Repeater Patents (Class 398/62)
  • Patent number: 9219785
    Abstract: The reliable and controlled allocation of network elements particularly medical sensors (2) to a network (4) without prior configuration of the wireless sensors or of the network administration system can be carried out using an allocation unit (1) for allocating network elements (2) to a wireless network (4), which allocation unit (1) comprises a transmitter which transmits, in a user-controlled manner, a code to a first network element (2), which code causes the first network element (2) to transmit its ID together with the code (encoded ID) so that the latter can be received by a second network element (3) which allocates the first network element (2) to its network (4).
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: December 22, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Guido Muesch, Karin Klabunde, Heribert Baldus
  • Patent number: 9191143
    Abstract: Each optical transmission device includes a detecting unit, a notifying unit, and a control unit. The detecting unit detects a value of the optical power of each of multiple wavelengths. The notifying unit notifies an optical transmission device at the upstream side of a control frame that includes the value and that includes information that indicates the execution state of the optical power control. The control unit calculates the adjustment level on the basis of the optical power of each of the wavelengths detected by the detecting unit. Furthermore, when the information included in the control frame sent from an optical transmission device at the downstream side indicates that the optical power control is being stopped, the control unit calculates the adjustment level on the basis of the value included in the control frame and executes optical power control by setting the calculated adjustment level to the optical device.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: November 17, 2015
    Assignee: FUJITSU LIMITED
    Inventors: Masahiro Yamakami, Makoto Yoshimi, Yoshiyuki Maeda
  • Patent number: 9160458
    Abstract: An optical signal detection circuit (10) includes an amplification circuit (11) that differentially amplifies an electrical signal (Tout) corresponding to the pulse train of an optical signal (Pin) and outputs a differential output signal (Aout), and a comparator (12) that compares the voltage value of the positive-phase signal of the differential output signal (Aout) with the voltage value of the negative-phase signal and outputs a pulsed comparison output signal (Cout) corresponding to the comparison result. The amplification circuit (11) includes a current addition circuit (11E) that adjusts a DC load current to generate a positive-phase signal (Aout+) and a negative-phase signal (Aout?) of the differential output signal (Aout) in accordance with an adjusted voltage value from an external adjusted voltage source (Vadj) and adjusts the DC bias of the positive-phase signal (Aout+) and the DC bias of the negative-phase signal (Aout?).
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: October 13, 2015
    Assignee: NIPPON TELEPHONE AND TELEGRAPH CORPORATION
    Inventors: Hiroshi Koizumi, Masafumi Nogawa, Yusuke Ohtomo
  • Patent number: 8817589
    Abstract: Methods and apparatus for line coding in a communications network are described. According to one embodiment of the invention, downstream communications traffic bits are received and mapped into downstream bit positions of a transmission structure. A pre-selected bit in each upstream bit positions of the transmission structure is provided to form a downstream transmission structure. A downstream optical signal carrying the downstream transmission structure is generated for transmission. Upstream communications traffic bits are also received and mapped into the upstream bit positions of the transmission structure to form an upstream transmission structure. An upstream optical signal carrying the upstream transmission structure is generated for transmission.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 26, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Fabio Cavaliere, Stefan Dahlfort, Luca Giorgi
  • Patent number: 8755688
    Abstract: An optical fiber transmission distribution assembly, wherein the assembly comprises at least a first splitter having a first split ratio of 1:x (where x is an integer) connected to optical drop cables leading to subscribers, and at least a second splitter having a second split ratio of 1:y (where y is an integer and is different from x), and transfer means whereby an optical drop cable connected to the first splitter can be transferred to receive split optical signals from the second splitter, thereby enabling the signal in the transferred drop cable to be further split by addition of a third splitter at a ratio of 1:p (where p is an integer), to provide p subscriber connection points each having a 1:p*y split ratio at the subscriber end of the transferred drop cable.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: June 17, 2014
    Assignee: Tyco Electronics Raychem BVBA
    Inventors: Ludwig Vleugels, Daniel Francois Daems, Danny Van Goidsenhoven
  • Patent number: 8666249
    Abstract: A method, device and system for implementing a long reach passive optical network (LR-PON) are provided, which solve the problem that the cost for establishing an LR-PON system is high. The method includes: receiving an uplink burst packet transmitted by an optical network unit (ONU) in a burst manner (101), converting a burst optical signal of the uplink burst packet into a continuous optical signal, and transmitting the continuous optical signal to a receiving device (105). The present invention is applicable to an LR-PON.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 4, 2014
    Assignee: Huawei Technologies Co., Ltd
    Inventors: Huiyu Zhou, Teng Ma, Kun Huang, Zhiyun Chen
  • Patent number: 8526826
    Abstract: A repeater (1) includes a master unit (2) for communicating with a base station of a mobile network, a plurality of remote units (3) for communicating with mobile communications terminals, and a common optical waveguide (4) connecting the remote units (3) with the master unit (2) for transmitting the optical signals from each of the remote units (3) to the master unit (2). The remote units (3) include, as a transmitter for the optical signals, a laser (7) of a construction similar or somewhat identical to that of the other lasers (7). The lasers (7) have similar or somewhat identical nominal wavelengths (?N), and the individual lasers (7) are selected by adjusting their operating temperatures (TD1-TD4) in such a way that each laser transmits on a different transmission wavelength (?ü1-?ü4).
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: September 3, 2013
    Assignee: Andrew LLC
    Inventors: Stefan Eisenwinter, Peter Schmid
  • Patent number: 8391711
    Abstract: Provided is an optical relay system (10) which is capable of suppressing wasteful power consumption of an entire system to a low level. The optical relay system (10) includes a plurality of relay devices (30) and a network control device (20). The network control device (20) causes an optical signal to be regenerated by a regenerative repeater (35) within the relay device (30) existing at an upstream of the relay device (30) reporting that the optical signal has deteriorated by a degree exceeding a predetermined level. Further, the network control device (20) causes the regenerative repeater (35) to stop regenerating the signal in a case where deterioration of the signal remains within an allowable range even when the regenerative repeater (35) stops regenerating the signal.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: March 5, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Takuya Iwasawa, Kenta Noda, Takayuki Suzuki
  • Patent number: 8351797
    Abstract: A repeater is disclosed that transmits an optical signal using wave division multiplexing. The repeater includes a demultiplexing unit that separates plural channels contained in the optical signal, an adjusting unit that adjusts at least optical power of each of the channels according to a control signal, a multiplexing unit that outputs a multiple wavelength signal in which the channels are multiplexed, and a monitoring unit that determines a modulation scheme and a bit rate of the optical signal for each of the channels so as to generate the control signal.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: January 8, 2013
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida
  • Patent number: 8275268
    Abstract: An optical repeater connected to an optical transmission line between an optical network unit having an optical network unit (ONU) function on the side of a subscriber and an optical line termination (OLT) on the side of a center includes first electrical/optical conversion means connected to a first optical transmission line on the side of the center, a second electrical/optical conversion means connected to a second optical transmission line on the side of the subscriber, and transmission means connected between the first electrical/optical conversion means and the second electrical/optical conversion means to transmit an optical repeater supervisory signal between the optical transmission lines.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: September 25, 2012
    Assignee: Furukawa Electric Co., Ltd
    Inventor: Shimoosako Kazutaka
  • Patent number: 8248971
    Abstract: A vehicle network system is provided with a plurality of star networks, a plurality of devices mounted on a vehicle are connected in a star shape through respective branch lines in each of the star networks, and a trunk line for connecting the plurality of star networks, the branch lines are communication lines for optical communications, and the trunk line is a communication line for electric communication.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: August 21, 2012
    Assignees: Autonetworks Technologies, Ltd., Toyota Jidosha Kabushiki Kaisha, Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Co.
    Inventors: Hideki Goto, Manabu Kagami, Seigo Takai, Hayato Yuuki, Shigeo Hayashi
  • Patent number: 8126336
    Abstract: An optical repeater connected to an optical transmission line between an optical network unit having an ONU function on the side of a subscriber and an optical line termination (OLT) on the side of a center includes first electrical/optical conversion means connected to a first optical transmission line on the side of the center, a second electrical/optical conversion means connected to a second optical transmission line on the side of the subscriber, and transmission means connected between the first electrical/optical conversion means and the second electrical/optical conversion means to transmit an optical repeater supervisory signal between the optical transmission lines.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: February 28, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Shimoosako Kazutaka
  • Patent number: 8064477
    Abstract: The present invention relates to a multi-channel provision system for a wired network. The multi-channel provision system of the present invention includes a tap-off unit (330) for dividing a frequency band, assigned to a wired network for network communication, and providing resultant frequency bands to respective subscriber units belonging thereto. An optical network device (100) is disposed at a node where one or more sectors, divided according to a number of subscriber units that enable network access through the wired network, branch off. The optical network device (100) provides a frequency band for network access to each sector so that a same frequency band is assigned to each sector, thus generating a multi-channel for the frequency band, and reusing the frequency band, assigned to the wired network, a number of times corresponding to the number of the sectors through generation of the multi-channel.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Infra Access Korea Co., Ltd.
    Inventors: Jun Ho Kim, Jung Beom Park, Nam Hun Lee
  • Patent number: 8050257
    Abstract: A high capacity network comprises a plurality of edge nodes with asymmetrical connections to a plurality of switch planes, each switch plane comprising fully meshed fast-switching optical switch units. Upstream wavelength channels from each source edge node connect to different switch planes in a manner which ensures that upstream wavelength channels from any two edge nodes connect to a common switch unit in at most a predefined number, preferably one, of switch planes. Thus, switch units in different switch planes connect to upstream channels from orthogonal subsets of source edge nodes. In contrast, downstream wavelength channels from a switch unit in each switch plane connect to one set of sink edge nodes. In an alternate arrangement, the upstream and downstream asymmetry may be reversed.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 1, 2011
    Inventor: Maged E Beshai
  • Patent number: 7970282
    Abstract: A bridge controller, which controls relay between terminals including emission units and addresses assigned to the terminals, acquires coordinates of a light-received element in an light receiving unit at which light emitted from an emission unit is received, and stores the acquired coordinates in a location information table memory in association with a logical location on the network. Thereafter, it is determined whether or not the stored coordinates differ from newly acquired coordinates. When it is determined that the stored coordinates differ from the newly acquired coordinates, the logical location associated with the coordinates stored in the storage unit is controlled to be changed and stored.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: June 28, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventors: Shoichi Nagatomo, Nobuo Iizuka
  • Patent number: 7680419
    Abstract: A repeater is disclosed that transmits an optical signal using wave division multiplexing. The repeater includes a demultiplexing unit that separates plural channels contained in the optical signal, an adjusting unit that adjusts at least optical power of each of the channels according to a control signal, a multiplexing unit that outputs a multiple wavelength signal in which the channels are multiplexed, and a monitoring unit that determines a modulation scheme and a bit rate of the optical signal for each of the channels so as to generate the control signal.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 16, 2010
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida
  • Patent number: 7577364
    Abstract: An optical wireless local area network using line of sight optical links. The base station and terminal stations are provided with optical transceivers which include a transmitter array and detector array. The transmitter array consists of an array of resonant cavity light emitting diodes integrated using flip-chip technology with a CMOS driver circuit. The driver circuit includes constant bias, current peaking and charge extraction. The driver circuitry is compact and can be confined within a region underlying the corresponding light source. The detector array consists of an array of photo diodes, provided with sense circuitry consisting of a pre-amplifier and post-amplifier. The diodes and sense circuitry are also integrated using a flip-chip technique. The light emitter and the detector may include adaptive optical elements to steer and/or focus the light beams.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: August 18, 2009
    Assignee: Isis Innovation Limited
    Inventors: David John Edwards, Dominic Christopher O'Brien, Grahame Edward Faulkner, David Michael Holburn, Robert Joseph Mears
  • Patent number: 7321729
    Abstract: An optical network includes an optical ring having a plurality of subnets. The subnets each include one or more add/drop nodes that are coupled to the optical ring and that passively add and drop traffic to and from the optical ring in one or more wavelengths. The optical network also includes a plurality of gateway nodes that are each coupled to the optical ring at a boundary between neighboring subnets. Each gateway node forwards a first copy of a received optical signal to a multiplexer/demultiplexer unit of the gateway node, which selectively forwards or terminates the traffic in each wavelength of the first copy. The gateway nodes also forward a second copy of the received optical signal to a regeneration element. The gateway nodes selectively forward or terminate the traffic in each wavelength of the first copy at the multiplexer/demultiplexer unit.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: January 22, 2008
    Assignee: Fujitsu Limited
    Inventors: Ashwin Anil Gumaste, Susumu Kinoshita
  • Patent number: 7295780
    Abstract: Disclosed is an apparatus for controlling wavelength-division-multiplexed light wherein overall power of wavelength-division-multiplexed light is rendered constant through control for uniformalizing the level of only one wave of maximum power, and wherein the levels of respective channels are made substantially uniform. Optical level control means controls the optical level of propagating wavelength-division-multiplexed light, and a portion of the wavelength-division-multiplexed light output from the output level control means is branched to a tunable optical filter, which selectively outputs the light of each wavelength contained in the wavelength-division-multiplexed light. The light of each wavelength output from the optical filter is photoelectrically converted to an electric signal by photoelectric conversion means.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: November 13, 2007
    Assignee: Fujitsu Limited
    Inventor: Yasushi Sugaya
  • Patent number: 7187867
    Abstract: The present invention provides a bilateral communication network system, particularly, a optical wireless communication system communicating information frames via an optical node mounted on a mobile object and a plurality of optical repeaters connected to a wired network, which can prevent transfer performance from deteriorating without increasing frames to be transferred. The optical wireless communication system is constituted as follows. A plurality of the optical repeaters having functions to switch information frames are attached to a ceiling. The optical node bilaterally communicating with the optical repeaters are mounted on a moving object such as a robot, a vehicle or the like. Information frames including address information of the optical node are periodically transmitted from an information processor connected to the optical node via optical wireless communication.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: March 6, 2007
    Assignees: Stanley Electric Co. Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Koji Kawabe, Yoshiki Furukawa, Hiroki Yokoyama, Hiroyuki Oka, Daisuke Uchida, Kazunori Hirosawa, Kazuyoshi Hibiya
  • Patent number: 7133616
    Abstract: A wavelength-selective routing capability is provided in a single network element by configuring the network element using a combination of add/drop network elements to route individual optical channels of WDM signals among a plurality of optical transmission paths coupled to the network element. Any optical channel of any WDM signal received at the network element can be selectively added, dropped, or routed among the multiple optical transmission paths within and external to the node.
    Type: Grant
    Filed: September 1, 2001
    Date of Patent: November 7, 2006
    Assignee: Lucent Technologies Inc.
    Inventor: Carl A Caroli
  • Patent number: 6810215
    Abstract: An optical repeater which includes a wavelength converter and a bit rate converter. The wavelength converter converts a wavelength of an optical signal from a first optical network to a wavelength of a second optical network. The bit rate converter converts a bit rate of the optical signal from the first optical network to a bit rate of the second optical network. The optical repeater transmits the optical signal from the first optical network to the second optical network at the converted bit rate and wavelength.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: October 26, 2004
    Assignee: Fujitsu Limited
    Inventor: Yoichi Oikawa
  • Patent number: 6784569
    Abstract: A data bus arrangement and method for connecting a plurality of nodes to one another through a star coupler arrangement of a data bus which uses a logical decision gate having a plurality of inputs corresponding to said plurality of nodes wherein the logical decision gate inputs receive electrical signals and outputs an electrical signal to be routed back to each of said plurality of nodes. Some of the nodes are connected through opt0-electric transducers to the inputs of the logical decision gate. These transducers convert optical input signals from the nodes to electric signals to the inputs of the logical decision gate and also convert the output from the logical decision gate back to optical signals to the nodes. A signal conditioning circuit modifies the output signal of the logical decision gate.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: August 31, 2004
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Martin Peller
  • Patent number: 4538227
    Abstract: An image processor which can accurately and promptly obtain information about a ventricle of a living body, such as the boundary diagram, the volume, the centroid movement view and a three-dimensional view. An X-ray projection of a part to be diagnosed is quantized. The boundary and centroid of the part are obtained from the optimal ternary data using the variance of the gray-level of the image and the separation degree of a histogram. The volume and three-dimensional view of the part are obtained from this data using the gray-level method.
    Type: Grant
    Filed: September 30, 1982
    Date of Patent: August 27, 1985
    Assignees: Agency of Industrial Science and Technology, Ministry of International Trade and Industry
    Inventors: Kazuo Toraichi, Nobuyuki Otsu, Motomu Suzuki