Space Patents (Class 398/55)
  • Patent number: 11832033
    Abstract: A system for efficiently interconnecting computing nodes can include a plurality of computing nodes and a plurality of network switches coupled in parallel to the plurality of computing nodes. The system can also include a plurality of node interfaces. Each computing node among the plurality of computing nodes can include at least one node interface for each network switch among the plurality of network switches. The plurality of node interfaces corresponding to a computing node can be configured to send data to another computing node via the plurality of network switches. The system can also include a plurality of switch interfaces. Each network switch among the plurality of network switches can include at least one switch interface for each computing node among the plurality of computing nodes. A switch interface corresponding to the computing node can be coupled to a node interface corresponding to the computing node.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: November 28, 2023
    Inventors: Hitesh Ballani, Winston Allen Saunders, Christian L. Belady, Lisa Ru-Feng Hsu, Paolo Costa, Douglas M. Carmean
  • Patent number: 11536948
    Abstract: A micromechanical light deflection device, including a micromechanical light deflection unit and a transparent cover for the micromechanical light deflection unit, the transparent cover including at least one passive beam shaping unit for a light beam.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 27, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Stoppel, Stefan Spiessberger
  • Patent number: 9559782
    Abstract: An optical receiver (20) for multimode communications comprises: a mode demultiplexer (21) having an input connected to a multimode link (22) and a plurality of output lines (231-234), wherein the mode demultiplexer is adapted to couple each of the modal components of the optical signal substantially into a selected one of the output lines, a plurality of coherent optical detectors (251-254) respectively connected to the output lines to produce a set of electrical digital signals each comprising an in-phase component and a quadrature-phase component, a plurality of independently adjustable optical delay devices (241-244) arranged on the output lines to impart a selected delay to each of the corresponding modal components, and a signal processing device (26) adapted to process the digital signals to recover the independent modulations of the respective modal components by inverting a mode-mixing characteristic of the multimode link.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: January 31, 2017
    Assignee: Alcatel Lucent
    Inventors: Clemens Koebele, Massimiliano Salsi
  • Patent number: 9229163
    Abstract: In a multi-chip module (MCM), optical waveguides in a first plane convey modulated optical signals among integrated circuits (which are sometimes referred to as ‘chips’). Moreover, an optical-butterfly switch, optically coupled to the optical waveguides, dynamically allocates communication bandwidth among the integrated circuits. This optical-butterfly switch includes optical components in the first plane and a second plane, and optical couplers that couple the modulated optical signals to and from the first plane and the second plane. In this way, the MCM communicates the modulated optical signals among the integrated circuits without optical-waveguide crossings in a given plane.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 5, 2016
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Herbert D. Schwetman, Jr., Michael O. McCracken, Pranay Koka
  • Patent number: 9020344
    Abstract: A unified network and elements thereof, including a switch fabric, is provided. The switch fabric may include a plurality of transport elements and a first signal-communication media. The transport elements may be adapted to communicatively couple and to communicate, via the first signal-communication media, transport signals adapted for communication among any of the plurality of transport elements. At least one transport element may be further adapted to communicate, via a second signal-communication media, signals and/or sets of signal originating from and/or terminating to one or more network nodes. Each of the electrical signals may be formatted in accordance with a protocol for electrical signals. And one or more of the transport signals may include the electrical signals in adapted form. Additionally and/or alternatively, one or more of the transport signals may be formed from, or as a function of, the electrical signals.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: April 28, 2015
    Assignee: Zephyr Photonics
    Inventor: Jason Blain Stark
  • Patent number: 8958693
    Abstract: A wavelength selective switch includes a light input/output unit that includes an input unit and an output unit of a wavelength multiplexed light arranged in a form of an array in a first direction, a light dispersing unit that receives the wavelength multiplexed light from the input unit and disperses the wavelength multiplexed light into signal wavelengths, a light condensing element that condenses the light dispersed into the signal wavelengths, and a light deflecting element array that deflects a signal light in the first direction and a second direction, that is orthogonal to the first direction, so as to switch the light of the signal wavelengths condensed by the light condensing element to a desired output unit.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: February 17, 2015
    Assignee: JDS Uniphase Corporation
    Inventor: Koji Matsumoto
  • Patent number: 8934776
    Abstract: A plurality of optical transmission sources provide data communication from a transmitting module to a common detector cooperative with a receiving module, the modules being subject to relative rotation about a shared axis. The detector can be located on the shared axis, each of the sources directing a beam onto the detector regardless of relative module orientation, and/or the light can be diffused, so that it is detected regardless of source and detector placement and relative module orientations. Transmissions can be distinguished according to synchronized timing, differing optical frequencies, differing baud rates, and/or differing circular polarizations. The detector can split the light into a plurality of beams which pass through different optical filters and are thereby distinguished. Cut-off circuits can prevent failed sources from transmitting. A diffused second light source and a second plurality of detectors can provide reverse communication from the receiving module to the transmitting module.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: January 13, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: James H. Steenson, Jr., Derek P. Janiak, Benjamin W. Brown
  • Patent number: 8917989
    Abstract: Methods and systems for splitting an initiated signal are disclosed. An exemplary system may include a transmitter configured to selectively transmit an initiated signal, and a signal splitter in communication with the transmitter. The signal splitter may be configured to selectively split the initiated signal into a plurality of recipient signals for a plurality of recipient lines in communication with the transmitter. The signal splitter may be configured to selectively modify a number of recipient signals, e.g., by adjusting a spot size of the initiated signal on the signal splitter.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: December 23, 2014
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: David Zhi Chen
  • Patent number: 8891964
    Abstract: An optical network includes a multidimensional coder and modulator for handling multiple-in-multiple-out MIMO spatial lightpath properties and content of any specific supercarrier, a spatial mode multiplexer responsive to orthogonal frequency division multiplexing OFDM transmissions and the multidimensional coder, a spatial-spectral routing node coupled over a fiber link to the spatial mode multiplexer for performing switching granularity by a spatial mode reconnection, a multidimensional decoder and demodulator; and a spatial mode demultiplexer coupled over a fiber link to the spatial-spectral routing node and responsive to the multidimensional decoder and demodulator.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: November 18, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Milorad Cvijetic, Ivan B. Djordjevic, Neda Cvijetic, Ting Wang
  • Patent number: 8873955
    Abstract: Scheduling methods and apparatus for use with optical switches with hybrid architectures are provided. An exemplary distributed scheduling process achieves 100% throughput for any admissible Bernoulli arrival traffic. The exemplary distributed scheduling process may be easily adapted to work for any finite round trip time, without sacrificing any throughput. Simulation results also showed that this distributed scheduling process can provide very good delay performance for different traffic patterns and for different round trip times associated with current switches.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Polytechnic Institute of New York University
    Inventors: Shivendra S. Panwar, Yanming Shen, Shunyuan Ye
  • Patent number: 8873954
    Abstract: A method and system for transmitting data over a Jacobi MIMO channel when using channel state feedback.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 28, 2014
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Meir Feder, Ronen Dar
  • Patent number: 8867915
    Abstract: A system and method of providing a dynamic optical network topology according to topology determinations made by a network control is disclosed. The system and method includes optical ports on an optical circuit switch system operably connected to a plurality of server groups, and optical ports on the optical circuit switch system operably connected to a plurality of packet processing nodes. The system and method also includes at least one memory and at least one processor to execute network control software to receive input comprising a bandwidth request, determine an output comprising a preferred optical link topology for the optical circuit switch system based on the received input, convert the optical link topology for the optical circuit switch system into optical circuit switch port mapping, and send the optical circuit switch port mapping to the optical circuit switch system and to the packet processing nodes.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: October 21, 2014
    Assignee: Google Inc.
    Inventors: Amin Vahdat, Xiaoxue Zhao, Paul Germano, Bikash Koley, Hong Liu
  • Patent number: 8861966
    Abstract: Method and system for band blocking in an optical telecommunication network. According to an embodiment, the present invention provides a system for optical network. The system includes an input that is configured to receive an input signal through a first optical input. The system also includes a band splitting module that is coupled to the input. The band splitting module is configured to separate the input signal into a plurality of bands. The plurality of bands includes a first band and a second band. The first band includes a first plurality of wave channels. The first plurality of wave channels is characterized by a first channel spacing. The second band includes a second plurality of wave channels, which is characterized by a second channel spacing.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 14, 2014
    Assignee: FutureWei Technologies, Inc.
    Inventors: Fei Zhu, Yu Sheng Bai
  • Patent number: 8855488
    Abstract: The present invention relates to an optical transmission system to which a spatial multiplexing optical fiber is applied as a transmission line. The optical transmission system performs optical transmission using the spatial multiplexing optical fiber as an optical transmission line for transmission of signal light. Namely, the optical transmission is carried out in accordance with a modulation format in which a Q-factor of the signal light propagating in certain propagation mode light propagating in the spatial multiplexing optical fiber and a ratio of a signal light power to a square of the shortest distance between modulation symbols in the modulation format satisfy a predetermined relational expression.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 7, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tetsuya Hayashi
  • Publication number: 20140255022
    Abstract: An embodiment of the present invention provides an optical burst synchronization method. A synchronization method includes: selecting a reference chassis, and transmitting, by an output port corresponding to an FTL in the reference chassis, an optical burst test signal respectively to receive ports corresponding to ORs in other line card chassis, where the optical burst test signal carries a transmission timeslot number; and acquiring, by a receive port corresponding to an OR in each line card chassis, according to an optical path difference between the receive port corresponding to the OR in each line card chassis and the output port corresponding to the FTL in the reference chassis, time of receiving the optical burst test signal, and the transmission timeslot number, a time-phase difference between each line card chassis and the reference chassis, and calibrating a local clock phase according to the time-phase difference.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicant: Huawei Technologies Co., Ltd.
    Inventor: Qiwen Zhong
  • Patent number: 8831423
    Abstract: Switching architectures for WDM mesh and ring network nodes are presented. In mesh networks, the switching architectures have multiple levels—a network level having wavelength routers for add, drop and pass-through functions, an intermediate level having device units which handle add and drop signals, and a local level having port units for receiving signals dropped from the network and transmitting signals to be added to the network. The intermediate level device units are selected and arranged for performance and cost considerations. The multilevel architecture also permits the design of reconfigurable optical add/drop multiplexers for ring network nodes, the easy expansion of ring networks into mesh networks, and the accommodation of protection mechanisms in ring networks.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: September 9, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Ornan Gerstel, Mauro Macchi, Stefano Piciaccia
  • Patent number: 8724988
    Abstract: A synchronous packet switch comprises output modules, input modules, optical connections and a switch control unit. The output modules comprise optical receivers each configured to receive optical signals at a different wavelength. The input modules receive electric signals carrying data cells to be routed. Each input module comprises optical transmitters, each configurable to generate an optical signal at a different wavelength, and routing apparatus comprising output ports. Each output module has at least one output port allocated to it. The routing apparatus is configurable to route a received optical signal to a selected output port. The optical connections are arranged to couple output ports to respective output modules. The switch control unit controls routing of the optical signals from the transmitters to the output modules and generates a routing control signal for configuring the routing apparatus to route an optical signal from a transmitter to a selected output port.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 13, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Nicola Andriolli, Antonella Bogoni, Alberto Bianchi, Piero Castoldi, Luca Poti, Pier Giorgio Raponi
  • Patent number: 8705971
    Abstract: A method for optical network signaling processing of a signal from a first node to an end node through intermediate nodes is presented. The method comprises determining, in a first pass from the first node to the end node, available wavelengths and wavelength conversion at each node, the end node optimizing wavelengths using the available wavelengths and wavelength conversions, at each node, dropping a cross-connect command, in a second pass from the end node to the first node, choosing wavelengths for connection based on the optimizing step, in a third pass from the first node to the end node, receiving at each node a signal message and releasing unused cross-connect commands, the end node identifying the chosen wavelengths and releasing the unused resources, and transmitting the signal on the chosen wavelengths. Restoration paths can also be determined. Optimizing can include selecting and marking one or more backup wavelengths.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: April 22, 2014
    Assignee: TT Government Solutions, Inc.
    Inventors: Ronald A. Skoog, Arnold Neidhardt, Brian Wilson
  • Publication number: 20140037289
    Abstract: A method and system for transmitting data over a Jacobi MIMO channel when using channel state feedback.
    Type: Application
    Filed: January 31, 2013
    Publication date: February 6, 2014
    Inventors: Meir Feder, Ronen Dar
  • Patent number: 8619807
    Abstract: A packet-switched WDMA ring network has an architecture utilizing packet stacking and unstacking for enabling nodes to access the entire link capacity by transmitting and receiving packets on available wavelengths. Packets are added and dropped from the ring by optical switches. A flexible credit-based MAC protocol along with an admission algorithm enhance the network throughput capacity.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 31, 2013
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Mikhail Borditsky, Nicholas J Frigo, Aleksandra Smiljanic
  • Patent number: 8553725
    Abstract: A node is configured to receive an instruction to establish a channel having a bandwidth that corresponds to an operating spectrum an optical fiber; obtain information that identifies a channel spacing and a pointer that identifies where, within the spectrum, to establish bandwidth allocations; identify a group of bandwidth segments based on the spectrum and the channel spacing; and generate bit words that correspond to the bandwidth allocations, where the bit words includes bits that, when set to a value, cause sets of segments to be reserved within the spectrum, and where the sets of segments identify where the bandwidth allocations begin and end, within the spectrum, relative to the pointer.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 8, 2013
    Assignee: Infinera Corporation
    Inventors: Iftekhar Hussain, Abinder Dhillon, Zhong Pan, Marco E. Sosa
  • Patent number: 8553707
    Abstract: The present disclosure provides systems and methods for administrative boundaries in a single domain optical network such as emulation of an External network-network interface (ENNI) using an Internal-Network to Network Interface (INNI). For example, in a single monolithic domain, a network and associated network elements may discover network elements, build topology, compute paths, establish new calls, etc. A user may identify/mark specific links as emulated “ENNI” links with the specific links actually being INNI links. As a call traverses this emulated link, a new call is initiated (much in the same way a new call segment would be created for a call). Signaling proceeds as normal. When the call set-up is fully complete, instead of a single call segment, many call segments exists. Advantageously, this allows use of INNI control plane features while allowing a network operator to future-proof their network by installing call segments at future boundary points.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: October 8, 2013
    Assignee: Ciena Corporation
    Inventors: Gerard L Swinkels, Darek Skalecki, Manuel Damas
  • Publication number: 20130243429
    Abstract: Data locality constraints are alleviated by a data processing system and method of reorganizing data. Multiple electronic components are configured to modulate a light beam on a shared photonic interconnect and to detect the data according to a global schedule to reorganize data across the multiple electronic components. By constructing data transfer patterns in a shared photonic interconnect, rather than in dedicated reorganization hardware, data is reorganized while in transit, greatly accelerating the reorganization of data, and reducing the amount of power-consuming hardware necessary to achieve the task.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 19, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: David J. Whelihan, Scott M. Sawyer, Jeffrey J. Hughes
  • Publication number: 20130236175
    Abstract: A space division multiplexed (SDM) transmission system that includes at least two segments of transmission media in which a spatial assignment of the two segments is different is provided. For example, the SDM transmission may include a first segment of transmission media having a first spatial assignment and a second segment of transmission media having a second spatial assignment, wherein the first spatial assignment differs from the second spatial assignment. An example method obtains an optical signal on a first segment of transmission media having a first spatial assignment and forwards the optical signal on a second segment of transmission media with a different spatial assignment. The transmission media may be a multi-core fiber (MCF), a multi-mode fiber (MMF), a few-mode fiber (FMF), or a ribbon cable comprising nominally uncoupled single-mode fiber (SMF).
    Type: Application
    Filed: September 4, 2012
    Publication date: September 12, 2013
    Inventors: Chandrasekhar Sethumadhavan, Xiang Liu, Peter J. Winzer, Alan H. Gnauck
  • Patent number: 8488963
    Abstract: The present invention provides a system, apparatus and method to compute a route through a network having both digital nodes and optical express-thru nodes. According to various embodiments of the invention, a network topology is generated in which both digital nodes, optical express-thru nodes, and optical nodes are identified, and both physical and virtual links between these nodes are mapped. The network connectivity is identified, at least in part, by broadcasting a local link state advertisement and optical carrier group binding information to neighboring nodes, which enables both physical and virtual neighboring nodes to be identified. Once a topology is generated, both physical and virtual link characteristics are analyzed to ensure link diversity for traffic through the network and load balancing functionality across the network.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 16, 2013
    Assignee: Infinera Corporation
    Inventors: Ashok Kunjidhapatham, Mohit Misra, Biao Lu
  • Patent number: 8463091
    Abstract: This invention discloses methods to reconfigure highly scalable and modular automated optical cross connect switch devices comprised of large numbers of densely packed fiber strands suspended within a common volume. In particular, methods enabling programmable interconnection of large numbers of optical fibers (100's-1000's) are provided, whereby a two-dimensional input array of fiber optic connections is mapped in an ordered and rule-based fashion into a one-dimensional array. A particular algorithmic implementation for a system reconfigured by a three-axis robotic gripper as well as lateral translation of each row in the input port array is disclosed.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: June 11, 2013
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 8351790
    Abstract: An optical transmission system including: first, second, and third stations; a main transmission path that bi-directionally couples the first station with the second station; and an optical add/drop multiplexer (OADM) disposed on the main transmission path, the OADM branching light from the first and second station, combining light from the third station to the main transmission path; wherein the OADM includes an input determination unit and an optical path switching unit, the input determination unit detects the power of the lights, and determines whether each of the input lights is lost or not, and the optical path switching unit forms a loop-back route based on the determination.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: January 8, 2013
    Assignee: Fujitsu Limited
    Inventors: Yuhiro Midorikawa, Izumi Yokota
  • Patent number: 8340516
    Abstract: A grooming apparatus for an optical communication network is disclosed. The apparatus mainly includes a first photoelectric integration unit and an electrical-layer grooming unit. The first photoelectric integration unit includes a wavelength division multiplexing/demultiplexing unit and a photo-electric/electric-photo conversion unit. The wavelength division demultiplexing unit is configured to demultiplex a multi-wavelength optical signal into single-wavelength optical signals. The photo-electric conversion unit is configured to convert the single-wavelength optical signals to single-wavelength electrical signals. The electrical-layer grooming unit is configured to groom the single-wavelength electrical signals. The present invention overcomes the fatal defect of light dispersion, light power estimation, light power adjustment, OSNR limitation for a conventional OADM/ROADM system. Also, the flexibility of the electrical-layer grooming eliminates the wavelength broadcast and multicast issue.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 25, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Zhiyong Huang, Buyun Wang
  • Patent number: 8320761
    Abstract: Embodiments of a bidirectional 3-way optical splitter are described. This bidirectional 3-way optical splitter includes an optical splitter having: a first external node, a second external node, a third external node, and a fourth external node. In one mode of operation, the optical splitter may be configured to receive an external input optical signal on the first external node and to provide external output optical signals on the other external nodes. Moreover, in another mode of operation, the optical splitter may be configured to receive the external input optical signal on the third external node and to provide the external output optical signals on the other external nodes.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 27, 2012
    Assignee: Oracle America, Inc.
    Inventors: Xuezhe Zheng, Brian W. O'Krafka, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 8290367
    Abstract: The OSS provides unique and automated provisioning, activation, fallout management and monitoring of SONET and WDM networks comprising control plane mesh and traditional SONET/WDM Rings/Chains. Resource discovery and dynamic provisioning provides for increased use of network bandwidth. It is possible both all control plane networks and mixed control plane and traditional networks. Network connections or the network topology may be accomplished in a hop-by-hop manner.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: October 16, 2012
    Assignee: Telcordia Technologies, Inc.
    Inventors: Michael A. Reina, Praveen Katiyar, Shakil H. Siddique, Rama Sreedhara, Alka Srivastava, Beverly N. Meyers, Dean Rader, Sriam Subramanian, Maria Croat
  • Patent number: 8218967
    Abstract: An optical switching system and method that provide fault tolerant optical switching without duplicating the entire system. Two optical switches are provided, each of which receives a portion of a transmitted optical signal. Should one switch fail, the other switch is still able to perform the required optical routing of the optical signal to the desired receiving node. The two switches can be the same type of optical switch that have identical switching functionality, or each switch could have a distinct switching functionality. In one example, one switch could be a semiconductor optical amplifier (SOA) switch that has fast switching speed but uses more power, and the other switch could be a micro electro-mechanical systems (MEMS) switch that has slower switching speed but uses less power, thereby combining the benefits of fast switching and low power switching into a single architecture.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 10, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Rick C. Stevens
  • Patent number: 8135277
    Abstract: A system, method, and apparatus for delayed optical router based on slow light and nondegenerate four-wave mixing processes are presented, in which three laser pulses interact with a three-level nonlinear optical medium composing two closely spaced ground states and an excited state. The delayed optical routing mechanism is based on a slow light phenomenon, in which a group velocity of an incoming input signal pulse is slowed down due to quantum coherence induced refractive index change. The two-photon coherence induced on the ground states via electromagnetically induced transparency is optically recovered via nondegenerate four-wave mixing processes. The nondegenerate four-wave mixing generation is enhanced owing to absorption cancellation. In this case, the individual pulse switching/routing time is limited by the coherence decay time that is much faster than population decay time, where the population decay-time is a limiting factor of conventional switching devices.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: March 13, 2012
    Assignee: INHA-Industry Partnership Institute
    Inventor: Byoung-Seung Ham
  • Patent number: 8131150
    Abstract: A tunable bidirectional multiplexer/demultiplexer (MUX/DEMUX) is disclosed for adding and dropping wavelength channels between an optical transmission system and at least one optical transceiver. The MUX/DEMUX includes at least one add port for adding wavelength channels, at least one drop port for dropping wavelength channels, and at least one first optical circulator coupled to the at least one drop port and the at least one add port. The MUX/DEMUX further includes at least one 1×N wavelength-selective switch coupled to the at least one first optical circulator, and at least one second optical circulator coupled to at least one transceiver port on a second side of the at least one wavelength-selective switch, where the optical circulators and switching components are disposed within a common housing.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: March 6, 2012
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Mark D. Feuer, Sheryl L. Woodward
  • Patent number: 7877012
    Abstract: A control module is configured to receive one or more input signals. An optical selection network includes a plurality of optical input ports configured to receive respective optical waves at an operative wavelength, and at least one optical output port configured to provide an optical wave at the optical wavelength. The optical selection network is configured to receive one or more control signals from the control module, and in response to the control signals, provide a high transmission path for the operative wavelength from an optical input port, determined by the input signals, to the optical output port at a predetermined time with respect to a time reference in at least one of the input signals, and provide a low transmission path for the operative wavelength from each of a plurality of optical input ports, determined by the input signals, to the optical output port at the predetermined time.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: January 25, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Jeffrey H. Shapiro, Franco N. C. Wong
  • Patent number: 7853147
    Abstract: The present invention provides an information processing system, comprising a plurality of calculation nodes with an optical transmitter, which individually outputs a plurality of optical signals each having a different wavelength, and an optical receiver, which individually receives a plurality of optical signals each having a different wavelength, an optical transmission path connecting a plurality of the calculation nodes to each other, and optical pathway switching unit, lying in the optical transmission path, for transmitting the optical signal to the specific calculation node in accordance with a wavelength of the optical signal output from one of the calculation nodes.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: December 14, 2010
    Assignee: Fujitsu Limited
    Inventors: Toshiki Tanaka, Yasuhiko Aoki, Hideyuki Miyata, Takao Naito, Kouichiro Amemiya
  • Patent number: 7826747
    Abstract: An optical node for optical burst transport includes optical components operable to transmit and receive optical signals over an optical transmission medium. The optical components include a demultiplexer that is operable to receive a wavelength division multiplexed (WDM) optical signal at an input port and to separate the WDM optical signal into two or more constituent wavelength signals, and a switching matrix that includes one or more electro-optic switches. Each electro-optic switch is operable to receive a wavelength signal and switch the signal to one of two outputs, and the outputs include an output port of the optical node and one or more drop output ports of the optical node.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: November 2, 2010
    Assignee: Fujitsu Limited
    Inventors: Ching-Fong Su, Takeo Hamada, Richard R. Rabbat, Alexei L. Glebov
  • Patent number: 7764881
    Abstract: An optical apparatus is disclosed wherein increase of the number of wavelength selective switches provided for a standby system can be suppressed. The optical apparatus includes a plurality of upstream side optical devices and a plurality of downstream side optical devices configured such that a plurality of output ports to be set as output destinations of light from a plurality of input ports can be changed over for each wavelength. An upstream side standby switch connected at a plurality of inputs thereof individually to the input ports and can change over an output of light from the inputs for each wavelength. A downstream side standby switch is connected at an input thereof to the output of the upstream side standby switch and at a plurality of outputs thereof individually to the output ports and can output light from the input to the plural outputs thereof.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: July 27, 2010
    Assignee: Fujitsu Limited
    Inventor: Yasuhiko Aoki
  • Patent number: 7756371
    Abstract: Optical fiber interconnection devices, which can take the form of a module, are disclosed that include an array of optical fibers and multi-fiber optical-fiber connectors, for example, a twenty-four-port connector or multiples thereof, and three eight-port connectors or multiples thereof. The array of optical fibers is color-coded and is configured to optically interconnect the ports of the twenty-four-port connector to the three eight-port connectors in a manner that preserves transmit and receive polarization. In one embodiment, the interconnection devices provide optical interconnections between twenty-four-fiber optical connector configurations to eight-fiber optical connector configurations, such as from twenty-four-fiber line cards to eight-fiber line cards, without having to make structural changes to cabling infrastructure. In one aspect, the optical fiber interconnection devices provide a migration path from duplex optics to parallel optics.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 13, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: William R. Burnham, Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn, Alan W. Ugolini
  • Patent number: 7738788
    Abstract: An address recognition apparatus may include a first normalizing unit, a second normalizing unit and an address determination unit. The first normalizing unit normalizes a first electric signal and generates a first normalized signal, wherein the first electric signal is associated with a first divided set of optical packet signals. The second normalizing unit normalizes a second electric signal and generates a second normalized signal, wherein the second electric signal is associated with a second divided set of optical packet signals. The address determination unit refers to the first and second normalized signals and determines whether a destination address of a set of optical packet signals is identical to or different from an address allocated to a self-station associated with the address recognition apparatus, wherein the set of optical packet signals has been divided into the first and second divided sets of optical packet signals.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: June 15, 2010
    Assignee: Yokogawa Electric Corporation
    Inventors: Masayuki Suehiro, Shinji Iio, Daisuke Hayashi, Morio Wada
  • Patent number: 7689079
    Abstract: Optical fiber interconnection devices, which can take the form of a module, are disclosed that include an array of optical fibers and multi-fiber optical-fiber connectors, for example, two twelve-port connectors or multiples thereof, and three eight-port connectors or multiples thereof. The array of optical fibers is color-coded and is configured to optically interconnect the ports of the two twelve-port connectors to the three eight-port connectors in a manner that preserves transmit and receive polarization. In one embodiment, the interconnection devices provide optical interconnections between twelve-fiber optical connector configurations to eight-fiber optical connector configurations, such as from twelve-fiber line cards to eight-fiber line cards, without having to make structural changes to cabling infrastructure. In one aspect, the optical fiber interconnection devices provide a migration path from duplex optics to parallel optics.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: March 30, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: William R. Burnham, Robert W. Dennis, Alan W. Ugolini, Terry L. Cooke, Tory A. Klavuhn
  • Patent number: 7657138
    Abstract: An approach is provided for a free-space optical switch. A command is received to change a connection state of a free-space optical transmission path. A mirror is controlled to change the connection state of the free-space optical transmission path with respect to a particular port of a plurality of ports that interface to respective optical fibers, wherein the ports correspond to holes disposed about a circumferential surface of a port ring.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: February 2, 2010
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: David Z. Chen, Joseph Finn
  • Patent number: 7653307
    Abstract: A device (D) dedicated to optical switching in a switching node (NC) comprises at least one first switching matrix (MC1) and one second switching matrix (MC2) coupled to each other and each comprising i) a first stage including Ni diffusion modules each having a first input and Mi first outputs and ii) a second stage including Ni fusion modules each having Ni second inputs each coupled to one of the Mi first outputs of one of the Ni diffusion modules via an optical line, at least one third input and one second output. The second stage of at least one of the matrices comprises at least one additional fusion module having Ni second inputs adapted to apply optical power adjustment and one second output. At least one optical line (LS1) couples the second output of an additional fusion module of one of the matrices (MC1) to a third input of each of the Ni fusion modules of the other matrix (MC2).
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: January 26, 2010
    Assignee: Alcatel Lucent
    Inventors: Pierre Peloso, Nicolas Le Sauze, Olivia Rofidal
  • Patent number: 7567556
    Abstract: A circulating switch comprises switch modules of moderate capacities interconnected by a passive rotator. Data is sent from a one switch module to another switch module either directly, traversing the rotator once, or indirectly through at least one intermediate switch module where the rotator is traversed twice. A higher capacity extended circulating switch is constructed from higher-capacity switch modules, implemented as common memory switches and having multiple ports, interconnected through a multiplicity of rotators preferably arranged in complementary groups of rotators of opposite rotation directions. A polyphase circulating switch having a low switching delay is derived from a multi-rotator circulating switch by providing programmable rotators having adjustable relative rotator-cycle phases. A low delay high-capacity switch may also be constructed from prior-art medium-capacity rotator space switches with mutually phase-shifted rotation cycles.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: July 28, 2009
    Assignee: Nortel Networks Limited
    Inventor: Maged E. Beshai
  • Patent number: 7565079
    Abstract: A system and method are presented for demarcating an optical network. The system comprises an optical monitor that receives a portion of an outbound signal from an optical network and generates a switch control signal based on the intensity of the outbound signal. Generally, the switch control signal is active when the intensity of the outbound signal falls below a threshold value. Alternatively, the system comprises an override switch, and the switch control signal is active when the override signal is activated or the outbound signal falls below a threshold value. An optical switch receives the switch control signal, and selectively isolates the network generating the outbound signal from the rest of the network when the switch control signal is active.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: July 21, 2009
    Assignee: Westell Technologies, Inc.
    Inventors: Christopher F. Simanonis, Daniel Wynard
  • Patent number: 7565081
    Abstract: A communication system includes a plurality of nodes and a plurality of point-to-point links that interconnect the plurality of nodes into a network. Each node includes an optical switch to controllably route a plurality of in-ports of the optical switch into a plurality of out-ports of the optical switch. Each point-to-point link includes a free space optical channel. A first free space optical channel couples to a first node through a receive path and through a transmit path. The receive path couples to a respective in-port of the optical switch of the first node, and the transmit path coupled to a respective out-port of the optical switch of the first node. In an alternative embodiment, a communication hub includes a plurality of neighborhood links, and a trunk coupled between the optical switch and a free space optical channel link to the network.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: July 21, 2009
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: David M. Britz, Jeevan Prakash Dodley, Lih-Yuan Lin, Robert R. Miller
  • Patent number: 7505686
    Abstract: Highly Scalable Multi-granular Node Architecture based upon strictly non-blocking waveband switch constructed around cyclic arrayed waveguide grating (AWG) routers. In one implementation, the invention includes a first N×N cyclic arrayed waveguide grating (AWG); a middle stage includes N tuner modules, and a second N×N cyclic AWG for routing information from a plurality of different optical networks. Another implementation of the invention further provides an add/drop switch, and a shuffler for performing add/drop functions and preserving the wavelength order.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: March 17, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Jean Gerardus Leonardus Jennen
  • Patent number: 7493045
    Abstract: A real time fiber optic matrix switch includes at least one matrix switch port and a controller card. The controller card is configured to recognize communication protocols associated with any of the Type A-H and J signals of the Naval Tactical Data System (NTDS), and to enable the communication of information between the matrix switch and interconnected peripheral devices, as well as any interconnected matrix switches. The controller card is externally programmed by a digital logic program that multiplexes data streams of received signal types to one data stream, converts the multiplexed data stream to an optical signal, transmits the optical signal, receives the transmitted optical signal, transforms the received optical signal to an electric signal, demultiplexes the electric signal, validates the demultiplexed electric signal, and acknowledges the validated demultiplexed electric signal.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: February 17, 2009
    Inventors: David E. Erisman, Douglas J. Jaeger, Steven A. Renich
  • Patent number: 7440512
    Abstract: An electrical signal regenerator including an equalizer and a clock data recovery circuit is provided. The clock data recovery circuit is selected when an input signal of a higher bitrate multiplex level is detected, but the clock data recovery circuit is bypassed when an input signal of a lower bitrate multiplex signal is detected. The electrical signal regenerator can be used in an optical switch processing signals of the new OTN according to ITU-T G.709, in which optical signals undergo optical to electrical conversion and are fed to an electrical space switching matrix including a plurality of the switch modules electrically interconnected by means of internal electrical signal paths such as a backplane or electrical cables. The electrical signal regenerator can be coupled to each input of a switching module to check internal cabling of the switching matrix.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: October 21, 2008
    Assignee: ALCATEL
    Inventor: Helmut Preisach
  • Patent number: 7398018
    Abstract: An optical transmission equipment having a switchover control function of optical transmission lines enables to reduce a required space in a common equipment supervision and control portion. The optical transmission equipment includes a pair of a work interface unit and a protection interface unit each accommodating an optical transmission line, and an add drop multiplexing unit for selecting an optical signal output from either of the interface unit pair. Each interface unit includes a switchover controller, and each of the interface unit pair is mutually connected via a communication path so as to share status information among the switchover controllers. Upon a failure in the work interface unit side of the interface unit pair, the failure is reported to the protection interface unit side prepared as an object for switchover, to send a switchover request from the protection interface unit side to the add drop multiplexing unit.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: July 8, 2008
    Assignee: Fujitsu Limited
    Inventor: Katsuichi Ohara
  • Patent number: 7398019
    Abstract: An object of the invention is to provide a control apparatus and a control method having a simple constitution, which can stably perform switching of optical path in an optical signal exchanger, while suppressing an influence on a control due to the mechanical resonance of tilt mirrors. To this end, the control apparatus of the optical signal exchanger is constituted such that in an optical signal exchanger of three-dimensional type using one set of MEMS mirror arrays, each having a plurality of tilt mirrors arranged on a plane, each tilt mirror having a reflecting surface an angle of which is controllable, when the angle of the MEMS mirror on the optical path is feedback controlled by detecting power of an optical signal output from a specific position, a resonance component removing section that removes a resonance frequency component included in a control signal is shared corresponding to a pair of driving electrodes arranged in a coaxial direction of the MEMS mirror.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: July 8, 2008
    Assignee: Fujitsu Limited
    Inventors: Yuji Tochio, Kazuyuki Mori, Tetsuji Yamabana, Ichiro Watanabe, Yuji Ishii