Including Optical Element (e.g., Lens, Mirror, Etc.) Patents (Class 398/212)
  • Patent number: 8131161
    Abstract: A DPSK optical receiver includes a DPSK demodulation circuit, an optical bandpass filter, a first photodetector, and a first control circuit. The DPSK demodulation circuit demodulates a DPSK optical signal and outputs the DPSK demodulated optical signal. The optical bandpass filter extracts a demodulated optical signal near the center wavelength from the DPSK demodulated optical signal output from the DPSK demodulation circuit. The first photodetector detects the optical power level of the DPSK demodulated optical signal extracted by the optical bandpass filter. The first control circuit performs phase control on the DPSK demodulation circuit so as to optimize the DPSK demodulation circuit with respect to the center wavelength of the DPSK optical signal on the basis of the optical power level detected by the first photodetector.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 6, 2012
    Assignee: NEC Corporation
    Inventor: Yoshihisa Inada
  • Patent number: 8121494
    Abstract: Apparatus and methods are provided for receiving differential phase-shift keyed (DPSK) optical signals subjected to tight optical filtering, such as may be experienced by 40 Gb/s and 100 Gb/s channels in a dense wavelength division multiplexing (DWDM) communications system with 50 GHz channel spacing. An optical DPSK receiver is described which employs an optical delay interferometer (ODI) demodulator having a free spectral range (FSR) that is larger than the symbol rate (SR) of the DPSK signal to be demodulated. The receiver includes means for introducing an additional power imbalance between the outputs of the ODI demodulator, and the additional power imbalance may be related to the ratio of FSR to SR. The additional power imbalance increases the signal tolerance to tight optical filtering, thereby achieving high spectral efficiency in applications such as DWDM.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: February 21, 2012
    Assignee: Alcatel Lucent
    Inventors: Chraplyvy R Andrew, Xiang Liu, Chandrasekhar Sethumadhavan
  • Publication number: 20120039618
    Abstract: Optical communications networks rely on optical receivers to demodulate optical signals and convert the demodulated optical signal into an electrical signal. Optical receivers may be associated with one or more characteristics which can be made to vary during a transmission of an optical signal in order to improve the quality of the received signal. The present invention may determine a value for the characteristics based on an amount of optical filtering on a communications link which transmits the signal. The value for the characteristics of the receiver may be determined by observing a characteristic of a detector associated with the receiver, such as a ratio of the average photocurrents of the constructive and destructive ports of the detector. The observed characteristic of the detector may be mapped to a predetermined value for the characteristic of the receiver in a lookup table, which may be queried during operation of the receiver.
    Type: Application
    Filed: May 20, 2011
    Publication date: February 16, 2012
    Applicant: MINTERA CORPORATION
    Inventors: Pavel MAMYSHEV, Joel R. EDINBERG
  • Patent number: 8107818
    Abstract: A light is incident on a refractive diffraction grating 13, and is distributed for each of wavelengths at different angles to be outputted. A lens 14 converts the distributed lights into belt-shaped lights, and the belt-shaped lights are incident on a mirror substrate 15 having selective reflection regions 17-1 to 17-x. By moving the mirror substrate 15 toward a direction different from a distribution direction of the belt-shaped lights, only the light of any one of wavelengths is reflected. Then, the light returning to the refractive diffraction grating 13 is reflected to an incident direction of the original light. Accordingly, a tunable filter which is able to select a light of an arbitrary wavelength by moving the mirror substrate 15 can be realized.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: January 31, 2012
    Assignee: Santec Corporation
    Inventors: Yasuki Sakurai, Changho Chong
  • Patent number: 8103178
    Abstract: A phase-modulated analog optical link that uses parallel interferometric demodulation to mitigate the dominant intermodulation distortion present in the link. A receiver for demodulating phase modulated optical signals includes a splitter dividing the phase modulated signal into parallel optical paths, each optical path having an asymmetrical interferometer, the time delays of the interferometers being unequal, and each optical path includes a photodiode optically connected to an output of the interferometer. Outputs of the photodiodes enter a hybrid coupler. Alternatively, outputs of the interferometer enter a balanced photodetector. A phase shifter or time delay element can be included in one optical path to ensure inputs to the coupler or balanced photodetector have the correct phase. The input power to the parallel optical paths is split in a ratio that balances the third-order distortion in the output photocurrent.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Jason D. McKinney
  • Patent number: 8098991
    Abstract: A method is provided for co-site interference mitigation in an RF communication system. Spectral nulls created in an optical domain may be used to mitigate interfering signals in an RF signal. The method includes: receiving an RF input signal via an antenna; generating two optical signals that are each modulated using the RF signal; creating a phase delay in one of the two optical signals that corresponds with a spectral null at a frequency of an interfering signal; converting the two optical signals into two corresponding electrical signals and combining the two electrical signals to create spectral nulls via interference between the two signals and form a mitigated output signal. In this way, the spectral null offsets the amplitude of the interfering signal, thereby reducing the signal strength of the interfering signal.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: January 17, 2012
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton, Michael Borbath, Jeffrey A. Wyatt
  • Patent number: 8099000
    Abstract: A differential delay detection system and method includes an optical splitter to split an incoming optical signal between a first path and a second path. The first path includes a cross-polarization interferometer configured to separately generate polarization independent outputs using split paths and to generate cross-polarization interference outputs, balanced photodetectors to aid in removing cross-polarization beating noise, and a polarization demultiplexer configured to combine the polarization independent outputs and the cross-polarization interference outputs from the cross-polarization interferometer with updated coefficients received from the second path to remove the cross-polarization mixed signals. The second path includes a training signal receiver configured to compute the updated coefficients and output the updated coefficients to the polarization demultiplexer.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 17, 2012
    Assignee: NEC Laboratories America, Inc.
    Inventors: Dayou Qian, Ting Wang
  • Patent number: 8090270
    Abstract: An apparatus, system and method wherein a polarization multiplexed differential phase shift keying format (POLMUX-DPSK) is provided with offset and bit-interleaved frequency channels and demodulated using a DPSK demodulator.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: January 3, 2012
    Assignee: Tyco Electronics Subsea Communications LLC
    Inventors: Hongbin Zhang, Carl R. Davidson
  • Patent number: 8078067
    Abstract: In an optical receiving apparatus for receiving an optical DQPSK signal, a phase difference between both arms of an optical interferometer is controlled to an optimum value. The optical DQPSK signal is incident on two optical interferometers in each which a delay-time difference between two arms is set to be equal to a 1-symbol time of the optical DQPSK signal and which are orthogonal to each other. The optical receiving apparatus converts the optical DQPSK signal into an intensity signal and receives it. A differential amplifier obtains a difference signal between outputs of a pre-amplifier and a discriminator connected thereto. The difference signal includes, as an amplitude, a phase shift in a phase section. A control circuit adjusts the phase of the phase section in the optical interferometers to reduce this difference signal, and changes the phase difference between the two arms to a desired phase difference.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: December 13, 2011
    Assignee: Hitachi, Ltd.
    Inventor: Shinya Sasaki
  • Patent number: 8068273
    Abstract: A demodulator and method are provided. The demodulator for demodulating an optical signal, includes a splitter that splits a differential phase modulation signal into a first split light component and a second split light component, couples the first split light component to a first optical path and the second split light component to a second optical path, a first medium disposed on the first optical path, a second medium disposed on the second optical path and having a refractive index different from that of the first medium, and a combiner that combines the first split light component that has passed through the first medium and the second split light component that has passed through the second medium, wherein one of the first split light component and the second split light component is delayed in relation to the other.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 29, 2011
    Assignee: Fujitsu Limited
    Inventors: Takashi Shimizu, Koji Terada, Tsuyoshi Yamamoto
  • Patent number: 8064780
    Abstract: A demodulating unit demodulates a differential M-phase shift keying signal light by causing delay and interference. A phase-error detecting unit detects an error of a control phase amount of the delay and the interference caused by the demodulating unit. A control unit adjusts the control phase amount to a predetermined phase amount based on the error. A data processing unit monitors an error state of data signal that is demodulated by the demodulating unit. The control unit changes the control phase amount from the predetermined amount when the error state is in a predetermined state, and determines a reception state of the differential M-phase shift keying signal light based on an error that is detected after the control phase amount is changed.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: November 22, 2011
    Assignee: Fujitsu Limited
    Inventors: Takahiro Makimoto, Noriaki Mizuguchi
  • Patent number: 8059972
    Abstract: A data signal to be transmitted is supplied to a modulator of a transmitter, and the modulator modulates the output of a blue light-excited white LED and outputs blue LED light and phosphor light. The modulated blue light enters to a photo-electric converter through an LED light transmission color filter. The modulated phosphor light on the other hand enters to another photo-electric converter through a phosphor light transmission color filter. The photo-electric converters convert incident light to electric signals. The converted signals are amplified by amplifiers. Then, equalizers emphasize the harmonic component therein according to the response characteristic of the blue light and the response characteristic of the phosphor light for reduction of the dullness of waveforms.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: November 15, 2011
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Masashi Yamada, Kousuke Nakamura
  • Patent number: 8055141
    Abstract: An apparatus and method for reducing electrical signal intermodulation by processing a balanced electrical signal in the optical domain in a manner adapted to reduce noise and second order intermodulation, and converting the processed optical signal back to an electrical domain signal with either a single or balanced (differential) outputs.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: November 8, 2011
    Assignee: Alcatel Lucent
    Inventors: Young-Kai Chen, Andreas Bertold Leven, Mahmoud Rasras, Kun-Yii Tu
  • Patent number: 8050571
    Abstract: An illumination light receiver includes: a wavelength separation mechanism separating visible light containing optical signal data distributed among wavelengths corresponding to three primary colors into the wavelengths corresponding to the three primary colors; a dispersion restraining mechanism restraining dispersion of light outputted from the wavelength separation mechanism; and a light receiving portion illuminated, separately for each of the separated wavelengths corresponding to the three primary colors, by the light outputted from the dispersion restraining mechanism, the light receiving portion converting the optical signal data into and extracting an electrical signal.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: November 1, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Ryuzo Shiraki
  • Patent number: 8032036
    Abstract: An optical receiver includes a first interferometer having a plurality of arms. The optical receiver further includes first tunable optical filters connected in series with the arms of the first interferometer, where each first tunable optical filter is tuned to filter a region of overlap in the optical frequency spectrum between adjacent optical channels.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: October 4, 2011
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: David Zhi Chen, E. Evert Basch
  • Patent number: 8023833
    Abstract: Techniques, devices and systems based on optical receivers with controllable transfer function bandwidth and gain imbalance.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: September 20, 2011
    Assignee: Opnext Subsystems, Inc.
    Inventors: Christian Malouin, Theodore J. Schmidt, Brian L. Heffner, Yannick Keith Lize, Gordon Ries
  • Patent number: 8014686
    Abstract: An optical receiver utilizes differential quadrature phase-shift keying (DQPSK) demodulation and electrical crosstalk rejection to relax requirements on filter misalignment with a carrier signal and to enable electronic polarization demultiplexing of optical signals. The optical receiver uses additional polarization state information when performing differential phase measurements on the optical signals. This provides information that ensures that data can be recovered by the optical receiver regardless of the state of polarization introduced during transmission of the optical signals. The optical receiver over samples the optical signals, which enables electrical polarization demultiplexing of the optical signals. The electrical crosstalk rejection provides a tracking algorithm that isolates received optical signals, and reduces crosstalk between data sequences.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: September 6, 2011
    Assignee: Infinera Corporation
    Inventors: Jeffrey Thomas Rahn, Wei Chen
  • Patent number: 8005374
    Abstract: An optical transmission system is provided in which the optimum operating point of a Mach-Zehnder interferometer, matched to the optical frequency of the light source on the transmitting side, can be set.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: August 23, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kazushige Yonenaga, Mikio Yoneyama, Masahito Tomizawa, Akira Hirano, Shoichiro Kuwahara, Tomoyoshi Kataoka, Akihide Sano, Gentaro Funatsu
  • Patent number: 8005375
    Abstract: A simplified optical receiver architecture capable of tracking and demultiplexing polarization-multiplexed signals, dynamically compensating for PMD using a variety of polarization controller technologies, and reducing the number of delay line demodulators by two for both DPSK and DQPSK modulation is illustrated. Once polarization is stabilized at the first stage of the cascaded system of the present invention, subsequent stages can be simplified and cost reduced.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: August 23, 2011
    Assignee: Ciena Corporation
    Inventor: Michael Frankel
  • Patent number: 7995925
    Abstract: An optical beam combiner is provided, which allows efficient collection of light for various applications: non-line of sight and free space optical communications, remote sensing, optical imaging and others. A multitude of transverse scattered optical beam portions is captured by the multi-aperture array positioned perpendicular to the beam projection direction. These beam portions are combined first into a single optical waveguide with minimal loss of power. This is achieved by modulating the beam portions phase and coupling ratio of couplers in the optical beam combiner tuned to maximize the final output power. The data is recovered from the received optical beam using coherent detection.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: August 9, 2011
    Assignee: CeLight, Inc.
    Inventors: Pak Shing Cho, Isaac Shpantzer, Jacob Khurgin
  • Patent number: 7991301
    Abstract: An optical apparatus comprising: a branching unit branching an input light modulated by DQSPK format and thereby outputting a first branched light and a second branched light; a first branch and a second branch inputting the first branched light and the second branched light, respectively, the first branch and the second branch having an interferometer, a photo detector, and discriminator and demodulating I-signal and Q-signal, respectively; and an abnormality detection unit detecting an abnormality of the input light based on a synchronized detection of a first demodulated signal output from the photo detector in the first branch and a first recovered signal output from the discriminator in the first branch, and a synchronized detection of a second demodulated signal output from the photo detector in the second branch and a second recovered signal output from the discriminator in the second branch.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 2, 2011
    Assignee: Fujitsu Limited
    Inventors: Noriaki Mizuguchi, Takashi Toyomaki, Yoshikazu Terayama, Kenichi Kaburagi
  • Patent number: 7991288
    Abstract: OCDMA systems provide for storage and retrieval of OCDMA data while maintaining OCDMA encoding. One system includes an optical splitter that receives an OCDMA data stream having a multiple wavelengths of light. A plurality of tunable light filters is optically interconnected with the optical splitter. A controller tunes the tunable light filters such that they switch wavelengths of the OCDMA data stream over time. A plurality of light detectors is respectively coupled to the tunable light filters to convert the filtered optical data streams from the tunable light filters to electronic data streams. Each generated electronic data stream is stored with a corresponding storage volume. Retrieval of the OCDMA data is performed by reversing the wavelength switching used to store the OCDMA data stream. The electronic data streams are thereby converted to optical data streams using tunable light generators and subsequently converted into the OCDMA data stream with an optical coupler.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: August 2, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Brian L. Uhlhorn
  • Patent number: 7983573
    Abstract: An optical receiver apparatus and methods for mitigating intersymbol interference (ISI) in a differentially-encoded modulation transmission system by controlling constructive and destructive transfer functions. The receiver includes a bandwidth control element for controlling transfer function bandwidth, a transfer phase controller for controlling transfer function phase and/or an imbalancer for imbalancing the transfer functions for compensating for intersymbol interference and optimizing the quality of the received optical signal.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: July 19, 2011
    Assignee: Opnext Subsystems, Inc.
    Inventors: Christian Malouin, Theodore J. Schmidt, Brian L. Heffner
  • Patent number: 7974543
    Abstract: A device for phase distortion compensation across an optical beam is provided. The device is a part of an optical receiver, which can be used in free space optical communications, remote sensing, optical imaging and others. 2M inputs of the combiner interfere with each other via a system of tunable coupled waveguides. The phases in interleaved waveguides of the combiner are adjusted to maximize the resulting output signal. The combiner may be used for coherent communication in combination with a balanced 90° hybrid. Integrated solutions for the proposed device are provided.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 5, 2011
    Assignee: CeLight, Inc.
    Inventors: Jacob Khurgin, Isaac Shpantzer, Arkady Kaplan, Pak Shing Cho
  • Patent number: 7970289
    Abstract: An optical receiver apparatus and methods for mitigating intersymbol interference (ISI) in a differentially-encoded modulation transmission system by controlling constructive and destructive transfer functions. The receiver includes a bandwidth control element for controlling transfer function bandwidth, a transfer phase controller for controlling transfer function phase and/or an imbalancer for imbalancing the transfer functions for compensating for intersymbol interference and optimizing the quality of the received optical signal.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: June 28, 2011
    Assignee: Opnext Subsystems, Inc.
    Inventors: Brian L. Heffner, Christian Malouin, Theodore J. Schmidt
  • Patent number: 7965950
    Abstract: The present invention provides a performance optimized receiver with a bandwidth adaptive optical filter for high speed long haul wavelength division multiplexed systems, such as 40 Gb/s and 100 Gb/s wavelength division multiplexed systems. The performance optimized receiver includes: a bandwidth and wavelength tunable optical filter, wherein the bandwidth and wavelength tunable optical filter is operable for receiving a plurality of wavelengths associated with a wavelength division multiplexed signal and passing one or more selected wavelengths, and wherein the bandwidth and wavelength tunable optical filter is operable for adjusting the bandwidth of each of the one or more selected wavelengths; and a receiver coupled to the bandwidth and wavelength tunable optical filter.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: June 21, 2011
    Assignee: Ciena Corporation
    Inventors: Mark Childers, Shan Zhong, Xiaohui Yang
  • Patent number: 7965942
    Abstract: An infrared remote control module (10) includes an infrared detecting module (11) configured for receiving optical signals and converting the optical signals into digital signals, a signal processing module (12) communicating with the infrared detecting module; and a controlling feedback module (13) communicating with the signal processing module. The infrared detecting module includes a lens barrel (110), an infrared band-pass filter (112) arranged in the lens barrel, a lens assembly (113) arranged in the lens barrel, an image pickup module (114) arranged in the lens barrel, and a collimator device (116) selectably moveable into or out from the lens barrel. By being moveable in such a fashion, the collimator device is configured for selectively collimating the optical signals, and, thus, the remote control module can be used for shooting or motion-based actions.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: June 21, 2011
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Patent number: 7961997
    Abstract: An optical beam combiner is provided, which allows efficient collection of light for various applications: non-line of sight and free space optical communications, remote sensing, optical imaging and others. A multitude of optical beam portions is captured by a space diversity receiver that includes an optical beam combiner, which has a tree-like topology with interconnected waveguides, electro-optic phase shifters, and directional couplers. For each of the beam portions the phase of the phase shifter and the coupling ratio of coupler in the optical beam combiner are tuned sequentially to maximize the final output power in the final optical waveguide. A portion of the final output beam is used for the power detection and forming a feedback signal for the phases and coupling ratios adjustment. The data or information is recovered from the received final optical beam using coherent detection.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 14, 2011
    Assignee: CeLight, Inc.
    Inventors: Pak Shing Cho, Jacob Khurgin, Isaac Shpantzer
  • Patent number: 7962038
    Abstract: A system includes an optical line terminal (OLT) that includes an OLT transmitter. The OLT transmitter includes one or more fixed wavelength optical sources that generate an optical signal at a first wavelength, and an optical waveguide that transmits the optical signal at the first wavelength in an optical network.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: June 14, 2011
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: David Z. Chen
  • Patent number: 7957642
    Abstract: Transport network interfaces operate to transport for Optical Transport Unit frames over an Optical Transport Network. Besides FEC bits for the Optical Transport Unit frames, the transmitting transport network interface provides sequences of error-determining bits for the Optical Transport Unit frames sent on working and protection communications channels. There is at least one sequence for each Optical Transport Unit frame, the number of bits in the at least one sequence much smaller than the number of bits in the Optical Transport Unit frame. The receiving transport network interface determines the bit error rates for the working and protection channels from the sequences of error-determining bits without decoding said Forward Error Correction bits and can select the working and protection channels accordingly.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: June 7, 2011
    Assignee: Cisco Technology, Inc.
    Inventor: Gilberto Loprieno
  • Publication number: 20110129236
    Abstract: According to aspects of embodiments, an optical device includes a first coupler configured to split an optical signal; a second coupler configured to cause optical signals to interfere with each other, a first waveguide configured to couple the first coupler to the second coupler, the first waveguide includes a first phase shifter region having a section narrower in width than an end of the first phase shifter region, the second waveguide includes a second phase shifter region having a section wider in width than an end of the second phase shifter region.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Seok-Hwan JEONG
  • Patent number: 7949260
    Abstract: An evaluation method of an optical receiver of an optical communication system, including a DPSK (Differential Phase Shift Keying) signal modulated by a specific data series, a delay interferometer for performing delay detection on the DPSK signal, an optical receiver for receiving each of two optical outputs of the delay interferometer and outputting a difference signal, and a spectrum analyzer for measuring a spectrum of an output electrical signal of the optical receiver, comprising monitoring a specific frequency component of the spectrum analyzer and detecting a delay difference and a deviation in optical reception level between the two outputs of the delay interferometer and the optical receiver.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: May 24, 2011
    Assignee: NEC Corporation
    Inventor: Kiyoshi Fukuchi
  • Patent number: 7949261
    Abstract: An optical receiver includes a demodulator having a delay interferometer comprising an optical input that receives a phase modulated optical signal from a bandwidth limited transmission system. The delay interferometer has a free spectral range that is larger than a symbol rate of the phase modulated optical signal by an amount that improves receiver performance. The receiver also includes a differential detector having a first and a second photodetector. The first photodetector is optically coupled to the constructive optical output of the delay interferometer. The second photodetector is optically coupled to the destructive optical output of the delay interferometer. The differential detector combines a first electrical detection signal generated by the first photodetector and a second electrical detection signal generated by the second photodetector to generate an electrical reception signal.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: May 24, 2011
    Assignee: Mintera Corporation
    Inventors: Benny Mikkelsen, Pavel Mamyshev, Christian Rasmussen, Fenghai Liu
  • Patent number: 7949262
    Abstract: An optical beam combiner is provided, which allows efficient collection of light for various applications: non-line of sight and free-space optical communications, remote sensing, optical imaging and others. A multitude of transverse scattered optical beam portions is captured by the multi-aperture array positioned perpendicular to the beam projection direction. These beam portions are combined first into a single optical waveguide with modulating the beam portions phase and coupling ratio of directional couplers in the optical beam combiner tuned to maximize the final output power. A portion of the output beam is used for the power detection and forming a feedback signal for the phases and coupling ratios adjustment. The data is recovered from the received optical beam using coherent detection.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: May 24, 2011
    Assignee: CeLight, Inc.
    Inventors: Pak Shing Cho, Jacob Khurgin, Isaac Shpantzer
  • Publication number: 20110110671
    Abstract: Improvements in or relating to Optical Networks. The invention relates to improvements in or relating to optical networks, and methods and an apparatus for providing communications services. Receiving an optical signal is described comprising a carrier wavelength and optical data. The optical data is substantially erased, and the carrier wavelength is re-modulated with user data for onward transmission of the user data.
    Type: Application
    Filed: April 9, 2008
    Publication date: May 12, 2011
    Inventors: Antonella Bogoni, Luca Poti, Francesco Fresi, Fabio Cavaliere, Gianluca Berrettini
  • Publication number: 20110110665
    Abstract: An AR coated quantum dot resonator implementing a wavelength independent light source to resolve a drawback of degradation in the property of a high temperature optical output due to AR coating of LED or wavelength locked light source, which is filtered to a narrow line width, is disclosed. In one embodiment, a gain medium includes at least one quantum dot and an anti-reflection (AR) coated reflection plane at one of front and rear planes of the gain medium. The gain medium has a wide line width due to different sizes and distribution of a plurality of quantum dots. The line width includes entire wavelength channels of a WDM or WDM-PON. Also, the AR coated reflection plane is a front reflection plane having a lower reflectivity (e.g., 0.001% to 1%.) than that of a rear reflection plane.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 12, 2011
    Inventor: Hee Yeal RHY
  • Patent number: 7941054
    Abstract: In a clock signal extraction system, an optical modulator modulates an input optical signal having its clock frequency equal to a first or second frequency with a modulation electrical signal having its frequency equal to the average of the first and second frequencies to output a modulated optical pulse signal to a phase comparator, which receives a reference electrical signal generated by a reference signal generator and having its frequency half as high as a difference between the first and second frequencies to compare in phase the modulated optical pulse signal with the reference electrical signal to output a resultant phase comparison signal to a modulation electrical signal generator, which in turn outputs a modulation electrical signal to the optical modulator and clock signal generator, which generates a signal with the modulation and reference electrical signals mixed, and outputs the signal at first or second frequency as a clock signal.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: May 10, 2011
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hiromi Tsuji
  • Patent number: 7937000
    Abstract: A small, low cost, low power-consumption optical receiver transmits signals at a high bit rate of approximately 10 Gbps over a long distance of 100 km or longer without chromatic dispersion compensation. An optical filter with a variable filtering wavelength is provided in the optical waveguide. A frequency-modulated signal light is inputted into the waveguide and transferred to the through port and the drop port thereof. The filter limits the frequency-modulated signal light to a predetermined frequency band and converts the said light to an intensity-modulated signal. The first and second converters provided at the through and drop ports to convert the first and second components of the intensity-modulated signal to electric signals, respectively. The filtering wavelength of the filter is controlled using the electric signals from the first and second converters. The input signal is regenerated from the electric signal of the second converter.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 3, 2011
    Assignee: NEC Corporation
    Inventor: Yoshitaka Yokoyama
  • Patent number: 7933523
    Abstract: A clock extracting apparatus is provided. In the clock apparatus, two frequency components are made to have an equal magnitude by adjusting a temperature and current applied to an FP LD, and a clock signal is extracted by beating the two frequency components having the equal magnitude. The clock extracting apparatus includes: a circulator for changing a direction of an inputted optical signal; an adjuster for adjusting a characteristic and wavelength of a spectrum; and a clock extractor for selecting two frequency components having different magnitudes on the spectrum of the inputted optical signal, receiving an adjusted signals in which magnitudes of the two frequency components are made equal by the adjuster, making the two frequency components have an equal magnitude, and extracting a clock signal by beating the two frequency components having the equal magnitude.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: April 26, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jaemyoung Lee, Je-Soo Ko
  • Patent number: 7917042
    Abstract: A novel 100+ Gbit/s opto-electronic receiver uses hybrid integration of a photodiode and a demultiplexer. The photodiode converts a high speed optical data stream to an electrical data stream that is input to an electronic demultiplexer. The photodiode and the demultiplexer are connected together by a novel planar microwave transmission structure.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 29, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Andrew Adamiecki, Lawrence Buhl, Jeffrey Sinsky
  • Patent number: 7917041
    Abstract: A small-scale VOA system includes a polarization rotator, a voltage multiplier circuit, and at least one transistor. The polarization rotator can be positioned within a TOSA along the emission axis of a corresponding optical signal source in addition to one or more polarizers. A microcontroller provides a first low voltage control signal to a voltage multiplier to generate a large voltage DC signal which is provided to the transistor. The transistor modulates the large voltage signal with a second control signal from the microcontroller to generate a large voltage AC signal for driving the polarization rotator. The polarization rotation of the polarization rotator can be altered depending on the applied large-voltage AC signal. As a result, the polarization rotator and one or more polarizers can variably attenuate signals emitted by the optical signal source or act as a shutter.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: March 29, 2011
    Assignee: Finisar Corporation
    Inventors: Henry M. Daghighian, Kevin J. McCallion
  • Patent number: 7903982
    Abstract: An optical divider divides an optical input signal into a plurality of paths. A plurality of optical-to-electrical converters respectively converts the divided optical input signals into electrical signals. A plurality of discriminators respectively outputs discrimination results by discriminating the electrical signals output from the optical-to-electrical converters based on predetermined thresholds. An operational circuit performs a predetermined logical operation with the discrimination results output from the discriminators.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: March 8, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Jun'ichi Abe, Takashi Sugihara, Katsuhiro Shimizu
  • Patent number: 7899332
    Abstract: An optical communication unit performs a bidirectional information transmission between a circuit device in a fixed housing and a circuit device in a moving housing with an optical signal. The optical communication unit includes a light transmitting unit that transmits the optical signal, a light receiving unit that receives the optical signal from the light transmitting unit, and a light propagation path for propagating the optical signal from the light transmitting unit to the light receiving unit. The light propagation path is disposed inside a hinge part that links the fixed housing and the moving housing in an openable and closable manner.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: March 1, 2011
    Assignee: Fujitsu Limited
    Inventors: Noriaki Shindou, Masahiro Taguchi, Masaaki Saitou, Nobuaki Hatanaka
  • Patent number: 7894726
    Abstract: A semiconductor chip on which a light receiving element is mounted, a preamplifier for amplifying an output signal from the light receiving element, and an insulating carrier substrate on which the light receiving element is mounted are connected such that the output signal from the light receiving element is input to the preamplifier through electrodes on the carrier substrate, and there are provided two electrodes, on the carrier substrate, having a capacitance value of 40 fF or more therebetween in a state where no light receiving element is mounted.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: February 22, 2011
    Assignee: Opnext Japan, Inc.
    Inventors: Osamu Kagaya, Yukitoshi Okamura, Atsushi Miura, Michihide Sasada, Hideyuki Kuwano
  • Patent number: 7885496
    Abstract: Disclosed herein is a light receiving apparatus, including: a light receiving section including a light receiving element; a transparent part; and a light guiding part inserted in the groove; the groove having, on the front face side, a side face formed as an arcuately curved face convex toward the front face side and having the same shape in any cross section perpendicular to the front face and also to the depthwise direction of the groove; the light guiding part having a side face opposing to the side face of the groove on the front face side and formed as an arcuately curved face which is convex toward the front face side in a state wherein the light guiding part is inserted in the groove and which has the same shape in any cross section perpendicular to the front face and also to the depthwise direction of the groove.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: February 8, 2011
    Assignee: Sony Corporation
    Inventors: Nobuyuki Fukui, Yutaka Ogasawara, Hideaki Kurachi, Yoshiyuki Nida
  • Patent number: 7877025
    Abstract: I branch is provided with a first interferometer, a first balanced optical detector, and a first data recovery circuit. Q branch is provided with a second interferometer, a second balanced optical detector and a second data recovery circuit. In I branch, a mixer multiples input signal of the first data recovery circuit with output signal of the second recovery circuit. An averaging circuit averages output signal of the mixer. In Q branch, a mixer multiples input signal of the second data recovery circuit with output signal of the first recovery circuit. An averaging circuit averages output signal of the mixer. A first phase control apparatus controls the phase of a phase shifter comprised in the first interferometer based on the output signal of the averaging circuit. A second phase control apparatus, in the same manner, controls the phase of a phase shifter comprised in the second interferometer.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: January 25, 2011
    Assignee: Fujitsu Limited
    Inventors: Zhenning Tao, Jens C. Rasmussen, Akihiko Isomura
  • Patent number: 7877026
    Abstract: A radio transmitter integrated circuit includes a photodiode array circuit, a digital conversion module, a transmit baseband processing module, an analog conversion module, an up-conversion module, and a power amplifier circuit. The photodiode array circuit is coupled to convert received light into electrical image signals. The digital conversion module is coupled to convert the electrical image signals into digital image signals. The transmit baseband processing module is coupled to convert the digital image signals into digital transmit baseband or low IF signals. The analog conversion module, the up-conversion module, and the power amplifier circuit are coupled to convert the digital transmit baseband or low IF signals into transmit radio frequency (RF) signals.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: January 25, 2011
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza (Reza) Rofougaran
  • Publication number: 20110008062
    Abstract: A method and apparatus for communicating information content by modulation of light in an illumination system via a liquid lens optically coupled to the illumination system and capable of modulation of light thereof, using resonant modes of the liquid lens. A modulation control system operatively coupled to the liquid lens and to the information content is configured to represent at least a portion of the information content as a time-varying configuration of the liquid lens, the time-varying configuration substantially including one or more of said one or more resonance modes. A receiver system optically coupled to the liquid lens is configured to reconstruct at least a portion of the information content from light modulated by the time-varying configuration of the liquid lens.
    Type: Application
    Filed: February 12, 2009
    Publication date: January 13, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Ian Ashdown
  • Patent number: 7865087
    Abstract: A bandpass filter circuit 10 of the present invention includes: transconductance amplifier circuits 1 to 3; a common-mode feedback circuit 4 which outputs a first control signal to the transconductance amplifier circuit 1 so that a D.C. voltage level of a differential output of the transconductance amplifier circuit 1 is at a predetermined level; a common-mode feedback circuit 5 which outputs a second control signal to the transconductance amplifier circuit 2 so that a D.C. voltage level of a differential output of the transconductance amplifier circuit 2 is at a predetermined level; and capacitors C1 to C3. Each of the members are connected as shown in FIG. 1. With the configuration, a bandpass filter circuit capable of adjusting constants such as a Q-value is realized.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: January 4, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Takahiro Inoue
  • Patent number: 7860408
    Abstract: An interferometer for demodulating a differential M-phase shift keying signal includes a PLC type interferometer main body, a heating portion that heats the PLC type interferometer main body, and an intermediate member having a higher stiffness than that of the PLC type interferometer main body, for bonding the PLC type interferometer main body and the heating portion with each other while being sandwiched therebetween. A linear expansion coefficient difference between the PLC type interferometer main body and the intermediate member is equal to or smaller than 4.5×10?6/° C., and a thermal conductivity difference between the PLC type interferometer main body and the intermediate member is equal to or larger than 10 W/mK. A phase of an optical signal flowing through the interferometer is adjusted by using the heating portion and a second heating portion.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: December 28, 2010
    Assignees: Fujitsu Limited, Yokogawa Electric Corporation, Hitachi Cable Ltd.
    Inventors: Akihiko Isomura, Jens Rasmussen, Takafumi Terahara, Kentaro Nakamura, Takeshi Hoshida, George Ishikawa, Hiroshi Onaka, Morio Wada, Hiroyuki Matsuura, Akira Miura, Yasuyuki Suzuki, Hideaki Arai, Satoshi Takasugi