Communications, Inc.
    Inventors: Steven Webb, David Winterburn
  • Patent number: 8711359
    Abstract: A delay interferometer includes first and second optical paths into which incident signal light is split, a first converter including one or more conversion parts to convert the signal light on the first optical path into circularly polarized light and to convert the circularly polarized light into linearly polarized signal light, a phase adjuster to shift an optical phase of the circularly polarized light through a magneto-optic effect, and a second converter to convert a polarization state of the signal light on the second optical path into substantially the same polarization state as a polarization state of the linearly polarized signal light.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 29, 2014
    Assignee: Fujitsu Optical Components Limited
    Inventor: Nobuhiro Fukushima
  • Patent number: 8712256
    Abstract: Various embodiments of a coherent receiver including a widely tunable local oscillator laser are described herein. In some embodiments, the coherent receiver can be integrated with waveguides, optical splitters and detectors to form a monolithic optical hetero/homodyne receiver. In some embodiments, the coherent receiver can demodulate the full phase information in two polarizations of a received optical signal over a range of optical wavelengths.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 29, 2014
    Assignee: Freedom Photonics, LLC.
    Inventors: Jonathon Barton, Milan Mashanovitch
  • Publication number: 20140112668
    Abstract: A stamped metal optic is provided that is a unitary, or integrally formed, part that includes at least a bench for holding at least one optoelectronic component and a reflector for folding an optical pathway. The stamped metal optic is formed of a piece of metal that is shaped using known metal stamping techniques. The stamped metal optic preferably has at least one fiducial mark formed therein that is used for placement of the optoelectronic device on the bench to ensure that the optoelectronic device is precisely aligned with the reflector. Because metal objects can be formed relatively inexpensively with high precision using known stamping techniques, the stamped metal optics can be manufactured with high precision at relatively low cost.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd .
    Inventor: Laurence R. McColloch
  • Patent number: 8705983
    Abstract: An optical communication system for generating and transmitting a modulated optical signal in which light emitted by a light source is modulated by an optical modulator in accordance with an input electrical signal. A bias signal generator applies a bias electrical signal to bias the optical modulator at a bias angle away from quadrature. The bias signal generator monitors the input electrical signal and adjusts the applied bias electrical signal in dependence on the input electrical signal. The system further includes a receiver which may include an equalizer coupled to the photodetector of the receiver.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: April 22, 2014
    Assignee: Emcore Corporation
    Inventors: Ronald T. Logan, Jr., Eva Peral, Patrick J. Cawthorne, Gustav Witzel, Frank Weiss
  • Patent number: 8699889
    Abstract: Systems and methods of polarization demultiplexing are disclosed. One such method receives a transmitted polarization-multiplexed optical signal The polarization-multiplexed has multiple polarizations, each of which represents an independent data stream. The method converts the polarization-multiplexed optical signal to a corresponding polarization-multiplexed electrical signal. The method determines an inverse transformation matrix that meets an independent component analysis (ICA) criterion. The method applies the inverse transformation matrix to the polarization-multiplexed electrical signal, which produces a polarization-demultiplexed electrical signal. The method phase estimates the polarization-demultiplexed electrical signal to recover the data stream.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: April 15, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Xiaobo Xie, Guifang Li, Fatih Yaman
  • Patent number: 8687983
    Abstract: A laser communication system and method are disclosed. The laser communication system includes a laser receiver system to receive a frequency-shift keyed (FSK) optical signal encoded with a plurality of data signals. The laser receiver system including an FSK differential detection system that includes a plurality of differential detection filters that can each receive the FSK optical signal and generate an output. The FSK differential detection system can demodulate the FSK optical signal into a multi-bit digital code corresponding to a frequency of the FSK optical signal based on the output of each of the plurality of differential detection filters.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: April 1, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M Bratkovski, Jacob Khurgin
  • Patent number: 8660440
    Abstract: Optical communications networks rely on optical receivers to demodulate optical signals and convert the demodulated optical signal into an electrical signal. Optical receivers may be associated with one or more characteristics which can be made to vary during a transmission of an optical signal in order to improve the quality of the received signal. The present invention may determine a value for the characteristics based on an amount of optical filtering on a communications link which transmits the signal. The value for the characteristics of the receiver may be determined by observing a characteristic of a detector associated with the receiver, such as a ratio of the average photocurrents of the constructive and destructive ports of the detector. The observed characteristic of the detector may be mapped to a predetermined value for the characteristic of the receiver in a lookup table, which may be queried during operation of the receiver.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 25, 2014
    Assignee: Oclaro (North America), Inc.
    Inventors: Pavel Mamyshev, Joel R. Edinberg
  • Patent number: 8655196
    Abstract: This invention relates to a phase control circuit for an optical receiver (1). The phase control circuit (9, 19) comprises a non-linear element (22) and a power detector (24). The non-linear element (22) has a rectifying characteristic, inputs the received electrical signal (7, 17) and provides a rectified signal at its output. The power detector (24) provides an error signal which is used to obtain a phase control signal (5) which is output by the phase control circuit. The invention further relates to a corresponding method for phase control of an optical receiver (1).
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: February 18, 2014
    Assignee: Cisco Technology, Inc.
    Inventor: Christopher Fludger
  • Patent number: 8655192
    Abstract: A polarization diversity optical system device includes: a polarization split unit that splits a first coherent light into a first split light and a second split light whose polarization components are orthogonal to each other, and splits a second coherent light into a third split light and a fourth split light whose polarization components are orthogonal to each other; and a light combining unit that combines the first split light with one of the third split light and the fourth split light, and combines the second split light with the other of the third split light and the fourth split light.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: February 18, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Kentaro Osawa, Hideharu Mikami
  • Patent number: 8649690
    Abstract: A system configured to maintain a consistent local-oscillator-power-to-primary-signal-power ratio (LO/SIG ratio).
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: February 11, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Soren Gehrke, Theodor Kupfer, James Whiteaway
  • Publication number: 20140016948
    Abstract: Provided is an optical receiver including a first delay interferometer, a second delay interferometer, and an input light splitting portion for inputting modulated light. The first delay interferometer includes a first light splitting portion for splitting the input light into first light and second light, a first reflecting portion and a second reflecting portion for causing the first light and the second light to return to the first light splitting portion. The second delay interferometer includes a second light splitting portion for splitting the input light into third light and fourth light, a third reflecting portion and a fourth reflecting portion for causing the third light and the fourth light to return to the second light splitting portion. A region between the first light splitting portion and the second reflecting portion intersects with a region between the second light splitting portion and the fourth reflecting portion.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 16, 2014
    Inventors: Koki IEMURA, Takuma BAN, Hideharu MIKAMI, Kentaro OSAWA
  • Publication number: 20140016949
    Abstract: An optical signal detection circuit (10) includes an amplification circuit (11) that differentially amplifies an electrical signal (Tout) corresponding to the pulse train of an optical signal (Pin) and outputs a differential output signal (Aout), and a comparator (12) that compares the voltage value of the positive-phase signal of the differential output signal (Aout) with the voltage value of the negative-phase signal and outputs a pulsed comparison output signal (Cout) corresponding to the comparison result. The amplification circuit (11) includes a current addition circuit (11E) that adjusts a DC load current to generate a positive-phase signal (Aout+) and a negative-phase signal (Aout?) of the differential output signal (Aout) in accordance with an adjusted voltage value from an external adjusted voltage source (Vadj) and adjusts the DC bias of the positive-phase signal (Aout+) and the DC bias of the negative-phase signal (Aout?).
    Type: Application
    Filed: January 25, 2012
    Publication date: January 16, 2014
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hiroshi Koizumi, Masafumi Nogawa, Yusuke Ohtomo
  • Publication number: 20140010556
    Abstract: To enable optical line terminal to detect input disconnection of optical burst signal accurately in spite of changes of transmission rate of optical-burst signal received from optical network unit, OLT (optical line terminal) includes photo-detector for converting the optical-burst signal received to current signal; preamplifier for converting the current signal to voltage signal; input disconnection detecting circuit for comparing output amplitude of preamplifier with threshold, and for outputting input disconnection signal indicating disconnection of input of the optical-burst signal; and control circuit for controlling conversion gain of preamplifier in a manner that the conversion gain becomes conversion gain corresponding to the transmission rate of the optical-burst signal received, and for controlling input disconnection detecting circuit in a manner that it outputs the input disconnection signal in response to the threshold corresponding to the transmission rate of the optical-burst signal received.
    Type: Application
    Filed: September 9, 2011
    Publication date: January 9, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventor: Satoshi Yoshima
  • Patent number: 8620164
    Abstract: Described herein is a hybrid III-V Silicon laser comprising a first semiconductor region including layers of semiconductor materials from group III, group IV, or group V semiconductor to form an active region; and a second semiconductor region having a silicon waveguide and bonded to the first semiconductor region via direct bonding at room temperature of a layer of the first semiconductor region to a layer of the second semiconductor region.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: December 31, 2013
    Assignee: Intel Corporation
    Inventors: John Heck, Hanan Bar, Richard Jones, Hyundai Park
  • Patent number: 8588612
    Abstract: A optical detection apparatus includes: an optical splitting unit configured to split a seed lightwave and split upward signal light generated by an optical network unit, based on the seed lightwave; a first control unit configured to control polarizations of the split seed lightwaves based on a first electrical signal; a second control unit configured to control phases of the split seed lightwaves based on a second electrical signal; an optical coupling and signal conversion unit configured to couple the seed lightwaves, of which the polarization and phase are controlled, and the split upward signal lights, convert the coupled optical signals into the first and second electrical signals, and transfer the first and second electrical signals to the first and second control units, respectively; and a signal detection unit.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 19, 2013
    Assignee: KT Corporation
    Inventors: Soo-Jin Park, Young-Bok Choi
  • Publication number: 20130302042
    Abstract: An optical receiver is provided with a photoelectric converter that outputs an electrical signal according to light that is received by a light-receiving region. The optical receiver is provided with a condensing lens and optical filter that are located in an optical path from where signal light enters towards the light-receiving region. The condensing lens condenses the signal light onto the light-receiving region. The optical filter reflects light having a first wavelength that is included in the signal light using a front surface thereof and reflects light having a second wavelength that is included in the signal light using a rear surface thereof that faces the front surface so that the light is emitted through the front surface.
    Type: Application
    Filed: September 12, 2012
    Publication date: November 14, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Nobuo Ohata, Mizuki Shirao, Keita Mochizuki
  • Publication number: 20130279920
    Abstract: A fiber optic cable and connector includes a bundle of optical fibers and a ferrule associated with the bundle. The ferrule has an insertable portion and an external portion, the insertable portion retaining the respective proximal ends of the optical fibers on substantially the same plane with one another, the plane being substantially perpendicular to the longitudinal access of the ferrule. A collar around the external portion of the ferrule has a positioning means with a slot, a recess, a hole, a tongue, a pin, a shaft, a bar, a notch, a flat, a detent, a bump, a ridge or a groove. The positioning means engages with at least one positioning element, and provides a repeatable rotational alignment of the fibers with respect to a receiver when engaged with the positioning element.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 24, 2013
    Inventor: Donald G. Herzog
  • Patent number: 8559820
    Abstract: A complex orthogonal code in the present invention is one in which each row of a square matrix of N rows and N columns in which an element of an mth row and nth column is exp[2?j(m?1)(n?1)/N] (where j is an imaginary unit) is adopted as a code word. An optical orthogonal code for Optical Code Division Multiplexing/Optical Code Division Multiple Access (OCDM/OCDMA) is realized by a train of N-number of optical pulses corresponding to the argument (phase) of the code elements. An optical transmitter or optical receiver includes an optical correlator provided with a sampled Bragg grating having a plurality of Bragg gratings disposed serially at regular intervals inside an optical waveguide. The optical correlator is allocated any one of the code words. In the optical transmitter, an optical signal to be transmitted is encoded by the optical correlator. In the receiver, a received optical signal is decoded by the optical correlator.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: October 15, 2013
    Assignee: University of Yamanashi
    Inventor: Masanori Hanawa
  • Patent number: 8548338
    Abstract: The present application describes methods and systems for use in a communications network. More specifically, a method of deploying an optical demodulator arrangement having at least one interferometer in a network that transmits an optical signal is provided. The optical signal may include one or more on-off-keyed signals and one or more DMPSK signals. In some embodiments, the DMPSK signal is a DQPSK signal. The network may include one or more of fiber spans carrying the signals. The interferometer may have a first optical path and a second optical path and a time delay is formed between the first and second optical paths. The method may involve determining a cross-talk penalty that results from cross-phase modulation between the channels, and determining a time delay value for the interferometer. The time delay value may be determined based at least in part on determined the cross-talk penalty.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: October 1, 2013
    Assignee: Oclaro Technology Limited
    Inventors: Nicholas John Doran, Donald Scott Govan, Brian Garrett
  • Patent number: 8543013
    Abstract: Technology for detecting an optical data signal carried in a combined optical signal that comprises a carrier optical signal modulated by the optical data signal and also comprises ASE noise. The proposed optical data detector/receiver is provided with an SHG device adapted to generate a second harmonic optical signal of the carrier optical signal modulated by the data signal. In the signal, generated by the SHG, the ASE noise will be essentially reduced.
    Type: Grant
    Filed: April 5, 2009
    Date of Patent: September 24, 2013
    Assignee: ECI Telecom Ltd.
    Inventors: Uri Mahlab, Michael Gutin
  • Patent number: 8538271
    Abstract: An apparatus comprising an optical receiver configured to receive an optical signal, and a combined level and clock recovery circuit coupled to the optical receiver and configured to update a signal threshold and a clock phase substantially simultaneously. Also included is an apparatus comprising at least one processor configured to implement a method comprising recognizing reception of a signal, and adjusting a threshold and a clock phase associated with the signal using a rising time for the signal and a falling time for the signal. Also included is a method comprising receiving a signal, and adjusting a threshold level of the signal to establish level recovery using a clock recovery scheme.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: September 17, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventor: Frank J. Effenberger
  • Patent number: 8526829
    Abstract: A PPM transmitter includes an optical clock generator for generating equally-spaced optical pulses with a sampling period T; an encoder for transforming an incoming waveform U(t) into a linear combination V(t) of U(t) and a delayed output V(t?kT) according to a rule V(t)=U(t)+aV(t?kT), where k is a positive integer, V(t) is voltage generated by the encoder and a is a coefficient; and an optical delay generator for delaying optical pulses generated by the optical clock generator in proportion to the voltage V(t), such that ?tn=bV(t), where b is another coefficient and where ?tn is the amount of delay imposed by the optical delay generator. The PPM transmitter functions with a PPM receiver for communicating data without the need to transmit or otherwise provide a clock signal. The PPM receiver decodes an original series of the delayed optical pulses Q(t) and a second series Q(t?ckT) delayed by ckT where c is a coefficient.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: September 3, 2013
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel Yap, Irina Ionova
  • Patent number: 8526832
    Abstract: Shuttering eyewear used to view 3D imagery and/or dual-view images may utilize an IR receiver filter with moderate to wide bandwidth to pass data sidebands of an on-off keying signal while strongly rejecting nearby interference sources. Filtering of the signal may be achieved via a circuit for passing data sidebands of infrared signals. The circuit may include a band pass filter with a low value of Q operable to filter out a first type of interference signal from a signal, a plurality of mixers operable to receive the signal from the band pass filter, wherein the plurality of mixers down converts the signal to baseband signals, and a plurality of low pass filters operable to receive the baseband signals from the plurality of mixers, wherein the plurality of low pass filters rejects a second type of interference.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: September 3, 2013
    Assignee: RealD Inc.
    Inventors: Robert R. Rotzoll, Roger Landowski, Douglas J Gorny
  • Patent number: 8515294
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 20, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Patent number: 8515291
    Abstract: The light receiving device includes a pixel array, such as a two-dimensional pixel array, of pixels each having a light-receiving element for receiving input signal light, an output selecting unit for selecting the outputs of pixels within the pixel array, a selected output adding unit for adding and outputting the selected outputs of the pixels, and an amplifying unit for amplifying the output of the selected output adding unit.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: August 20, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tadao Inoue
  • Publication number: 20130209089
    Abstract: A transmitter in an optical communications system includes a digital signal processor for processing a data signal to generate a sample stream encoding successive symbols in accordance with a constrained phase modulation scheme having a constellation of at least two symbols and a modulation phase constrained to a phase range spanning less than 4?. A digital-to-analog converter converts the sample stream into a corresponding analog drive signal. A finite range phase modulator modulates a phase of a continuous wavelength channel light in accordance with the analog drive signal, to generate a modulated channel light for transmission through the optical communications system. A receiver in the optical communications system includes an optical stage for detecting phase and amplitude of the modulated channel light and for generating a corresponding sample stream, and a digital signal processor for processing the sample stream to estimate each successive symbol of the modulated channel light.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: CIENA CORPORATION
    Inventors: James HARLEY, Douglas MCGHAN, Shahab OVEIS GHARAN, Kim B. ROBERTS, Mark ROLLINS
  • Patent number: 8503891
    Abstract: There is a need to provide a multirate burst mode receiver for an OLT to be capable of receiving a high-speed burst signal without the need for a special capability of an ONU in a PON system including a mix of ONUs at different transmission bit rates. A multirate burst mode receiver according to the invention includes a signal input discrimination section and a bit rate discrimination section. The signal input discrimination section detects an average amplitude to discriminate signal input. The bit rate discrimination section detects an envelope curve for a high-frequency component to discriminate a signal bit rate. Based on a discrimination result from the signal input discrimination section and the bit rate discrimination section, the multirate burst mode receiver switches a setting for an optical signal reception section and a serial-parallel converter corresponding to the reception bit rate.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 6, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Daisuke Mashimo, Masahito Takei, Jun Sugawa, Hiroki Ikeda
  • Patent number: 8488974
    Abstract: The new invention relates to a novel high-performance Passive Optical Network (PON) upgrade architecture, based on adapting Multiple Input, Multiple Output (MIMO) beamforming techniques to polarization multiplexing.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: July 16, 2013
    Assignee: Technion Research and Development Foundation Ltd.
    Inventors: Amos Agmon, Moshe Nazarathy
  • Patent number: 8483581
    Abstract: A light receiving circuit includes: a 1-bit delay interferometer; two photodiodes; and a demodulating circuit for converting current signals of the photodiodes into voltages to thereby demodulate signals that have been modulated by return-to-zero differential phase shift keying, the demodulating circuit including a differential transimpedance amplifier, in which the differential transimpedance amplifier includes a level adjusting circuit that has a function of adjusting levels of a positive phase signal and a negative phase signal of two feedback closed loops.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: July 9, 2013
    Assignee: NEC Corporation
    Inventor: Yasuyuki Suzuki
  • Publication number: 20130170843
    Abstract: A coherent optical receiver includes a local oscillator (LO) laser configured to provide an LO signal. The LO laser includes a hybrid external cavity and an active gain medium within the hybrid external cavity, where the LO laser is defined between a first optical reflector on a chip including the active gain medium and a second optical reflector not on the chip.
    Type: Application
    Filed: December 17, 2012
    Publication date: July 4, 2013
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: AGILENT TECHNOLOGIES, INC.
  • Publication number: 20130170833
    Abstract: Pairs of distributed feedback (DFB) lasers are provided on a substrate. An arrayed waveguide grating (AWG) is also provided on the substrate having input waveguides, each of which being connected to a corresponding pair of DFB lasers. The wavelengths of optical signals supplied from each pair of DFB lasers may be spectrally spaced from one another by a free spectral range (FSR) of the AWG. By selecting either a first or second DFB laser in a pair and temperature tuning to adjust the wavelength, each pair of DFB lasers can supply optical signals at one of four wavelengths, pairs of which are spectrally spaced from one another by the FSR of the AWG. A widely tunable transmitter may thus be obtained.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Inventors: RADHAKRISHNAN L. NAGARAJAN, MASAKI KATO, MICHAEL FRANCIS VAN LEEUWEN, TIMOTHY BUTRIE
  • Patent number: 8472812
    Abstract: Transmission-side communication apparatus 100 using a DQPSK (differential quadrature phase-shift keying) scheme is provided with: optical carrier generation section 102 which generates an optical carrier the frequency of which switches among a plurality of different frequencies within one symbol period; and modulation section 103 with which DQPSK-modulates the optical carrier generated by the optical carrier generation means in accordance with a modulation signal at an interval of the symbol period. There are provided: single delay interference section 121 which receives an optical signal obtained by DQPSK-modulating an optical carrier the frequency of which switches among a plurality of different frequencies within one symbol period and outputs an output light obtained by causing the optical signal 104 and a delay optical signal thereof to interfere with each other; and photoelectric conversion section 124 which converts the output light outputted by the delay interference means to an electric signal.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: June 25, 2013
    Assignee: NEC Corporation
    Inventors: Satomi Shioiri, Toshiharu Ito, Kiyoshi Fukuchi