Monitoring Patents (Class 398/33)
  • Patent number: 7433371
    Abstract: An optical signal connection apparatus includes first and second routers configured to handle optical signals and electrical signals. A first node includes a first port coupled to the first router and is configured to handle a first type of optical signals associated with the first route; a first line-setting unit configured to couple the first and second nodes for data communication between the first and second nodes; a first control unit to control setting an optical communication link between the first and second nodes; and a first signal-type storage unit. A second node includes a second port coupled to the second router and configured to handle a second type of optical signals, wherein the first information is compared with second information on the second type of optical signal to determine whether the first and second communication links are compatible to each other.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: October 7, 2008
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Toshiyuki Atsumi, Masatoshi Shibasaki, Teruhisa Takano
  • Patent number: 7426347
    Abstract: An apparatus for shared optical performance monitoring (OPM) is provided. A wavelength sensitive device receives light at an input port and routes it wavelength selectively to a set of output ports. To perform optical performance monitoring on the output ports, a monitoring component of each output signal is extracted, and these monitoring components are then combined. A single OPM function is then performed on the combined signal. However, with knowledge of the wavelengths that were included in each output signal, a virtual OPM function can be realized for each output port. The per port functionality can include total power per port, power per wavelength per port, variable optical attentuation, dynamic gain equalization, the latter two examples requiring feedback.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: September 16, 2008
    Assignee: JDS Uniphase Corporation
    Inventors: Alan Hnatiw, Sheldon Walklin, Thomas Ducellier
  • Patent number: 7424221
    Abstract: An optical network terminal, which includes an optical transmitter, monitors the status of the optical transmitter, such as the output or the power consumption of the optical transmitter, to determine when the optical transmitter is illegally transmitting. When an illegal transmission is detected, the optical network terminal removes power from the optical transmitter.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: September 9, 2008
    Assignee: Tellabs Petaluma, Inc.
    Inventors: Clayton J. Emery, Richard B. Joerger
  • Patent number: 7421199
    Abstract: An apparatus and method for processing a supervisory signal for optical network applications. The apparatus includes a subcarrier transmission system configured to receive a first supervisory signal and output a second supervisory signal, and an electrical-to-optical conversion system configured to receive the second supervisory signal and a first data signal and output a first optical signal. Additionally, the apparatus includes an optical-to-electrical conversion system configured to receive the first optical signal and output a first electrical signal and a second data signal, and a subcarrier reception system configured to receive the first electrical signal and output a third supervisory signal. The second supervisory signal is associated with a first subcarrier frequency. The first data signal is associated with a first data bandwidth, and the first data bandwidth includes a first data frequency. A ratio of the first subcarrier frequency to the first data frequency ranges from 0.8 to 1.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: September 2, 2008
    Inventor: Yu Sheng Bai
  • Patent number: 7418212
    Abstract: A system and method for detecting digital symbols carried in a received optical signal. The system comprises a functional element operative to receive a stream of samples of an electrical signal derived from the received optical signal and to evaluate a non-linear function of each received sample, thereby to produce a stream of processed samples. The system also comprises a detector operative to render decisions about individual symbols present in the received optical signal on the basis of the stream of processed samples. In an embodiment, the non-linear function computes substantially the square root of each received sample.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: August 26, 2008
    Assignee: Nortel Networks Limited
    Inventor: Chandra Bontu
  • Patent number: 7415174
    Abstract: An optical channel monitor assembly for simultaneously measuring the optical power levels of multiple series of dense wavelength division multiplexed channels or the like traveling on separate optical fibers in an optical communications system includes an arrayed waveguide grating router having a first side and a second side, the first side including a first plurality of ports and the second side including a second plurality of ports, the first plurality of ports in optical communication with the second plurality of ports, wherein the first side includes a first input port for collectively receiving a first series of optical channels, wherein the second side includes a first plurality of output ports for individually delivering the first series of optical channels, wherein the second side includes a second input port for collectively receiving a second series of optical channels, and wherein the first side includes a second plurality of output ports for individually delivering the second series of optical cha
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: August 19, 2008
    Assignee: Ciena Corporation
    Inventor: Brandon C. Collings
  • Patent number: 7415206
    Abstract: In an optical transmission link having discrete optical reflection sources that cause multi path interference (MPI) and optical return loss (ORL), a method determines how to reduce to beneath a predetermined threshold, a predetermined phenomenon (MPI or ORL or a composite of the two). The method involves (408/428/458) measuring link parameters of the optical transmission link using an optical reflectometry technique, (410/430/460) calculating a level of the predetermined phenomenon based on the link parameters, and (416/436/466) simulating replacement of a number of the reflection sources until the calculated level of the predetermined phenomenon is reduced to less than the predetermined threshold. The method may be performed within a portable optical reflectometry device to facilitate field simulations.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: August 19, 2008
    Assignee: AT&T Corp.
    Inventors: Martin Birk, Xiang Zhou
  • Patent number: 7412166
    Abstract: A method of optical communication includes providing a plurality of optical signals each associated with a distinct channel of a composite optical signal. A unique pilot tone signature is superimposed on each channel. The spectral composition of each signature includes a plurality of frequencies. In one embodiment, binary frequency shift keying at a frequency fm is used to shift between instantaneous frequencies f1 and f2 wherein f2+?f=f1??f=fc. Choosing ? ? ? f f m ? 1.1602 produces a spectrum having a plurality of dominant components at least some of which have substantially the same amplitude. A method of detecting the presence of a selected pilot tone signature having a plurality n of dominant spectral components F1 . . . Fn includes generating a power spectrum P0(f). Sk(f) is calculated as a product of a plurality of frequency shifted versions of P0(f), where k?{1 . . . n}. The existence of a dominant spectral component at Fk indicates the presence of the selected pilot tone signature.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: August 12, 2008
    Assignee: Tellabs Operations, Inc.
    Inventors: Martin Piotte, Georges Désilets
  • Patent number: 7412165
    Abstract: Systems and methods are disclosed for testing the functionality of a synchronous optical network having a data communication channel therein. The system includes a testing device connected to a network node within the synchronous optical network and a data communication channel loop back plug connected to the testing device for returning to the synchronous optical network, any signals within the data communication channel received at the testing device. A method is also disclosed for testing a synchronous optical network having a data communication channel therein.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: August 12, 2008
    Assignee: AT&T Delaware Intellectual Property, Inc.
    Inventors: Jack Berry Collier, James Gregory Morris, Sr.
  • Patent number: 7403675
    Abstract: Intrusion detection for a multimode fiber optic cable uses a light signal launched into the fiber through the low ratio leg of a tap coupler to establish a narrow spectral width, under-filled non-uniform mode field power distribution in the cable. A small portion of the higher order signal modes at the remote end is monitored for transient changes in the mode field power distribution which are characteristic of fiber intrusion to activate an alarm. The active signal of a multimode optical fiber is monitored for both signal degradation and transient power disturbance patterns that could indicate fiber damage or physical intrusion. A translator can be provided in an existing optical fiber system in which the data signals are translated in wavelength and/or launch conditions to optimize the monitoring signals in an otherwise non-optimized system.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: July 22, 2008
    Assignee: Network Integrity Systems Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, Joseph Giovanni, David E. Vokey
  • Patent number: 7403674
    Abstract: Intrusion detection of one section only of a multimode fiber uses a light signal launched into the fiber at a location spaced from the source through a single mode fiber to establish a narrow spectral width, under-filled non-uniform mode field power distribution in the fiber. A small portion of the higher order signal modes at the a second location also spaced from the destination is sampled by a tap coupler and monitored for transient changes in the mode field power distribution which are characteristic of intrusion to activate an alarm. A fiber being used for data transmission can be monitored for intrusion by introducing a monitor wavelength different from that of the data signal. Central to this invention is the use of a bulk optic (commonly referred to as a pass/reflect) wavelength division multiplexer, one which maintains the modal distribution within the fiber.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: July 22, 2008
    Assignee: Network Integrity Systems Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, David E. Vokey
  • Patent number: 7403712
    Abstract: Embodiments of present system encompass: a plurality of laser sources that produce a plurality of respectively different optical wavelengths; a matrix switch having a plurality of inputs operatively coupled to the plurality of laser sources, each of the plurality of inputs receiving a respective optical wavelength; and the matrix switch having an output that produces a series of interleaved pulses of the different optical wavelengths.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: July 22, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: David B. Hall, Paul L. Greene
  • Patent number: 7400829
    Abstract: A transmission apparatus that receives an optical signal by selecting any one of a plurality of provided optical signal transmission paths through protection control is configured to include a plurality of optical signal outputting sections that output the optical signals transmitted through said optical signal transmission paths respectively as optical signals having wavelengths that are different from each other, a wavelength selective optical switch capable of selectively outputting light of a wavelength corresponding to any one of the optical signals coming from the optical signal outputting sections on the basis of the frequency of a controlling frequency signal, and an optical switch controlling section that supplies said controlling frequency signal to the wavelength selective optical switch so as to output the optical signal coming from the optical signal transmission path side that is selected by said protection control among the optical signals coming from the optical signal outputting sections.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: July 15, 2008
    Assignee: Fujitsu Limited
    Inventor: Kenji Watanabe
  • Patent number: 7400831
    Abstract: A control loop detects the presence of cross-talk between first, second and third adjacent amplitude modulated wavelength division modulated channels of an optical communications system. A receiver including a demultiplexer, such as an Arrayed Waveguide Grating (AWG), receives portions of the energy in the channels to derive first, second and third electrical signals that are respectively replicas of the modulation of the first, second and third channels. Wavelength drift of the carried frequencies of the channels in detected by comparing the three signals in an electronic combinatorial logic unit.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: July 15, 2008
    Assignee: Avago Technologies Fiber IP Pte Ltd
    Inventor: Simon Meadowcroft
  • Publication number: 20080166120
    Abstract: The present invention relates to the modulation of light traveling along a waveguide, in particular to the acoustic modulation of the light. There is provide a modulator arrangement for acoustically modulating optical radiation. The modulator arrangement has: a waveguide portion formed from a flexible material; a vibrator element for generating acoustic vibrations; and, a coupling arrangement for releasably coupling the vibrating element to the waveguide portion, the coupling arrangement including a first coupling member secured to the waveguide portion, and a second coupling member secured to the vibrator element. The second coupling member is removable from the first coupling member, and the first coupling member has a substantially rigid portion for retaining the shape of the waveguide when the second coupling member is removed from the first coupling member.
    Type: Application
    Filed: March 2, 2006
    Publication date: July 10, 2008
    Inventors: David Heatley, Edmund Sikora
  • Patent number: 7398023
    Abstract: A method and apparatus for controlling bias and alignment in an optical signal transmitter for providing intensity modulation and DPSK modulation to an optical signal, e.g. in an RZ-DPSK modulation format. Output power in dither signals applied to the bias signals may be detected by a low speed photodetector. One or more of the bias signals may be adjusted in a low speed control loop in response to an error signal obtained by mixing the detected signal with the low frequency dither signals.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: July 8, 2008
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Matthew V. Mazurczyk, Sameh Sabet
  • Patent number: 7394982
    Abstract: A current sensing system comprises a current transformer; a burden resistor connected across a secondary of the current transformer; a piezo-optic sensor coupled to the burden resistor, comprising a piezoelectric transducer, an optical fiber and a first optical filter with a first bandwidth; and an optical interrogator, configured for sending an originating signal to the first bandwidth optical filter and receiving a resulting data signal and a second optical filter with a second bandwidth for filtering the resulting data signal.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: July 1, 2008
    Assignee: General Electric Company
    Inventors: John Michael Kern, Glen Peter Koste, Charles Erklin Seeley, Todd Ryan Tolliver
  • Patent number: 7394981
    Abstract: An optical medium, whether inside or outside an internet/telecommunications backbone, is managed using a management signal at a wavelength which is distinct from wavelengths of service signals. A multiplexer multiplexes the management signal onto the optical medium, after which a demultiplexer demultiplexes the management signal for analysis. Performance of customer channels may be inferred from performance of the management signal.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: July 1, 2008
    Inventor: Robert H. Manifold
  • Patent number: 7394980
    Abstract: A channel transponder tests a circuit in a communication network. The channel transponder includes short reach receiver circuitry, long reach transmitter circuitry, long reach receiver circuitry, generator circuitry, short reach transmitter circuitry, and a connector. The short reach receiver circuitry receives a first short reach signal. The long reach transmitter circuitry transmits a first long reach signal based on the first short reach signal. The long reach receiver circuitry receives a second long reach signal. The generator circuitry generates a test signal. The short reach transmitter circuitry transmits a second short reach signal based on the second long reach signal and transmits the test signal from the generator circuitry to the circuit wherein the test signal is monitored over the circuit to determine performance of the circuit. The connector connects the generator circuitry to the short reach transmitter circuitry.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: July 1, 2008
    Assignee: Sprint Communications Company L.P.
    Inventor: Douglas Lew Richards
  • Patent number: 7394995
    Abstract: An optical receiver is disclosed comprising an erbium-doped fiber amplifier (EDFA) that is coupled to a photodiode and transimpedance amplifier without filtering output light signal in the EDFA. Optionally, a clock/data regenerator can be coupled to the electrical output of the transimpedance amplifier for compensating for noise distortion and timing jitter for affecting the control loop feeding back for adjusting the electrical current into a pump laser of an optical pre-amplifier. Furthermore, the optical receiver of the present invention can also be implemented in a transponder.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: July 1, 2008
    Assignee: Avanex Corporation
    Inventors: Emmanuel Audic, Franck Deblock, Elisabeth Leclerc, Gilles Sorhouetgary, Alexandre Sherr, Henri Jean Egger
  • Patent number: 7391971
    Abstract: A method for powering up an optical network is provided. The method comprises remotely and safely increasing power to optical links in the optical network while monitoring signal levels in the network to discover installation errors, incorrect equipment configuration, and faulty components. In a modification to the method, attenuations of optical attenuators and gain values of optical amplifiers are set. The methods for powering up the optical network of the embodiments of the invention apply to both new optical networks and to new optical links added to pre-existing optical networks.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: June 24, 2008
    Assignee: Alcatel-Lucent Canada Inc.
    Inventors: Michael Joseph McCloskey, Allen Joseph Braun, Eddie Kai Ho Ng
  • Patent number: 7391975
    Abstract: A technique for synchronizing the servo control systems between two optical wireless links (OWLs) that are in communication with one another. This synchronization allows the alignment in time of the various tasks to be assigned in a desired time period. The synchronization is not intended to synchronize the two OWLs down to the processor clock level, but rather at the servo sampling level, preferably to within a few percent of the servo sampling time. This synchronization may be advantageous in improving processor efficiency and control loop performance, and or improving system calibrations.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 24, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric G. Oettinger, Mark D. Heminger, Todd B. Anderson
  • Patent number: 7391970
    Abstract: An apparatus and a method for monitoring optical signal-to-noise ratio are provided. It can be applied in dense wavelength-division multiplexed networks to monitor the transmission quality of each optical channel. The apparatus comprises an optical circulator, a tunable optical filter, a dithering signal, a dithered reflector, and two photodiodes. It can be integrated on a single chip. The invention utilizes the dithering and reflection functions of the dithered reflector, and passes the signal and the noise through the tunable optical filter once and twice, respectively. When the tunable optical filter is scanning and filtering the whole spectrum, the signal and noise powers are measured by the two photodiodes, respectively. The OSNR for each optical channel is then calculated according to the signal and noise powers. It can monitor channel location, wavelength drift, and OSNR by including a wavelength locker to act as an optical channel analyzer.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: June 24, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: San-Liang Lee, Chun-Liang Yang, Pei-Min Gong, Dar-Zu Hsu, Ming-Hsiao Yang, Yun-Lung Chou
  • Patent number: 7389044
    Abstract: An optical network including multiple nodes is subject to intermittent faults that may raise alarms in the system. The invention focuses on an optical network based on the Any rate architecture. A single fault such as a client failure at a node in such a network can give rise to a loss of client signal leading to multiple alarms detected at multiple points. To alleviate this problem this invention provides switching in a special Signature signal in place of the lost client signal. By detecting the Signature signal containing a specific code, the fault on the any rate-based architecture can be uniquely identified. In addition to fault identification, the Signature signal on the network makes it possible to maintain Clock and Data Recovery Locks at downstream nodes. The Signature signal serves also as a vehicle for carrying a special optical tag called Wavekey provided by the Wavelength Tracker technology developed by the Applicant.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: June 17, 2008
    Assignee: Alcatel-Lucent Canada Inc.
    Inventors: David Michael Ryan Holmes, Paul Mark Reepschlager
  • Patent number: 7389045
    Abstract: Optical communication apparatuses and optical communication methods are provided. According to one aspect, an optical communication apparatus includes a communication path configured to communicate a first signal; a signal generator configured to provide a second signal; a combiner configured to combine the first signal with the second signal to provide a composite signal; and a light source coupled with the combiner and configured to receive the composite signal and to output an optical signal corresponding to the composite signal to an optical conduit, wherein the signal generator is configured to monitor the application of the optical signal to the optical conduit and to alter the second signal responsive to the monitoring.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: June 17, 2008
    Assignee: Verizon Business Global LLC
    Inventor: John Arthur Fee
  • Patent number: 7386234
    Abstract: An apparatus for remotely determining a fault of subscriber terminals and a method thereof, and more specifically, an apparatus by which in a passive optical network (PON) system, a central office determines a remote fault of subscriber terminals, and a method thereof are provided. The apparatus for determining a remote fault of subscriber terminals includes: a frequency analysis unit recognizing a fault occurrence of a subscriber terminal from an upstream signal and analyzing the frequency spectrum of the upstream signal; and a fault determination unit selecting a specific frequency corresponding to the shape of the spectrum, determining a diagnosis signal corresponding to the specific frequency, transmitting a message requesting to upward transmit the diagnosis signal to each ONT, finding a peak frequency from the frequency spectrum of the diagnosis signal transmitted by the ONT, determining a fault of the subscriber terminal by comparing the peak frequency with the selected specific frequency.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: June 10, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byung Tak Lee, Mun Seob Lee, Hyun Seo Kang, Jai Sang Koh
  • Patent number: 7376293
    Abstract: Intrusion detection of one section only of a multimode fiber uses a light signal launched into the fiber at a location spaced from the source through a single mode fiber to establish a narrow spectral width, under-filled non-uniform mode field power distribution in the fiber. A small portion of the higher order signal modes at the a second location also spaced from the destination is sampled by a tap coupler and monitored for transient changes in the mode field power distribution which are characteristic of intrusion to activate an alarm. The active signal of a multimode optical fiber is monitored for both signal degradation and transient power disturbance patterns that could indicate fiber damage or physical intrusion. A translator can be provided in an existing optical fiber system in which the data signals are translated in wavelength and/or launch conditions to optimize the monitoring signals in an otherwise non-optimized system.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: May 20, 2008
    Assignee: Network Intergrity Systems Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, David E. Vokey
  • Patent number: 7376348
    Abstract: An optical transmission equipment in an optical communication system interconnecting two optical transmission equipment sets by a main transmission line and a backup transmission line. An optical amplifier amplifies and outputs optical signals from one transmission line in use, interconnecting the optical transmission equipment concerned with neighboring upstream optical transmission equipment, and outputs the optical signals including a signal component and a noise component. A controller controls an optical signal level so that a signal component in the optical signal reaches a predetermined level.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: May 20, 2008
    Assignee: Fujitsu Limited
    Inventors: Koji Hasuo, Futoshi Izumi
  • Patent number: 7376358
    Abstract: An optical spike is generated at an arbitrarily selected location within an arbitrary optical link. The optical spike is generated by deriving a spike signal having a plurality of components, and launching the spike signal into the a transmitter end of the optical link. An initial phase relationship between the components is selected such that the involved signal components will be phase aligned at the selected location. In order to achieve this operation, the initial phase relationship between the components may be selected to offset dispersion induced phase changes between the transmitter end of the link and the selected location. One or more optical spikes can be generated at respective arbitrarily selected locations within the link, and may be used for performance monitoring, system control, or other purposes.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: May 20, 2008
    Assignee: Nortel Networks Limited
    Inventors: Kim Roberts, Maurice O'Sullivan
  • Patent number: 7376359
    Abstract: The invention discloses a digital adjusting method for an optical receiver module, and the method implements real-time monitor of parameters, on-line adjustment and non-linear compensation. The digital optical receiver module includes elements as follow: a voltage output circuit of optical power detection 24, a DC/DC voltage boost circuit 22 and a bias voltage adjusting unit which is consisted of an optical-electronic conversion circuit 21; a digital adjusting unit 25, an analog-digital converter (A/D converter) 26 and a memory 27. The digital adjusting unit 25 makes on-line adjustment and implements temperature compensation and dark current compensation of the optical receiver module. The A/D converter 26 monitors the optical power, the working temperature and the bias voltage of the optical detector in real time. The memory 27 stores parameters of the optical receiver module for comparison with a detected optical power and measured temperature etc. and for on-line interrogation.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: May 20, 2008
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Zhenyu Tang
  • Patent number: 7373091
    Abstract: The inventors propose herein a switch fabric architecture that allows broadcasting and fast channel access in the ns-range. In various embodiments of the present invention, 10 Gb/s receiver modules are based on a novel heterodyne receiver and detection technique, which is tolerant to moderate wavelength drifts of a local oscillator. A gain clipped electrical amplifier is used in the novel receiver as a rectifier for bandpass signal recovery.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: May 13, 2008
    Assignee: Lucent Technologies Inc.
    Inventor: Lothar Benedict Erhard Josef Moeller
  • Patent number: 7369777
    Abstract: A dispersion compensator is provided that includes an input port 102 for receiving a WDM optical signal and a dispersion compensating element 110 coupled to the input port for substantially compensating the WDM optical signal for dispersion that has accumulated along an external transmission path. The dispersion compensator also includes an output port 104 for directing the dispersion compensated WDM optical signal to an external element and a dynamic power controller 106, 108, 112, 114, 116 for maintaining a total power of the WDM signal below a prescribed level prior to receipt of the WDM optical signal by the dispersion compensating element.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: May 6, 2008
    Assignee: General Instrument Corporation
    Inventors: Chandra Sekhar Jasti, Hermann Gysel, Mani Ramachandran
  • Patent number: 7369771
    Abstract: An optical network terminator of the present invention includes an optical wavelength division multiplexer for receiving an optical signal and incoherent light. An optical detection unit converts a downstream high speed and low speed optical signals into electrical signals. A laser diode converts an upstream signal into an optical signal. A high speed driving unit is supplied with power from a power supply unit to drive a forward-biased laser diode and establish a data and video channel. A high speed reception unit is supplied with the power to receive a downstream data and video channel. A charging unit outputs charged power at the time of a power failure. A low speed driving unit is supplied with the charged power to reverse-bias the laser diode to establish a voice channel. A low speed reception unit is supplied with the charged power to receive a voice channel.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: May 6, 2008
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang Hee Lee, Kwang Pyo Hong, Jin Serk Baik, Sung Man Kim, Sang Mook Lee, Sil Gu Mun
  • Patent number: 7369764
    Abstract: A transmission line monitoring apparatus includes a first optical coupling unit, a first optical dividing unit, a second optical coupling unit, a second optical dividing unit and a monitoring unit. The first optical coupling unit couples a down data signal with a first wavelength and an examination signal with a second wavelength into a first coupled signal. The first optical dividing unit receives the first coupled signal and divides the first coupled signal into the down data signal with the first wavelength and the examination signal with the second wavelength. The second optical coupling unit couples an up data signal with the first wavelength and the examination signal from the first optical dividing unit into a second coupled signal. The second optical dividing unit receives the second coupled signal and divides the second coupled signal into the up data signal with the first wavelength and the examination signal with the second wavelength.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: May 6, 2008
    Assignee: Fujitsu Limited
    Inventors: Kiyoshi Sukegawa, Yasuhiro Ono
  • Patent number: 7369763
    Abstract: An apparatus and a method for monitoring an optical transmission line. An optical pilot signal of a predetermined duration is transmitted along said optical transmission line and a return signal is sent back from a signal returner along the same transmission line corresponding to at least part of said optical pilot signal. The signal returner is positioned at a predetermined point along the optical transmission line. An optical detection apparatus detects said optical pilot signal and also detects said return signal. A monitoring unit receives detection signals from said optical detection apparatus and determins the time relationship between the predetermined duration of the optical pilot signal and the round-trip transit time of the optical pilot signal. A first monitoring signal is generated when the determined time relationship has a predetermined value, and at least one further monitoring signal is generated in other cases.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: May 6, 2008
    Assignee: Alcatel
    Inventor: Nigel Richard Parsons
  • Patent number: 7369769
    Abstract: An Ethernet passive optical network (EPON) ring for providing protection against fiber failures. The optical network unit (ONU) is coupled to the ring fiber by a three-port passive optical splitting module that has three two-way optical passages. By the three two-way optical passages, the OUN receives/transmits data from/to the two ends of the optical line termination (OLT) to provide protection while the fiber failure. Moreover, it provides better authorization of users and simpler collision detection by the two-way transmission of the three-port passive optical splitting module to prevent hackers from invading and to reduce collisions.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: May 6, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Tzu-Jian Yang, Kuan-Ming Lin, Yen-Pin Tseng, Ja-Nan Wang, Jeffrey Liu
  • Patent number: 7369779
    Abstract: A regenerator for restoring the originally encoded optical phase of a differential-phase-shift-keyed signal. In an embodiment, the regenerator simultaneously provides limiting amplification and reduces amplitude noise based on a phase-sensitive optical amplifier that combines a weak signal field of a degraded input data with a strong pump field supplied by a local oscillator in a nonlinear interferometer. The two fields interact through degenerate four-wave mixing, and optical energy is transferred from the pump to the signal and vice versa. The phase sensitive nature of the optical gain leads to amplification of a specific phase component of the signal, determined by the input pump-signal phase difference and the incident signal phase is restored to two distinct states, separated by 180° according to the original encoding. Simultaneously, gain saturation of the pump wave by the signal wave results in limiting amplification of the signal wave for removing signal amplitude noise.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: May 6, 2008
    Assignee: Research Foundation of the University of Central Florida
    Inventors: Kevin A. Croussore, Guifang Li, Cheolhwan Kim
  • Patent number: 7366416
    Abstract: A hub for use in a passive optical network (PON) includes a transmission fiber on which an information-bearing optical signal is received, a double-cladded, rare-earth doped fiber located along the transmission fiber for imparting gain to the information-bearing optical signal, and a combiner having an output coupled to the transmission fiber and a plurality of inputs. The output is coupled to the transmission fiber such that optical energy at pump energy wavelengths but not signal wavelengths are communicated therebetween. At least one pump source is optically coupled to one of the inputs of the combiner for providing optical pump energy to the double-cladded, rare-earth doped fiber. An optical splitter is also provided. The optical splitter has an input coupled to the transmission fiber for receiving an amplified, information-bearing optical signal and a plurality of outputs for directing portions of the amplified, information-bearing optical signal to remote nodes in the PON.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: April 29, 2008
    Assignee: General Instrument Corporation
    Inventors: Mani Ramachandran, Chandra Sekhar Jasti
  • Patent number: 7366411
    Abstract: The method for operating an optical transponder, which performs maintenance of a signal in the optical transponder having a digital wrapper in an optical transmission system including multiple layers, includes (a) calling a processor for processing an interrupt when the interrupt is generated from the digital wrapper according to monitoring of a received signal; (b) the called processor detecting what defect is generated in the received signal and detecting whether or not the received signal requires maintenance; (c) performing defect processing in the case that a defect is detected at (b) or is cancelled; and (d) controlling the digital wrapper according to the defect and maintenance processing result.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: April 29, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yun-Hee Cho, Seung-Il Myong, Jyung-Chan Lee, Yool Kwon
  • Patent number: 7366413
    Abstract: A modular cross connect system for optical telecommunication networks has the optical unit divided in at least two main bodies with one section for connection comprising the collimators and a main commutation section with MEMS devices. The first section is a fixed part while the second section is a readily removable section. The two sections face each other through a window and, in the first section, optics are provided for steering all or part of the optical signals from and to the main MEMS unit to a MEMS standby or protection plane to allow replacement of the main MEMS unit without interrupting service.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: April 29, 2008
    Assignee: Marconi Communications S.p.A.
    Inventor: Ugo Cerato
  • Publication number: 20080089681
    Abstract: A monitoring system according to an exemplary aspect of the invention is a monitoring system for use in an optical transmission system that monitors an input level of an optical amplifier and issues an alarm if the input level gets out of a predetermined range, wherein a threshold value for issuing the alarm to decide the predetermined range is set from the outside.
    Type: Application
    Filed: September 27, 2007
    Publication date: April 17, 2008
    Applicant: NEC Corporation
    Inventor: Yutaka YANO
  • Publication number: 20080085114
    Abstract: In an optical transmission line monitoring device, an input unit is manipulated by a user, and inputs selection command data indicating that alarm data displayed on a screen is selected an alarm data that will not be output. A exclusion data processing unit adds, to detection data stored in a detection data storage unit corresponding to the alarm data of the input selection command data, output removal data indicating that it is not a target for output. An alarm output unit displays the detection data that the output removal data was added to such that alarm data displayed on a screen that corresponds to the detection data can be distinguished from other alarm data.
    Type: Application
    Filed: July 18, 2007
    Publication date: April 10, 2008
    Applicant: FUJIKURA LTD.
    Inventors: Toshiaki NAKAJIMA, Kenji YASUHARA
  • Patent number: 7356256
    Abstract: A digital performance monitoring method and system for an optical communications system utilizes a channel monitor and a digital signal processor (DSP). The channel monitor is designed to monitor a respective channel signal of the optical communications system, and includes a sample memory for storing sample data including a set of sequential N-bit (where N>1) samples generated by an Analog-to-Digital (A/D) converter at a predetermined sample rate. The digital signal processor (DSP) is designed to calculate at least one performance parameter of the optical communications system based on the stored sample data. The sample rate of the A/D converter is at least equal to a baud rate of the channel, and preferably satisfies the Nyquist criterion. Multiple A/D converters may be used parallel to sample respective orthogonal components of the channel signal. In this case, the stored sample data may be representative of the complex E-field of the channel signal.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: April 8, 2008
    Assignee: Nortel Networks Limited
    Inventors: Leo Strawczynski, Kim B. Roberts, John McNicol
  • Patent number: 7352966
    Abstract: A method and system provide capacity-efficient restoration within an optical fiber communication system. The system includes a plurality of nodes each interconnected by optical fibers. Each optical fiber connection between nodes includes at least three channel groups with different priority levels for restoration switching in response to a connection failure. The system maintains and restores full-capacity communication services by switching at least a portion of the channel groups from a first optical fiber connection to a second optical fiber connection system based on the priority levels assigned to the channel groups. Service reliability is effectively maintained without incurring additional costs for dedicated spare optical fiber equipment by improving idle capacity utilization.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: April 1, 2008
    Assignee: AT&T Corp.
    Inventors: Sid Chaudhuri, Bruce Gilbert Cortez, Simon S. Zelingher
  • Patent number: 7343100
    Abstract: This application describes techniques for optical multiplexing and demultiplexing in optical communication systems based on polarization multiplexing of different signal channels.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 11, 2008
    Assignee: General Photonics Corporation
    Inventor: X. Steve Yao
  • Patent number: 7343103
    Abstract: An apparatus and method for detecting beam power generated by a plurality of light sources, using a single device. The apparatus includes a light-receiving unit that receives the beam power generated by one of a plurality of light sources, and an amplifying unit that selects a gain, amplifies the beam power received by the light-receiving unit according to the selected gain, and outputs the beam power amplified as a detected beam power. According to the apparatus and method, received beam power (or amplification gain) is amplified by a gain determined according to the characteristics of the respective light sources. Thus, it is possible to provide the detected beam power in consideration of a sufficient dynamic range for the each light source, thereby realizing effective APC.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: March 11, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pyong-yong Seong, Jong-koog Lee, Kun-soo Kim, Yong-jun Cho, Sung-du Kwon
  • Patent number: 7343094
    Abstract: A transmission characteristics evaluation system can measure the dispersion tolerance and the insertion loss gradient tolerance at a high precision with reduced number of working steps for the measurement in evaluating the transmission characteristics of an optical module. The transmission characteristics evaluation system comprises an optical transmitting apparatus, an optical receiving apparatus for, and a pseudo transmission path apparatus interposed between the optical transmitting apparatus and the optical receiving apparatus. The pseudo transmission path apparatus has, in a pseudo manner, transmission characteristics of a transmission path to which the optical transmitting apparatus and the optical receiving apparatus are to be connected. The pseudo transmission path apparatus comprises a transmission characteristics setting section for setting transmission characteristics equivalent to the transmission characteristics that the transmission path can have, by controlling a mirror or an optical element.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: March 11, 2008
    Assignee: Fujitsu Limited
    Inventor: Yuichi Kawahata
  • Publication number: 20080056712
    Abstract: In an optical transmission apparatus controlling an optical output portion by a working optical output controller and a protection optical output controller, the optical output controllers separately generate (inverted) preset value signals corresponding to a common output preset value provided from outside, and perform an analog addition of a common optical output monitoring signal and the preset value signal with an integrating circuit. An optical output portion generates an optical output signal which is an optical input signal controlled based on an output of the wired-OR of the optical output controllers, and generates the optical output monitoring signal corresponding to the optical output signal. When the optical output monitoring signal exceeds the preset value signals, the optical output controllers substantially control input terminals of the integrating circuits respectively to a ground potential by using control circuits.
    Type: Application
    Filed: December 28, 2006
    Publication date: March 6, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Chikashi Hashimoto, Yoshihisa Ikeda
  • Patent number: 7340187
    Abstract: In an optical signal monitoring method in wavelength multiplexing and an optical network, an area corresponding to a characteristic pattern of an eye pattern of an optical signal to be monitored, which characterizes a deterioration, is extracted from a database storing a map which associates a quality deterioration factor and deterioration amount of the optical signal with the characteristic pattern of the area of the eye pattern of the optical signal. The extracted pattern is collated with the map stored in the database to monitor the quality deterioration factor and deterioration amount of the optical signal, an occurrence time of a deterioration, duration of a deterioration, a deterioration occurrence cycle, and a deterioration duration cycle. An optical signal monitoring apparatus is also disclosed.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 4, 2008
    Assignee: NEC Corporation
    Inventor: Hitoshi Takeshita
  • Patent number: 7340170
    Abstract: A wavelength-division multiplexed self-healing passive optical network is capable of detecting cut-off and deterioration of feeder fiber and distribution fiber and restoring a network with a star structure. The network includes a central office, a remote node, and a plurality of subscriber units. Working and protection feeder fibers connect the central office to the remote node. A reflection unit at an end of the remote node connects to the central office for reflecting a monitoring optical signal transmitted from the central office. An output monitor stage at an end of the central office connects to the remote node for detecting the reflected monitoring optical signal and generating a control signal based on the presence of abnormality of the working and protection feeder fibers.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: March 4, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Bum Park, Yun-Je Oh, Seong-Taek Hwang