Ring Or Loop Patents (Class 398/59)
  • Patent number: 8295700
    Abstract: A distributed packet switch to control data packet flows in a network is described. The distributed packet switch includes a means for operating over an asynchronous burst optical closed fiber medium. The distributed packet switch also includes at least one control system provided at a node to control data packet flow characteristics, such that the switch is configured to operate dependent on at least one efficiency parameter.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: October 23, 2012
    Assignee: Intune Technologies
    Inventors: James A. Shields, John Dunne, Thomas Farrell
  • Patent number: 8270987
    Abstract: A radio base station for a mobile radio network, includes a set of remote units connected with the radio base station, preferably via a radio over fibre arrangement. Each remote unit provides radio cell coverage by means of a set of communication channels, and is equipped with a respective set of antenna elements. The communication channels are distributed over the antenna elements according to an assignment scheme that is dynamically variable.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 18, 2012
    Assignee: Telecom Italia S.p.A.
    Inventors: Mauro Boldi, Paolo Gianola, Roberto Quasso
  • Publication number: 20120207473
    Abstract: An optical network has an optical line termination coupled to a backbone network, in particular to an optical long haul network and a local exchange coupled to an optical access network. The local exchange provides an optical connection between an optical network unit of a tree topology and the optical line termination, which is part of a ring topology. There is also described a method for processing data in such an optical network.
    Type: Application
    Filed: October 16, 2009
    Publication date: August 16, 2012
    Applicant: NOKIA SIEMENS NETWORKS OY
    Inventor: Sylvia Smolorz
  • Publication number: 20120195588
    Abstract: Techniques, apparatus and systems for optical communications, including fiber ring networks with protection switching to maintain optical communications when an optical failure occurs and to automatically revert to normal operation when the optical failure is corrected, fiber ring networks that provide a circulating optical probe signal at an optical probe wavelength within the gain spectral range of optical amplifiers used in a fiber ring network to detect an optical failure, and fiber ring networks that support broadcast-and-select optical WDM signals carrying communication traffic to the optical ring nodes without regeneration at each optical ring node and one or more overlaid in-band node-to-node optical signals carrying communication traffic with regeneration at each node.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 2, 2012
    Applicant: Vello Systems, Inc.
    Inventor: Winston I. Way
  • Patent number: 8233800
    Abstract: According to one embodiment of the invention, a method for providing communications service in a communications ring undergoing an upgrade process includes increasing an existing rate of a node to a higher rate. With the increase, the node is operable to transmit a second frame at the higher rate. The second frame has a higher number of time slots than a first frame having a number of slots equal to N. The method also includes occupying a number of the time slots of the second frame equal to N using data to be received by an existing node. The method also includes providing at least one identifier to the existing node that will receive the second frame. The identifier identifies the occupied time slots of the second frame. The method also includes transmitting the second frame of data to the existing node.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: July 31, 2012
    Assignee: Fujitsu Limited
    Inventors: Larry Henry Steinhorst, Wilson kit-man Chan, Junji Yamamoto
  • Patent number: 8200084
    Abstract: A network component comprising at least one control plane controller configured to implement a method comprising transmitting a message to at least one adjacent control plane controller, wherein the message comprises a Type-Length-Value (TLV) indicating Routing and Wavelength Assignment (RWA) information. Included is a method comprising communicating a message comprising a TLV to a control plane controller, wherein the TLV indicates RWA information. Also included is an apparatus comprising a control plane controller configured to communicate a TLV to at least one adjacent control plane controller, wherein the TLV indicates RWA information.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: June 12, 2012
    Assignee: Futurewei Technologies, Inc.
    Inventors: Greg Bernstein, Young Lee
  • Patent number: 8190027
    Abstract: An optical node includes a reconfigurable optical add drop multiplexer (ROADM) core configured to transmit optical signals of multiple wavelengths to and receive optical signals of multiple wavelengths from another optical node. The ROADM core is also configured to add optical signals thereto and to drop optical signals therefrom. The node also includes two different types of add-on devices, each connected to the ROADM core device and configured to process optical signals of multiple wavelengths. As a result, a multifunctional and reconfigurable optical node can be provided.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: May 29, 2012
    Assignee: Tellabs Operations, Inc.
    Inventors: Mark E. Boduch, Kimon Papakos, Gilbert A. Buescher
  • Patent number: 8190023
    Abstract: An input of a command to stop optical output or a command to reduce optical output by a main signal transmitting section is received from the outside. When the input of the optical output stop command or optical output reduction command is received, an inter-device control signal communication section transmits the optical output stop command or optical output reduction command. Based on the input optical output stop command or optical output reduction command, an output of optical signals from the main signal transmitting section is stopped, or else the output level is reduced to less than the output level during normal operation.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: May 29, 2012
    Assignee: NEC Corporation
    Inventor: Masaru Nishino
  • Patent number: 8165467
    Abstract: Where an integrated monitoring and controlling unit is to control an optical add-drop unit so as to cause transmit signals from the optical transceiver of a first optical node to be received by the optical transceivers of plural different optical nodes, this purpose can be achieved by an optical transmission system provided with an alarm inhibiting device that can inhibit the optical transceiver, which is a source of transmission, from issuing any unexpected alarm.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: April 24, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Yasuyuki Fukashiro
  • Patent number: 8165468
    Abstract: In today's reconfigurable optical add/drop multiplexer (ROADM) based optical node, transponders associated with the ROADMs' add/drop ports are dedicated to a given network node interface. Dedicated transponders reduce the flexibility to route around network failures. Example embodiments of the invention includes an optical node and corresponding method for routing optical signals within an optical node. The optical node may include at least two ROADMs to transmit respective wavelength division multiplexed (WDM) signals onto at least two inter-node network paths and at least one add/drop module including add ports to direct add wavelengths received from tributary network paths to each of the ROADMs via intra-node network paths to allow the wavelengths to be available to be added to the inter-node network paths.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: April 24, 2012
    Assignee: Tellabs Operations, Inc.
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 8155522
    Abstract: A method for designing a communication network is provided. Network demand data is gathered and network architecture data is gathered. Based in part on the network demand data and the network architecture data, a network plan is automatically generated.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: April 10, 2012
    Assignee: AT&T Intellectual Property I, L.P.
    Inventor: Ali Zolfaghari
  • Patent number: 8134939
    Abstract: A ring communication network according to an embodiment of the present invention includes a plurality of nodes in which a single one of the nodes is configured for full channel conversion and the remaining nodes, other than the single node, are configured for no channel conversion. Links with no more than W channels couple the nodes. The ring communication network also may include N nodes and links connecting the nodes for carrying data in W channels such that N?2 log2 W?1 where W is a power of 2. Each of the N nodes includes switches connected such that each channel of a first one of the links adjacent to any one of the N nodes can be switched to no more than W?1 channels of another one of the links adjacent any one node.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: March 13, 2012
    Assignee: Tellabs Operations, Inc.
    Inventors: Rajiv Ramaswami, Galen H. Sasaki
  • Patent number: 8103161
    Abstract: The present invention discloses a method and system for group optical channel shared protection. In the invention, when a failure occurs, operations are performed on an optical wavelength group, and four actions are accomplished at the time of switching: switching the affected optical wavelength group on the working fiber to a backup fiber (Steer); switching the optical wavelength group whose destination node is the current node on the backup fiber to the working fiber (Copy); making the optical wavelength group whose destination node is not the current node on the backup fiber transparently pass through the current node (Pass Through); and blocking or stripping the backup wavelength group transferred on the backup fiber (Strip). In addition, the invention further discloses a plurality of node structures for realizing the above operations.
    Type: Grant
    Filed: December 31, 2005
    Date of Patent: January 24, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Congqi Li
  • Patent number: 8090256
    Abstract: The present invention provides optical network methods and systems. In one example, a method for handling packets in a node coupled to a ring and star subnetwork may include (a) receiving in the given node a data packet on the ring subnetwork, (b) detecting a failure on the ring subnetwork, (c) determining a new transmission path to the destination node, and (d) sending the data packet along the new transmission path. In another example, an EPON may include (a) a root coupled to a ring and star subnetwork, (b) ONUs coupled to the root via a splitter/combiner and a first fiber link, (c) a second fiber link coupled to a subset of ONUs and the star subnetwork, and (d) a WDM coupler on the first fiber link that separates a first waveband of wavelengths from a second waveband of wavelengths and guides the first waveband to the star.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 3, 2012
    Assignee: Arizona Board of Regents, a body corporate of the State of Arizona, Acting for and on behalf of Arizona State University
    Inventors: Martin Reisslein, Martin Maier, Martin Herzog
  • Publication number: 20110299851
    Abstract: A mini-optical line termination (OLT) includes at least one management card for providing control and management functions. A plurality of network cards having a predetermined number of ports are configured to support a predetermined number of subscribers by providing a gigabit passive optical network to the subscribers. At least one network device is coupled to an upstream device and the plurality of network cards. The at least one network device is configured to control the forwarding of data between the upstream device and the subscribers.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: Cox Communications, Inc.
    Inventor: Timothy Kai-Loh Chia
  • Patent number: 8064763
    Abstract: An optical system with a first and second network tiers. The first network tier includes a plurality of major nodes optically interconnected by at least one transmission path. The second network tier includes a plurality of minor nodes disposed along the transmission path and the minor nodes are connected to at least one of the major nodes. The minor node is configured to transmit all traffic to an adjacent major node, and the major nodes are configured to transmit to and receive information from other major nodes and minor nodes on transmission paths connected to the major node.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: November 22, 2011
    Assignee: Level 3 Communications, LLC
    Inventor: David F. Smith
  • Patent number: 8064766
    Abstract: A fiber optic network transmits data between a hub node and a plurality of local nodes connected by at least one unidirectional fiber ring. Downstream data streams are carried on wavelength-division-multiplexed optical carriers from the hub node to the local nodes. An optical carrier corresponding to a specific wavelength carries downstream data streams to a specific local node. Downstream data streams are multiplexed onto an optical carrier via orthogonal frequency division multiplexing. A parallel signal detector in each local node detects all downstream optical carriers. A signal processing module demultiplexes the data stream from the optical carrier having the specific wavelength corresponding to the local node. An upstream data stream is multiplexed via orthogonal frequency division multiplexing onto an upstream optical carrier having the same specific wavelength and transmitted from the local node to the hub node. Upstream data awaiting transmission is allocated to specific subcarriers and time slots.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: November 22, 2011
    Assignee: NEC Laboratories America, Inc.
    Inventors: Wei Wei, Ting Wang
  • Patent number: 8055127
    Abstract: A wavelength division multiplex optical ring network comprises optical fibre (1-4) arranged in a ring configuration and a plurality of doped fibre optical amplifiers (17-20) arranged in the ring. The spectral response in the ring is configured such in use amplified spontaneous emission (ASE) noise circulates around the ring in a lasing mode to clamp the gain of each doped fibre optical amplifier. Each optical amplifier (17-20) includes respective control means (28) which in use control the optical amplifier to produce a substantially constant output power or to maintain a substantially constant pump power. In the event of loss of the lasing peak, detection means switches the doped fibre optical amplifiers to a different mode of gain control, for example, a mode to produce constant gain at the value before the loss of the lasing peak. Optionally, after a predetermined delay, the optical amplifiers may revert to constant output power or pump power mode.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: November 8, 2011
    Assignee: Ericsson AB
    Inventors: Roberto Magri, Cornelius Furst
  • Publication number: 20110268439
    Abstract: Techniques are provided for receiving a connection request at a first network node configured to request a connection from the first network node to a second network node. At the first network node, it is determined if a path to the second network node without an optical regenerator is available for the connection. In response to determining that a path without an optical regenerator is not available, a path to the second network node is determined that has a minimum number of optical regenerators. The connection is set up using the path with the minimum number of optical regenerators.
    Type: Application
    Filed: May 3, 2010
    Publication date: November 3, 2011
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Ornan Gerstel, Gabriele Maria Galimberti, Giovanni Martinelli, Alberto Tanzi
  • Publication number: 20110262137
    Abstract: A data center for executing a data processing application includes processing units, sub-units or servers. Each of the processing units, sub-units or servers can execute a part or all of the data processing application. The processing units, sub-units or servers are electrical disjoint with respect to data communications, but can communicate with each other over free space optical links.
    Type: Application
    Filed: September 24, 2010
    Publication date: October 27, 2011
    Inventors: Howard Lee Davidson, James R. Hamilton, Roderick A. Hyde, Arne Josefsberg, Edward K. Y. Jung, Jordin T. Kare, Robert W. Lord, Kenneth Lustig, William Henry Mangione-Smith, Michael Manos, Craig J. Mundie, Nathan P. Myhrvoid, Richard F. Rashid, Burton Smith, Clarence T. Tegreene, Robert V. Welland, Charles Whitmer, Lowell L. Wood, JR.
  • Patent number: 8036526
    Abstract: A method and apparatus for restoration of operating conditions of a WDM optical ring network comprising a plurality of amplifiers linked together in a ring after a break or fault has occurred in the network. The method comprises in response to repair of the break or other fault, increasing output power or/and pump power of an amplifier in the network such that the output power or/and pump power increases substantially in accordance with a ramp function.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: October 11, 2011
    Assignee: Ericsson AB
    Inventors: Antonella Bogoni, Roberto Magri, Riccardo Ceccatelli
  • Patent number: 8032016
    Abstract: An arrangement is provided for transporting information from a central information distribution center (CIDC) to locations where such information is intended. Upon receiving a request for narrowcast information to be delivered to a node associated with a head end, the CIDC selects the requested information, generates an optical signal encoded with the requested information using information channels dedicated to narrowcast information transport for the node, and sends the optical signal to the head end via an optical fiber. When the head end receives the optical signal, the narrowcast information transport channels dedicated to the node are translated into subcarriers acceptable to the node before the requested narrowcast information is forwarded to the node.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: October 4, 2011
    Assignee: ARRIS Group, Inc.
    Inventors: Irl N. Duling, Sandeep T. Vohra, Paul J. Matthews
  • Publication number: 20110206374
    Abstract: In accordance with embodiments of the present disclosure, a method for demand aggregation is provided. The method may include routing demands in a ring network such that a length for each routed demand does not exceed a route length maximum, and a load imbalance at each node in the ring network is minimized. The method may also include maximizing optical line card sharing by assigning routed demands sharing common ends to the same wavelength.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 25, 2011
    Inventors: Xi Wang, Qiong Zhang, Paparao Palacharla, Takao Naito
  • Patent number: 8005356
    Abstract: It is an objective to provide a video transmission system enabling easy acquisition and addition of any video signal. According to the ring network, optical wavelength multiplexing and transmission of video signal to be utilized for this network is carried out, so that it is possible to implement an environment, in which all necessary video signals flow on the network. Consequently, by acquiring any video signal from the video signals flowing on the network, it is possible to acquire new video source, or by adding new video source to the network, it is possible to utilize the added video source by all apparatuses connected to the network.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: August 23, 2011
    Assignee: Media Global Links Co., Ltd.
    Inventors: Takaaki Morita, Kazunori Nakamura
  • Patent number: 7995921
    Abstract: Embodiments of the present invention provide an array of semiconductor optical amplifiers, within a photonic integrated circuit (hereinafter, “PIC”), that apply a gain to one or more optical bands within a WDM signal. According to various embodiments of the invention this array of SOAs can function as both an amplifier and a ROADM by adjusting the gain characteristics of one or more of the SOAs within the array. A band within the WDM signal may be blocked by adjusting the SOA, corresponding to the particular band, to attenuate the band below a threshold.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: August 9, 2011
    Assignee: Infinera Corporation
    Inventor: Stephen G. Grubb
  • Patent number: 7974185
    Abstract: A 3 fiber line switched ring (3FLSR) provides protection for (optical) transmission networking wherein N nodes are connected via 3 lines (or optical fibers) in a ring topology. Two of the three fibers form a main transmission line and may transmit in one direction in the ring whereas the third might transmit in the opposite direction. This architecture of the 3FLSR provides a dual protection scheme, including a bi-directional line switching coupled with a unidirectional line switching. Traffic is categorized based on the level of protection available for the particular traffic type. The first two transmitting fibers form a bi-directional ring, carrying primary and secondary traffic which can survive 2 and 1 failures on the ring respectively. The third fiber may form a unidirectional ring, carrying additional traffic that can be pre-empted in case of multiple failures in the bi-directional ring. The 3FLSR enables reconfiguration of existing 2/4 fiber rings and conforms to applicable standards.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: July 5, 2011
    Assignee: Wipro Limited
    Inventors: Anshuman Manral, Praveen Chathnath, RamNarayan Srinivasan, Sourav Das
  • Patent number: 7957644
    Abstract: A flexible open ring optical network includes a plurality of nodes connected by twin or other suitable optical rings. Each node is operable to passively add and passively drop traffic from the rings. The nodes may include a transport element for each ring. The transport elements include an optical splitter element and an optical combiner element. The optical splitter element is operable to passively combine an add signal including local add traffic and a first transport signal including ingress traffic from a coupled optical ring to generate a second transport signal including egress traffic for transmission on the coupled optical ring. The optical combiner element is coupled to the optical splitter element and is operable to passively split a third transport signal including the ingress traffic to generate a drop signal including local drop traffic and a fourth transport signal including the ingress traffic.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: June 7, 2011
    Assignee: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Satoru Odate, Cechan Tian
  • Patent number: 7957270
    Abstract: A method and system for provisioning a Resilient Packet Ring (“RPR”) over a Wavelength Division Multiplexing (“WDM”) network is disclosed. A plurality of stations send data packets to each other over a dual ring fiber optic link. The data packets travel over the dual ring fiber optic link at a unique wavelength to distinguish the different data packets. When one station of the plurality of stations detects a location of a failure in the WDM network, the station identifying the location of the failure either notifies all stations of the plurality of stations of the location of the failure or notifies only the stations of the plurality of stations abutting the location of the failure. If all stations of the plurality of stations are notified of the failure, all stations steer data packets sent towards the location of the failure away from the location of the failure.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: June 7, 2011
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Jorey M. Pascasio, Jr., Patricia R. Matteson
  • Publication number: 20110123195
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 26, 2011
    Applicant: AT&T INTELLECTUAL PROPERTY II, L.P.
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Patent number: 7945157
    Abstract: A ship includes a network, integrating services for security and control services and/or for multimedia and infotainment services on board the ship. The service-integrating network includes services for security-related systems as well as services for non-security-related systems. The conventional situation for network solutions on board cruise ships is characterized by a number of service functions and individual networks distributed over the entire ship. In at least one embodiment, the service-integrating network is embodied as a redundant ring both for services for security-relevant systems as well as for services for non-security-related systems. As such, the number of security functions and service functions and the number of individual networks can be advantageously reduced to a common high-security network.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: May 17, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dieter Jestel, Jens Prüfer
  • Patent number: 7925166
    Abstract: An avionics system for a plane includes a plurality of nodes disposed throughout the plane, each node performing a function. The system includes an optical network in communication with the nodes and through which the nodes communicate. The system includes at least one of the nodes having a hardwired interpreter that interprets the information transmitted from another one of the nodes via the optical network. A method for operating a plane includes the steps of communicating information through an optical network between a plurality of nodes disposed throughout the plane, each node performing a function. There is the step of interpreting with at least one of the nodes having a hardwired interpreter the information transmitted from another one of the nodes via the optical network. A phostonic stack.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 12, 2011
    Inventors: Wilbur C. Vogley, Paul Stoner
  • Patent number: 7925165
    Abstract: A packet and optical routing equipment exchanges multiplexed optical signals with other equipment in a network and exchanges branch non-packet and packet signals with client equipment. The entering branch non-packet signals are converted into electric signals by a non-packet interface and supplied directly to an electric switching unit, the entering packet branch signals are converted into electric signals, supplied to a packet forwarding module and routed to the electric switching unit. The electric switching unit switches the electric signals toward a WDM interface that converts them into optical signals at selected wavelengths that are added to the multiplexed optical signals. The entering multiplexed optical signals that should be terminated in the equipment are extracted, converted into electrical signals, and electrically switched toward the non-packet interface or the packet forwarding module according to whether they are of non-packet or of a packet type.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: April 12, 2011
    Assignees: Telecom Italia S.p.A., Pirelli & C. S.p.A.
    Inventors: Carlo Cavazzoni, Alessandro D'Alessandro
  • Publication number: 20110052194
    Abstract: A ring network system includes a plurality of node apparatuses that are sequentially connected through a transmission medium that is formed in a ring form. In the ring network system, the remaining node apparatuses, except for a first node apparatus of the plurality of node apparatuses pass an optical signal that is transmitted from the first node apparatus, and a second node apparatus corresponding to a destination of the optical signal among the remaining node apparatuses, extracts the optical signal while transferring the first optical signal to a next node apparatus of the second node apparatus.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 3, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hyun Jae LEE, Hong Ju KIM, Bup Joong KIM, Jea Hoon YU, Tae Whan YOO
  • Patent number: 7848642
    Abstract: A method and system provide capacity-efficient restoration within an optical fiber communication system. The system includes a plurality of nodes each interconnected by optical fibers. Each optical fiber connection between nodes includes at least three channel groups with different priority levels for restoration switching in response to a connection failure. The system maintains and restores full-capacity communication services by switching at least a portion of the channel groups from a first optical fiber connection to a second optical fiber connection system based on the priority levels assigned to the channel groups. Service reliability is effectively maintained without to incurring additional costs for dedicated spare optical fiber equipment by improving idle capacity utilization.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: December 7, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Sid Chaudhuri, Bruce Gilbert Cortez, Simon S. Zelingher
  • Patent number: 7848654
    Abstract: A radio-over-fiber (RoF) wireless picocellular system adapted to form an array of substantially non-overlapping individual picocells by operating adjacent picocells at different frequencies is operated to form one or more combined picocells. The combined picocells are formed from two or more neighboring picocells by the central head-end station operating neighboring picocells at a common frequency. Communication between the central head-end station and a client device residing within a combined picocell is enhanced by the availability of two or more transponder antenna systems. Thus, enhanced communication techniques such as antenna diversity, phased-array antenna networks and multiple-input/multiple-output (MIMO) methods can be implemented to provide the system with enhanced performance capability. These techniques are preferably implemented at the central head-end station to avoid having to make substantial changes to the wireless picocellular system infrastructure.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 7, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Michael Sauer, Richard S. Vodhanel, Martyn N. Easton, Aravind Chamarti, Jack Winters
  • Patent number: 7844179
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: November 30, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Patent number: 7826744
    Abstract: An optical network system is disclosed by which flexible wavelength path setting can be performed in accordance with tree-shaped and star-shaped network topology. A central node includes a multiplexing section for multiplexing optical signals transmitted from user nodes and inputted thereto, and a central node side branching section for branching the optical signal multiplexed by the multiplexing section and supplying the branched optical signals to the user nodes. Each of the user nodes includes a transmission section capable of outputting an optical signal to which transmission wavelengths different from those of the other user nodes are set, and a reception section for extracting selected optical wavelength components from the branched light supplied thereto from the central node side branching section and extracting optical signals from the extracted optical wavelength components.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: November 2, 2010
    Assignee: Fujitsu Limited
    Inventors: Hideyuki Miyata, Goji Nakagawa, Yutaka Kai
  • Patent number: 7826743
    Abstract: An optical network includes an access ring, a local ring, one or more add/drop nodes (ADNs), a first gateway and a second gateway. The access ring couples the plurality of gateways and transmits optical signals to and from the gateways, the optical signals comprising multiple wavelengths each wavelength operable to carry traffic. The local ring couples one or more of the ADNs and transmits optical signals to and from the ADNs. Additionally, the ADNs are capable of adding and dropping traffic to and from the local ring in one or more wavelengths. The first gateway is capable of receiving broadcast traffic on the access ring, the broadcast traffic transmitted in one or more wavelengths of the optical signals transmitted on the access ring and forwarding, on the access ring, a first copy of the broadcast traffic received on the access ring.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: November 2, 2010
    Assignee: Fujitsu Limited
    Inventors: Cechan Tian, Susumu Kinoshita
  • Publication number: 20100272439
    Abstract: A system and method for handling accesses by nodes connected to a ring network, using time division multiplexing (TDM). The system includes: nodes capable of receiving only an optical signal of a wavelength or positional space allocated to the node, and of transmitting optical signals of wavelengths allocated to other nodes; and a ring network that performs TDM transmission of optical signals. The ring network has slots for transmitting optical signals of individual wavelengths. Information indicates whether an optical signal to be transmitted exists in each of the slots. Nodes include means for updating the information indicating that the optical signal exists and determining means for updating the information and determining, on the basis of the information, whether to transmit the optical signal.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 28, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yasunao Katayama, Atsuya Okazaki
  • Publication number: 20100266281
    Abstract: According to one embodiment, allocating demand includes receiving a demand graph that describes demands of a network. One or more weights are calculated for each demand. The demands are allocated according to the weights of the demands to optimize optical line card sharing.
    Type: Application
    Filed: June 22, 2009
    Publication date: October 21, 2010
    Applicant: Fujitsu Limited
    Inventors: Xi Wang, Paparao Palacharla, Takao Naito
  • Patent number: 7817918
    Abstract: In a wavelength division multiplex (WDM) optical communications network having a plurality of nodes, each of which comprises a wavelength selective optical cross-connect having a plurality of switching matrices, each switching matrix being provided for switching wavelength channels of a specific wavelength, a method of transmitting information from a start node to a target node includes the steps of applying to respective inputs of switching matrices of the start cross-connect, at least two wavelength channels (working an protection channels) having different wavelengths but which are modulated with the same information; transmitting the working and protection channels to the target cross-connect; and dropping the working and protection channels at outputs of different switching matrices provided for different wavelengths of the target cross-connect.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: October 19, 2010
    Assignee: Ericsson AB
    Inventor: Kenneth Guild
  • Patent number: 7813641
    Abstract: A fiber optic cable topology for a fiber optic repeater distributed antenna system network and a method of configuring the network using the topology is disclosed. The topology includes a first base transceiver station hub, a second base transceiver station hub, and a fiber optic backbone coupled between the first base transceiver station hub and the second base transceiver station hub, where the fiber optic backbone includes a plurality of optical fibers. A distributed antenna system repeater node is coupled to the first base transceiver station hub and the second base transceiver station hub. An optical fiber of the plurality of optical fibers in the fiber optic backbone includes a first portion and a second portion, where the first portion extends between the first base transceiver station hub and the DAS repeater node and the second portion extends between the second base transceiver station hub and the DAS repeater node.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 12, 2010
    Assignee: Nextel Communications Company L.P.
    Inventors: Louis John Samson, Sunil Dwarka Prasad, Thomas Lawrence Bugg, Jr.
  • Patent number: 7809268
    Abstract: A method for integrating an Optical Service Channel (OSC) with a Quantum Key Distribution (QKD) channel across a DWDM network having a single mode optical fiber is provided. An optical signal is received. An OSC is coupled with the optical signal. A QKD channel is integrated with the OSC on the single mode optical fiber.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: October 5, 2010
    Assignee: Cisco Technology, Inc.
    Inventors: Fausto Meli, Gabriele Maria Galimberti
  • Patent number: 7805076
    Abstract: A packet-switched WDMA ring network has an architecture utilizing packet stacking and unstacking for enabling nodes to access the entire link capacity by transmitting and receiving packets on available wavelengths. Packets are added and dropped from the ring by optical switches. A flexible credit-based MAC protocol along with an admission algorithm enhance the network throughput capacity.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 28, 2010
    Assignee: AT&T Intellectual Property II, LP
    Inventors: Mikhail Boroditsky, Nicholas J. Frigo, Aleksandra Smiljanic
  • Patent number: 7805072
    Abstract: Wavelength division multiplex ring communication network equipment comprises a first multiplexer connected to a first optical fiber portion dedicated to transporting multiplexed signals and a second multiplexer connected to a second optical fiber portion. The equipment comprises signal protection circuitry connected to the first and second multiplexers and to a terminal which, in the event of local detection of interruption of signal transmission at a first wavelength on the first optical fiber portion, send the signals coming from the terminal to the second multiplexer at a second wavelength so that it communicates them to the second optical fiber portion, and sends to the terminal the signals that are addressed to it and that come from the second optical fiber portion at the second wavelength.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: September 28, 2010
    Assignee: Alcatel
    Inventors: Stéphane Lovisa, Fabio Tassara, Francesco Shiavoni
  • Patent number: 7801443
    Abstract: An automatic circulation collection type data system is constructed by connecting a monitoring device and data collecting modules disposed at respective places through optical cables. The monitoring device transmits a trigger pulse for data collection through the optical cable to each data collecting module. An identification code is given to each data collecting module, and each data collecting module has an automatic circulation mechanism comprising first and second optical switches, a data collecting unit, and a controller 6 for performing various kinds of control for data collection. When receiving the trigger pulse from the monitoring device, the automatic circulation mechanism turns on the third switch and transmits the collected data through the optical cable to the monitoring device together with the identification code, and also transmits a trigger pulse through the optical cable to a next data collecting module.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: September 21, 2010
    Assignees: National Institute of Advanced Industrial Science and Technology, Dainichiseika Color & Chemicals Mgf. Co., Ltd., Spacecreation Co., Ltd., Inter Energy Co., Ltd.
    Inventors: Takashi Hiraga, Ichiro Ueno, Noritaka Yamamoto, Toshiko Mizokuro, Nobutaka Tanigaki, Norio Tanaka, Kuniaki Aoki, Hirofumi Watanabe, Shiro Futaki
  • Patent number: 7796888
    Abstract: A method and system for ensuring confidentiality of signal transmission in a point-to-multipoint data transmission network like Ethernet passive optical network, including at least one hub, at least one transmission medium and at least one station connected to the hub via the transmission medium. When an upstream signal is transmitted from a first station, the upstream signal is reflected by at least one disturbing reflector for producing a disturbing reflection. The disturbing reflection combines with a second reflection of the upstream signal and renders the second reflection undecodable by a second station.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: September 14, 2010
    Inventors: Olli Pekka Pohjola, Ari Tervonen
  • Patent number: 7787777
    Abstract: An optical packet network system of a ring type, capable of preventing degradation of an optical signal, can be implemented by providing a mechanism relatively simple in structure, capable of erasing light noise if the optical packet signal does not exists. In the optical packet network system made up by interconnecting respective nodes adjacent to each other, and connecting a sending source of an optical packet signal to a ring, a light noise removal function block is provided between the respective nodes adjacent to each other.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: August 31, 2010
    Assignee: Yokogawa Electric Corporation
    Inventors: Shinji Iio, Masayuki Suehiro, Katsuya Ikezawa, Akira Miura, Sadaharu Oka, Chie Sato, Mamoru Hihara, Tsuyoshi Yakihara, Shin-ichi Nakajima, Morio Wada, Daisuke Hayashi, Shinji Kobayashi, Yoshiyuki Asano
  • Publication number: 20100215367
    Abstract: These teachings present triple data transport redundancy in the form of three data bus interfaces that are each designed and manufactured independently from one another and compatible with a common data handling protocol. This protocol can be one that includes no error correction. These interfaces can each couple to a corresponding first, second, and third data bus that may comprise optical data busses. Information gauges can be realized through use a memory that stores a plurality of images comprising views of an information gauge (or gauges) of interest showing a variety of different readings. Upon receiving information regarding a monitored parameter of interest (via, for example, the aforementioned data busses and data bus interfaces), this information can be used to address the stored information gauge view that corresponds to the present parameter value. That particular view can be recalled and displayed to thereby provide the corresponding information to a viewer.
    Type: Application
    Filed: May 7, 2010
    Publication date: August 26, 2010
    Applicant: EMBEDDED CONTROL SYSTEMS
    Inventor: Paul Douglas Stoner
  • Patent number: RE43340
    Abstract: An Ethernet Optical Area Network (EOAN) system, and methods for implementing and using such an EOAN system, are disclosed. The EOAN system may be used to improve the speed and reliability of data communications networks for small to medium-sized companies in metropolitan area networks. The EOAN system provides end-to-end Ethernet protocol, enabling professionals to have high-speed data communications in real time. The EOAN system may be generally utilized for improving data communications between branch offices, home offices, campuses, and remote sites for a wide variety of industries. The present invention preferably includes a fiber optic ring, Network Operation Center (NOC), NOC architecture components, existing client equipment, and one or more Free Space Optic (FSO) devices, microwave communication technology, and/or data switching platforms to implement high-speed Ethernet-based connections such as within a specified metropolitan area.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: May 1, 2012
    Assignee: 511 Technologies, Inc.
    Inventors: Patrick Heinz, Christopher Scheper, David Leary