Polarization Patents (Class 398/65)
  • Publication number: 20140126909
    Abstract: Embodiments of the present invention relate to the optical communication field and disclose an optical signal multiplexing method and an optical multiplexer. The method provided in the present invention includes: adjusting polarization states of two of four optical signals to be multiplexed, and preferably, mutually orthogonal to, the polarization states of the remaining two optical signals; combining one optical signal in the adjusted polarization state with one optical signal in the unadjusted polarization state into one optical signal through polarization multiplexing; and combining the two optical signals obtained through polarization multiplexing into one optical signal.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Xiaolu SONG, Wenbin Jiang, Qi Deng, Li Zeng
  • Patent number: 8718491
    Abstract: In a coherent optical receiver receiving a polarization multiplexed optical signal through an optical communications network, a method of compensating noise due to polarization dependent loss (PDL). A Least Mean Squares (LMS) compensation block processes sample streams of the received optical signal to generate symbol estimates of symbols modulated onto each transmitted polarization of the optical signal. A decorrelation block de-correlates noise in the respective symbol estimates of each transmitted polarization and generating a set of decorrelated coordinate signals. A maximum likelihood estimator soft decodes the de-correlated coordinate signals generated by the decorrelation block.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: May 6, 2014
    Assignee: Ciena Corporation
    Inventors: Amir Keyvan Khandani, Han Sun, Kim B. Roberts
  • Publication number: 20140119731
    Abstract: An optical digital coherent receiver includes: a polarization separation circuit configured to perform polarization separation on a received signal and output polarized signals; and a determination circuit configured to trigger a start of digital signal processing in a stage subsequent to the polarization separation circuit when it is determined that a distribution of a peak of an amplitude of one of the polarized signals has a characteristic corresponding to a modulation method used on a transmitting side.
    Type: Application
    Filed: August 6, 2013
    Publication date: May 1, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Kiichi Sugitani, Kazunari Shiota, Eri Katayama, Takahito Tanimura
  • Publication number: 20140112664
    Abstract: An optical transmission system 1 includes an optical transmitter 10 and an optical receiver 200. The optical transmitter 10 includes, a multiplexed code sequence generation unit 90a arranged to multiplex a code included in the transmission code sequence to be time shifted, and an optical transmission unit 90b that converts a multiplexed code sequence into a light signal and transmit it. The optical receiver 200 includes, an optical reception unit 240 that receives and converts the light signal transmitted from the optical transmitter 10 into a code sequence, and a transmission code sequence regeneration unit 380 that regenerates the transmission code sequence by identifying a code based on a value of a plurality of codes each corresponding to one another included in the code sequence.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: NEC Corporation
    Inventor: Makoto SHIBUTANI
  • Patent number: 8699880
    Abstract: The present disclosure provides a polarization multiplexed transceiver, including: a transmitter; a receiver; circuitry within the transmitter configured to insert pilot tones as a reference state of polarization for a polarization multiplexed signal; and circuitry within the receiver configured to de-multiplex the polarization multiplexed signal using the pilot tones. The transmitted signal is constructed in such a manner as to facilitate the division of the receiver processing between the analog and digital domains such that the implementation may be simultaneously both highly spectrally efficient and power efficient.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 15, 2014
    Assignee: Ciena Corporation
    Inventors: Vladimir S. Grigoryan, Michael Y. Frankel, Michael J. Wingrove
  • Publication number: 20140099110
    Abstract: An optical transmission system includes: a plurality of transmitters that output an optical signal having a frequency different from each other; a process unit that adds a reference signal to at least two of the optical signals, the reference signal having a frequency width narrower than that of the two optical signals, an interval of central frequencies of the reference signals being narrower than that of the two optical signals, a multiplexer that multiplexes optical signals output by the plurality of transmitters; an extract unit that extracts a beat signal generated between the reference signals because of a multiplexing of the multiplexer; and an adjust unit that adjusts a frequency interval of the two optical signals in accordance with an extract result of the extract unit.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 10, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Tomofumi Oyama, Takeshi Hoshida, Hisao Nakashima
  • Publication number: 20140099108
    Abstract: A heterodyne optical signal detector and method performed thereby, the signal detector including an optical signal spectrum shaper operable to modify the shape of the frequency spectrum of a received optical signal, a laser local oscillator (LO), and polarization beam splitters (PBSs) to divide the signal and the LO into orthogonal components, waveguides in which intermediate frequency (IF) signals are formed, balanced photodetectors (BPDs) arranged to receive the IF signals and operable to convert the IF signals into electric signals, and analog to digital converters (ADCs) that digitize the electric signals.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 10, 2014
    Applicant: ZTE (USA) INC.
    Inventors: Jianjun Yu, Ze Dong, Hung-Chang Chien
  • Patent number: 8693870
    Abstract: The present invention provides a control apparatus including: an output monitor which monitors polarization-multiplexed output light output from a polarization multiplexing light modulator which modulates light of two systems independent of each other, polarization-multiplexes light signals of the two systems subjected to the light modulation, and outputs the polarization-multiplexed light signals; and a control unit which controls a delay time difference at a stage where the light signals of the two systems forming the polarization multiplexing light modulator are polarization-multiplexed based on a monitor result of the output monitor. The control apparatus controls a delay time difference between polarization channels easily or surely.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: April 8, 2014
    Assignee: Fujitsu Limited
    Inventor: Masahiro Yuki
  • Patent number: 8693868
    Abstract: Methods and systems for implementing versatile optical terminals that detect optical transmission protocols and subsequently adapt to the correct protocol are disclosed. In an embodiment, an interface device for providing an interface for a first network with a passive optical network (PON) is disclosed. The interface device includes a protocol detection circuit for determining whether optical communication signals received from the PON conform to a first optical communication protocol, and a switchover control circuit that reconfigures the interface device to work with a second optical communication protocol when the received optical communication signals do not conform to the first optical communication protocol.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Marvell Israel (M.I.S.L) Ltd.
    Inventors: Erez Izenberg, Oren Ben-Hayune, Erez Amit, Dimitry Melts, Arie Elias
  • Patent number: 8693898
    Abstract: An adaptive equalizer includes a finite impulse response filter with a predetermined number of taps; and a tap coefficient adaptive controller having a register to hold tap coefficients for the filter, a weighted center calculator to calculate a weighted center of the tap coefficients, and a tap coefficient shifter to shift the tap coefficients based on a calculation result of the weighted center. During an initial training period, the tap coefficient shifter shifts the tap coefficients on a symbol data basis such that a difference between the calculated weighted center of the tap coefficients and a tap center defined by the number of taps is minimized.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Fujitsu Limited
    Inventors: Nobukazu Koizumi, Kazuhiko Hatae, Noriyasu Nakayama, Koji Nakamuta, Hisao Nakashima, Kosuke Komaki
  • Publication number: 20140079394
    Abstract: An apparatus comprises a coherent optical transmitter. The coherent optical transmitter comprises a first modulator for generating a first polarization, a second modulator for generating a second polarization, and a symbol interleaver configured to receive a first symbol stream intended to be transmitted on a first polarization and a second symbol stream intended to be transmitted on a second polarization, to direct one portion of symbols of the first symbol stream to the first modulator for modulation onto the first polarization and another portion of the symbols of the first symbol stream to the second modulator for modulation onto the second polarization, and to direct one portion of symbols of the second symbol stream to the first modulator for modulation onto the first polarization and another portion of the symbols of the second symbol stream to the second modulator for modulation onto the second polarization.
    Type: Application
    Filed: September 30, 2012
    Publication date: March 20, 2014
    Inventors: Chongjin Xie, Luis Salamanca
  • Patent number: 8676055
    Abstract: A method of transmitting data using electromagnetic waves, comprising the steps of providing (101) a first electromagnetic signal (S1) having a first wavelength (?1) and a second electromagnetic signal (S2) having a second wavelength (?2) different from the first wavelength; dividing (102) each of the first (S1) and second (S2) electromagnetic signals into a first polarization component (S1x; S2x) having a first polarization direction and a second polarization component (S1y; S2y) having a second polarization direction orthogonal to the first polarization direction; modulating (103) the first polarization component (S1x) of the first electromagnetic signal (S1) to encode a first data stream (DS1); modulating (104) the second polarization component (S2y) of the second electromagnetic signal (S2) to encode a second data stream (DS2); and transmitting (105) a combined electromagnetic signal (Scomb) comprising the first and second polarization components of the first electromagnetic signal (S1) and the first and
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: March 18, 2014
    Assignee: Qamcom Technology AB
    Inventors: Erik Agrell, Martin Sjodin
  • Publication number: 20140072303
    Abstract: A system, e.g. for optical communication, includes an I-Q modulator and a transmission signal processor. The I-Q modulator is configured to modulate a first light source in response to first I and Q modulation signals. The transmission signal processor is configured to receive a data stream including data corresponding to a first data subchannel. The processor maps the data subchannel to an optical transmission subchannel and outputs the first I and Q modulation signals. The I and Q modulation signals modulate the light source to produce an optical transmission signal that includes wavelength components corresponding to the optical transmission subchannel.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 13, 2014
    Applicant: Alcatel-Lucent USA, Inc.
    Inventors: Timo J. Pfau, Noriaki Kaneda, Young-Kai Chen
  • Publication number: 20140064728
    Abstract: A method and apparatus for suppressing pump-mode optical beat interference noise in a Raman amplified fiber link of an optical network, wherein a wavelength of a laser beam generated by a first pump laser and a wavelength of a laser beam generated by a second pump laser of a pair of polarization multiplexed pump lasers are detuned with respect to each other to suppress the optical beat interference, OBI, noise in the Raman amplified fiber link of said optical network.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: ADVA OPTICAL NETWORKING SE
    Inventor: Dogan ATLAS
  • Publication number: 20140064729
    Abstract: An optical demultiplexing device includes a first portion operative to receive an input optical signal having a first polarization, a second polarization and multiple channels, and split the input optical signal into a first optical signal having the first polarization and a second optical signal having the first polarization, and an optical demultiplexing portion communicatively connected to the polarization splitter portion, the optical demultiplexing portion operative to receive a combination of the first optical signal and the second optical signal, and output each channel of the first optical signal and the second optical signal to a photodetector device corresponding to each channel.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, Douglas M. Gill, William M. Green
  • Publication number: 20140050476
    Abstract: The present disclosure provides systems and methods for the compensation of signal distortion in fiber optic communication systems and the like. More specifically, the present disclosure provides an orthogonal polarization detection and broadband pilot (OPDBP) technique for the compensation of nonlinear cross polarization (i.e. nonlinear cross polarization modulation) (XPolM) induced noise and nonlinear nonlinear cross phase modulation (XPM) induced noise in a high data rate polarization multiplexed (PM) multilevel-quadrature amplitude modulated (M-QAM) channel due to neighboring channels. This approach allows for the compensation of both XPolM and XPM simultaneously, providing several dBs of optical reach extension. The approach uses a pilot tone based orthogonal polarization detection scheme with broadband (i.e. a few GHz wide) filtering of the pilot tones.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: CIENA CORPORATION
    Inventors: Vladimir S. Grigoryan, Michael Y. Frankel
  • Publication number: 20140050477
    Abstract: Proposed is a method of optical data transmission. The method comprises different steps. A first optical signal and a second optical signal are generated, such that the optical signals possess a same wavelength, respective phases, which are modulated in dependence on respective data values, and respective polarization states, which are essentially orthogonal to each other. A combined optical signal is generated, by combining the optical signals, such that the combined optical signal possesses a polarization state with a predetermined variation. The combined optical signal is transmitter over an optical transmission line and received. Two time-discrete sampled signals are generated, by sampling the received optical signal along two orthogonal polarization planes. Two filtered signals are generated, by filtering the time-discrete sampled signals in the time-discrete domain, using a function that is indicative of the respective predetermined variation.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 20, 2014
    Inventors: Olivier Rival, Francesco Vacondio
  • Patent number: 8654826
    Abstract: The embodiments provide a multi-stage phase estimation method and apparatus. The apparatus is a multi-stage phase estimation configuration. Each stage of the phase estimation configuration includes metric computation modules. Each of the metric computation modules computing a distance metric and search phase angles according to an input signal and an initial search phase angle or a search phase angle of the former stage phase estimation configuration. The number of the metric computation modules is equal to that of the search phase angles of this stage. A selection module selects the search phase angle corresponding to the minimal distance metric as the phase estimation result output of this stage according to the computation results of all metric computation modules. The average time window length of the former stage phase estimation configuration is larger than that of the subsequent stage phase estimation configuration.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 18, 2014
    Assignee: Fujitsu Limited
    Inventors: Jianqiang Li, Zhenning Tao, Lei Li
  • Publication number: 20140037291
    Abstract: The present invention relates to a butterfly filter coefficient setting method and device, a receiver, and a receiving method. The receiver is a DP-CO-OFDM receiver, comprising: a phase recovery device configured to perform a phase recovery of a received signal one OFDM symbol by one OFDM symbol, so as to obtain a phase-recovered first polarization signal and a phase-recovered second polarization signal; a butterfly filter configured to perform butterfly filtration of the phase-recovered first polarization signal and the phase-recovered second polarization signal one OFDM symbol by one OFDM symbol, so as to obtain a butterfly-filtered first polarization signal and a butterfly-filtered second polarization signal; a coefficient setting unit configured to set a filter coefficient used by the butterfly filter for the current OFDM symbol; and a data recovery device configured to recover data from the butterfly-filtered first polarization signal and the butterfly-filtered second polarization signal.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 6, 2014
    Applicant: Fujitsu Limited
    Inventors: Meng YAN, Zhenning Tao
  • Publication number: 20140037290
    Abstract: In accordance with an embodiment of the present disclosure a network element comprises a plurality of optically absorbent layers. Each layer of the plurality of optically absorbent layers is configured to receive an optical signal such that the optical signal passes through the layer. The optical signal has a specific polarization state and is associated with noise having a plurality of randomly varying polarization states. Each layer absorbs optical waves having a particular polarization state. The particular polarization state of each layer is different from the polarization state associated with the other layers of the plurality of optically absorbent layers. The plurality of layers are coupled together such that as the optical signal and associated noise pass through the plurality of layers, the network element absorbs the associated noise more than the polarized optical signal to improve an Optical Signal to Noise Ratio (OSNR) of the optical signal.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Applicant: Fujitsu Limited
    Inventor: Youichi Akasaka
  • Patent number: 8639119
    Abstract: A remote node for a wavelength-division-multiplexed passive optical network (WDM PON). The remote node comprises means for receiving uplink optical signals from one or more optical network units of the WDM PON; a broadband reflector for reflecting a self-seeding portion of the respective uplink optical signals to the respective uplink light sources; and wherein the reflector comprises a gain medium and is configured for receiving a pump optical signal from a central office of the WDM PON for amplifying the self seeding portion of the respective uplink optical signal.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: January 28, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Yang Jing Wen, Zhaowen Xu, Xiaofei Cheng, Yixin Wang
  • Publication number: 20140023368
    Abstract: A DP-QPSK optical transmitter includes an outer MZM comprising a first parent MZM comprising a first child MZM and a second child MZM that modulates a QPSK signal with a first polarization. A second parent MZM includes a first child MZM and a second child MZM that modulates a QPSK signal with a second polarization. The outer Mach-Zehnder modulator multiplexes the first and second polarization embedded into a dual-polarization QPSK signal generation. A first optical detector detects the QPSK signal generated by the first parent MZM with the first polarization. A second optical detector optical detects the QPSK signal generated by the second parent Mach-Zehnder modulator with the second polarization. A bias control circuit generates bias signals on at least one output that stabilize the DP-QPSK signal in response to signals generated by the first and second optical detector using electrical time division multiplexing.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: FINISAR CORPORATION
    Inventors: Suhas P. Bhandare, Heider Ereifej, Kyu Kim, Mark Colyar
  • Publication number: 20140010538
    Abstract: The optical signal to noise ratio is improved when the polarization multilevel signal light is demodulated. A optical polarization multilevel signal receiving apparatus is provided with a polarization multilevel receiver configured to generate at least one estimation symbol A1 to AN estimating a state of the symbol A by utilizing a polarization state of at least one polarization multilevel symbol received in a past before the symbol A, a past value of a decision variable, and a decision result, average the estimation symbols A1 to AN and the symbol A to calculate a reference symbol Ar, and use the calculated reference symbol Ar in place of the symbol A to calculate a decision variable corresponding to a polarization state change of the received symbol R, where R is a received symbol and A is at least one past symbol used as a reference for a change.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 9, 2014
    Inventor: Nobuhiko KIKUCHI
  • Patent number: 8625989
    Abstract: Multi-laser transmitter optical subassemblies (TOSAs) for optoelectronic modules. In one example embodiment, a multi-laser TOSA includes first and second lasers configured to generate first and second optical signals, respectively, a polarization beam combiner (PBC), first and second collimating lenses positioned between the first and second lasers, respectively, and the PBC, a half waveplate positioned between the first laser and the PBC, and a focusing lens. The half waveplate is configured to rotate the polarization of the first optical signal. The PBC is configured to combine the first and second optical signals and transmit the combined first and second optical signals toward the focusing lens.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 7, 2014
    Assignee: Finisar Corporation
    Inventors: Tengda Du, Bernd Huebner
  • Publication number: 20140003813
    Abstract: An optical transport system that transmits data using relatively short FEC-encoded data frames. The corresponding modulated optical signals are decoded at an optical receiver using frame-based maximum likelihood sequence estimation that relies on data redundancy present in each FEC-encoded data frame for the determination of its source bits. In some embodiments, the modulated optical signals carrying the FEC-encoded data frames are generated using a polarization-division-multiplexed constellation. The FEC-coding rate and frame length can be adjusted without changing the constellation, which advantageously enables the optical transport system to dynamically adapt its transmission format to the changing link conditions in a manner that results in better overall receiver sensitivity than that achieved with comparable bit-rate-adaptation methods that rely on a constellation change rather than on a change of the FEC-coding rate.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: ALCATEL-LUCENT USA INC.
    Inventors: Timo J. Pfau, Noriaki Kaneda, Brian S. Krongold
  • Publication number: 20140003814
    Abstract: A system receives traffic that includes four-bit symbols, the four-bit symbols being encoded using a four-bit phase modulation scheme; and processes the traffic to recover a four-bit symbol. The system also decodes the recovered four-bit symbol to obtain a three-bit symbol. The three-bit symbol is associated with a three-quadrature amplitude modulation (3QAM) scheme, and the decoding is performed without creating an error, within the traffic, when cycle slip occurs. The system outputs the traffic based on the three-bit symbol.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: Infinera Corporation
    Inventors: Han Henry SUN, Kuang-Tsan Wu
  • Publication number: 20140003815
    Abstract: A photonic integrated circuit device comprises a receiver integrated in a substrate and having an optical input line, a first, a second, a third, and a fourth electrical output line, and a transmitter having a first input line in electrical communication with the first electrical output line, a second input line in electrical communication with the second, a third input line in electrical communication with the third, and a fourth input line in electrical communication with the fourth electrical output line. The receiver may receive and convert an input TM signal, and an input TE signal into a first electrical signal outputted to the first, a second electrical signal outputted to the second, a third electrical signal outputted to the third, and a fourth electrical signal outputted to the fourth electrical output line. The transmitter may receive the electrical signals and modulate and output a phase conjugated output light signal.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventor: Pierre Mertz
  • Publication number: 20130336654
    Abstract: In order to appropriately demultiplex the polarization multiplexed BPSK signal without using a training sequence and decreasing the resistance to a frequency offset, an optical receiver includes a coherent optical detection unit receiving an optical signal in which BPSK modulated carrier waves are polarization-multiplexed, performing coherent detection by mixing the received optical signal with local light, and outputting first electrical signals corresponding to the carrier waves; a butterfly FIR filter receiving the first electrical signals and extracting second electrical signals corresponding to each of the carrier waves from the first electrical signals; and a coefficient control unit for calculating a sum of respective phases of the second electrical signals output from the butterfly FIR filter, adaptively controlling tap coefficients of the butterfly FIR filter so that the calculated phase sum may become equal to 0 or ?, and outputting tap coefficients after being controlled to the butterfly FIR filter
    Type: Application
    Filed: February 28, 2012
    Publication date: December 19, 2013
    Applicant: NEC Corporation
    Inventors: Manabu Arikawa, Daisaku Ogasahara, Emmanuel Le Taillandier De Gabory, Kiyoshi Fukuchi
  • Patent number: 8611751
    Abstract: Systems, apparatus and method for modulating digital data onto an optical carrier to produce a modulated optical carrier in which symbol-modulated optical signals of orthogonal polarizations are temporally interleaved and adapted to be processed by electronic time-division demultiplexing to recover the digital data modulated onto the orthogonal polarizations of the optical signals.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 17, 2013
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan
  • Patent number: 8611534
    Abstract: An electro-optic waveguide polarization modulator (20) comprising a waveguide core (4) having first and second faces defining a waveguide core plane, a plurality of primary electrodes (22, 24) arranged at a first side of the waveguide core plane and out of said plane, and at least one secondary electrode (26) arranged at a second side of the waveguide core plane and out of said plane, wherein the electrodes (22, 24, 26) are adapted in use to provide an electric field having field components (13, 15) in two substantially perpendicular directions within the waveguide core (4) so as modulate the refractive index thereof such that electromagnetic radiation propagating through the core (4) is converted from a first polarization state to a second polarization state.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: December 17, 2013
    Assignee: QinetiQ Limited
    Inventors: Ewan D Finlayson, Philip M Gorman, John M Heaton, Michael J Kane, Brian S Lowans
  • Patent number: 8606120
    Abstract: The present invention provides a system, apparatus and method to control an optical polarization beam splitter. A portion of an optical output of the polarization beam splitter is converted into a corresponding electrical signal. The electrical signal is then provided to the polarization beam splitter as a control signal via a feedback loop. The polarization beam splitter controls a characteristic of the optical output of the polarization beam splitter in response to the received control signal. The characteristic, for example, may be controlled through thermo-optically or electro-optically. The control system may be used over a period of time to maintain the characteristic at a desired value, for example as the components of the polarization beam splitter, or other elements used in the control of the polarization beam splitter, age.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: December 10, 2013
    Assignee: Infinera Corporation
    Inventors: Mehrdad Ziari, Masaki Kato, Radhakrishnan L. Nagarajan
  • Publication number: 20130322881
    Abstract: A optical transmitter and method for transmitting digital data on an optical channel, performing the steps of generating first and second baseband digital signals, modulating a first polarized optical carrier wave component in accordance with the first baseband digital signal, modulating a second polarized optical carrier wave component in accordance with the second baseband digital signal, wherein the second polarized optical carrier wave component has an orthogonal polarization to the first polarized optical carrier wave component and combining the first and second modulated optical carrier wave components into a propagation medium. The first and second baseband digital signals are generated in a correlated manner so that the modulated optical carrier wave components are combined as a modulated single-polarization optical carrier wave.
    Type: Application
    Filed: February 16, 2012
    Publication date: December 5, 2013
    Inventors: Francesco Vacondio, Christian Simonneau
  • Patent number: 8594508
    Abstract: An optical transmission system, where in an optical transmitter a detection bit having a specific pattern set according to the number of bits to be transmitted within one symbol time, is imparted with respect to a transmission signal in which transmission information has been encoded according to a preset format, and an optical signal generated by modulating light according to the transmission signal is transmitted to a transmission line. In an optical receiver, logic inversion or bit swap of received data is detected and compensated by using the detection bit included in the received signal, a decoding process of the compensated received signal is executed. As a result, when an optical signal capable of transmitting multi-bit information within one symbol time is transferred, it is possible to realize excellent transmission characteristics, by reliably compensating an error in received data caused by the modulation format or the multiplex system of the optical signal.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: November 26, 2013
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida, Takahito Tanimura, Toru Katagiri, Shoichiro Oda
  • Publication number: 20130308947
    Abstract: Proposed is a method of optical data transmission. A first data signal and a second data signal are received at a same sampling rate. A third data signal and a fourth data signal are generated, using the first and the second data signal, wherein the two data signals are delayed to each other by a delay time that is varied over time. The phase of a first optical signal is modulated in dependence on the third data signal, and the phase of a second optical signal with a same wavelength is modulated in dependence on the fourth data signal. The first optical signal is transmitted in a first polarization plane into an optical fibre, and the second optical signal is transmitted in a second polarization plane orthogonal to the first polarization plane into the optical fibre.
    Type: Application
    Filed: January 9, 2012
    Publication date: November 21, 2013
    Inventors: Francesco Vacondio, Olivier Rival
  • Patent number: 8588612
    Abstract: A optical detection apparatus includes: an optical splitting unit configured to split a seed lightwave and split upward signal light generated by an optical network unit, based on the seed lightwave; a first control unit configured to control polarizations of the split seed lightwaves based on a first electrical signal; a second control unit configured to control phases of the split seed lightwaves based on a second electrical signal; an optical coupling and signal conversion unit configured to couple the seed lightwaves, of which the polarization and phase are controlled, and the split upward signal lights, convert the coupled optical signals into the first and second electrical signals, and transfer the first and second electrical signals to the first and second control units, respectively; and a signal detection unit.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 19, 2013
    Assignee: KT Corporation
    Inventors: Soo-Jin Park, Young-Bok Choi
  • Publication number: 20130302034
    Abstract: The invention is about a method and apparatus for grouping multiple satellite transponders with both (LP) polarization formats in different frequencies through Wave-Front (WF) Multiplexing (muxing) techniques for ground terminals with incompatible (CP) polarization formats. As a result of this invention, linear polarized (LP) transponders can be accessed and efficiently utilized by circularly polarized (CP) ground terminals and vice versa. This invention consists of conventional ground terminals, a unique organization of space assets, and a unique polarization alignment processor. The applications of wavefront multiplexing techniques to satellite communications offer many potential advantages, including improved flexibility and utility efficiency of existing space assets. Our proposed “Polarization Utility Waveforms” is an entirely new concept in VSAT and Earth Station Antenna diversity.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 14, 2013
    Inventor: Donald C.D. Chang
  • Publication number: 20130287398
    Abstract: The present disclosure provides a multi-carrier optical transmitter, receiver, transceiver, and associated methods utilizing offset quadrature amplitude modulation thereby achieving significant increases in spectral efficiency, with negligible sensitivity penalties. In an exemplary embodiment, an optical transmitter includes circuitry configured to generate a plurality of optical subcarriers, a plurality of data signals for each of the plurality of subcarriers, and a plurality of modulator circuits for each of the plurality of subcarriers, wherein each of the plurality of modulator circuits includes circuitry configured to offset an in-phase component from a quadrature component of one of the plurality data signals by one-half baud period.
    Type: Application
    Filed: June 26, 2013
    Publication date: October 31, 2013
    Applicant: Ciena Corporation
    Inventors: Michael Y. Frankel, Christian Bourget, Michael J. Wingrove
  • Publication number: 20130279913
    Abstract: An optical signal transmitter includes: first outer modulator to generate first modulated optical signal, the first outer modulator including a pair of optical paths and a first phase shifter to give phase difference to the pair of optical paths; second outer modulator to generate second modulated optical signal, the second outer modulator including a pair of optical paths and a second phase shifter to give phase difference to the pair of optical paths; combiner to generate polarization multiplexed optical signal by combining the first and second modulated optical signals; phase controller to control the phase difference by the first phase shifter to A??? and control the phase difference by the second phase shifter to A+??; and power controller to control at least one of the first and second outer modulators based on AC component of the polarization multiplexed optical signal.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 24, 2013
    Inventors: Yuichi AKIYAMA, Noriaki MIZUGUCHI
  • Publication number: 20130279912
    Abstract: In some examples, a transmit assembly is described that may include a first optical transmitter, a second optical transmitter, and a polarizing beam combiner. The first optical transmitter may be configured to emit a first optical data signal centered at a first frequency. The second optical transmitter may be configured to emit a second optical data signal centered at a second frequency offset from the first frequency by a nominal offset n. The polarizing beam combiner may be configured to generate a dual carrier optical data signal by polarization interleaving the first optical data signal with the second optical data signal. An output of the polarizing beam combiner may be configured to be communicatively coupled via an optical transmission medium to a polarization-insensitive receive assembly.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: FINISAR CORPORATION
    Inventors: Ilya Lyubomirsky, Yasuhiro Matsui, Daniel Mahgerefteh
  • Publication number: 20130279911
    Abstract: A Raman pump may include a dual output laser configured to output two optical signals; a delay interferometer configured to delay a first of the two optical signals to decorrelate the two optical signals from each other; and a combiner configured to combine the delayed first of the two optical signals and a second of the two optical signals to provide a Raman amplification signal.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Inventors: Mehrdad Ziari, Scott Corzine, Masaki Kato, Michael Francis Van Leeuwen, Radhakrishnan L. Nagarajan, Matthew L. Mitchell, Fred A. Kish, JR.
  • Publication number: 20130279910
    Abstract: A semiconductor optical amplifier module may include a beam splitter to split an optical signal into two polarization optical signals including a first polarization optical signal with a Transverse Magnetic (TM) polarization provided along a first path of two paths, and a second polarization optical signal with a Transverse Electric (TE) polarization provided along a second path of the two paths; a first rotator to rotate the TM polarization of the first polarization optical signal to TE polarization; a first semiconductor optical amplifier to amplify the rotated first polarization optical signal to output a first resultant optical signal; a second semiconductor optical amplifier to amplify the second polarization optical signal; and a second rotator to rotate the polarization of the amplified second polarization optical signal to output a second resultant optical signal; and a beam combiner to combine the first resultant optical signal and the second resultant optical signal.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Inventors: Mehrdad Ziari, Scott Corzine, Masaki Kato, Michael Francis Van Leeuwen, Radhakrishnan L. Nagarajan, Matthew L. Mitchell, Fred A. Kish, JR.
  • Patent number: 8565616
    Abstract: A polarized-wave-multiplexing optical transmitter including: an optical combiner generating a polarized-wave-multiplexed optical signal by polarized-wave-multiplexing a first optical modulation signal and a second optical modulation signal; an optical power fluctuation portion fluctuating optical power of the first optical modulation signal and the second optical modulation signal periodically; a total-optical-power detection portion detecting fluctuation amount of total optical power of the polarized-wave-multiplexed optical signal; and an optical power controller reducing an optical power difference between the first optical modulation signal and the second optical modulation signal based on detection result of the total-optical-power detection portion.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: October 22, 2013
    Assignee: Fujitsu Limited
    Inventors: Toshiki Tanaka, Yuichi Akiyama, Masato Nishihara
  • Publication number: 20130272704
    Abstract: A method of optical communication comprising encoding four modulated symbols to generate four encoded symbols in two orthogonal polarizations and transmitting the four encoded symbols in two successive time slots. An optical communication apparatus comprising a processor configured to receive two sequences of digital symbols in a plurality of time slots, wherein the two sequences correspond to two components of two orthogonal polarizations, wherein one digital symbol per polarization is received in each of the plurality of time slots, divide each of the two sequences into a plurality of groups using a modulo operation of time, wherein each group comprises two digital symbols received in two consecutive time slots, and adaptively equalize the four digital symbols of the two consecutive time slots using a 4×4 matrix to generate four modulated symbols, wherein the 4×4 matrix comprises 16 tap-vectors.
    Type: Application
    Filed: August 31, 2012
    Publication date: October 17, 2013
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Mahdi Zamani, Chuandong Li, Zhuhong Zhang
  • Publication number: 20130272705
    Abstract: A transmitter and a receiver for an optical telecommunication system of the WDM type are disclosed. In one aspect, the transmitter uses a chromato-temporal encoder which, with each block of symbols to be transmitted, associates a code matrix, where each element of the matrix corresponds to a wavelength and a use of the channel. The transmitter includes multiple modulators, where each modulator modulates a laser beam at a wavelength during a use of the channel by an element corresponding to the code matrix. The beams modulated in this manner are multiplexed in an optical fiber. Another embodiment using both a wavelength and a polarization encoding is also proposed.
    Type: Application
    Filed: October 7, 2011
    Publication date: October 17, 2013
    Applicant: INSTITUT MINES-TELECOM-TELECOM-PARISTECH
    Inventors: Ghaya Rekaya-Ben Othman, Yves Jaouen, Bruno Thedrez, Sami Mumtaz
  • Publication number: 20130259479
    Abstract: An optical transceiving apparatus includes an optical transmitting device performing polarization multiplexing on and transmitting as polarization multiplexed signal light, a first signal light of a predetermined polarization direction and a second signal light of a polarization direction different from the predetermined polarization direction; an optical receiving device receiving the signal light transmitted from the optical transmitting device through an optical transmission path; an acquiring unit acquiring information indicative of magnitude relation of intensity between the first signal light and the second signal light included in the signal light received by the optical receiving device; and a control unit controlling the magnitude relation of intensity between the first signal light and the second signal light included in the signal light output from the optical transmitting device, to be opposite to the magnitude relation indicated by the information acquired by the acquiring unit.
    Type: Application
    Filed: February 14, 2013
    Publication date: October 3, 2013
    Applicant: Fujitsu Limited
    Inventors: Noriaki MIZUGUCHI, Hiroaki Tomofuji
  • Publication number: 20130259480
    Abstract: An optical transmission apparatus includes transmitters configured to correspond to the polarization multiplexing optical signals, each of at least two of the transmitters including a first computing unit that computes, based on information regarding an optical transmission line including a plurality of spans and a polarization multiplexing optical signal, data waveform information regarding the transmitter and transmits the data waveform information to at least one another transmitter provided for at least one another polarization multiplexing optical signal, and a second computing unit that receives data waveform information from the at least one another transmitter provided for the at least one another polarization multiplexing optical signal and pre-equalizes or reduces cross phase modulation occurring in the optical transmission line of a transmission signal based on the data waveform information received from the at least one another transmitter provided for the at least one another polarization multipl
    Type: Application
    Filed: March 8, 2013
    Publication date: October 3, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Tomofumi Oyama, Takeshi Hoshida, Hisao Nakashima
  • Publication number: 20130251370
    Abstract: Provided is a polarization separation device which converges filter coefficients used in polarization separating process more quickly.
    Type: Application
    Filed: June 15, 2011
    Publication date: September 26, 2013
    Applicant: NEC CORPORATION
    Inventor: Daisaku Ogasahara
  • Publication number: 20130251369
    Abstract: In order to reduce influence of noise due to a phase deviation, and to estimate an amount of phase compensation with superior accuracy in a polarization multiplexing/demultiplexing optical communication system, a signal processing circuit includes: optical frequency deviation estimating unit for estimating a frequency deviation which is a difference between a frequency of local light and a frequency of the optical carrier wave which is included in a signal data which corresponds to the polarizations and are generated by mixing a plurality of the optical carrier waves with the local light, which optical carrier wave is phase-modulated and have polarizations able to be demultiplexed and for outputting the estimated frequency deviation as an estimated value; for outputting the estimated frequency deviation as an estimated value; optical frequency deviation compensation amount analyzing unit for calculating an amount of frequency compensation which is an amount of compensation to make a phase of the signal data r
    Type: Application
    Filed: February 16, 2012
    Publication date: September 26, 2013
    Applicant: NEC CORPORATION
    Inventor: Daisaku Ogasahara
  • Patent number: 8543000
    Abstract: In accordance with the present disclosure a system for reducing polarization dependent loss (PDL) of an optical signal comprises a delay module coupled to one or more PDL inducing network elements of an optical network. The delay module is configured to time interleave a first polarization component with respect to a second polarization component of the optical signal. The time interleaving reduces interference caused by cross-talk components associated with the first and second polarization components and induced by the PDL of the PDL inducing elements.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: September 24, 2013
    Assignee: Fujitsu Limited
    Inventors: Olga I Vassilieva, Inwoong Kim
  • Publication number: 20130243433
    Abstract: The embodiments of the present invention provide an inverse channel apparatus and transmitter, receiver and system containing the apparatus; wherein the inverse channel apparatus comprises: an inverse nonlinear calculating unit configured to perform nonlinear additive calculation and nonlinear multiplicative calculation on input signals, so as to obtain signals containing nonlinear damage of the input signals on at least one polarization state; and an inverse linear calculating unit configured to calculate signals containing nonlinear damage and linear damage of the input signals on at least one polarization state according to the signals containing nonlinear damage of the input signals on at least one polarization state and a linear function of a channel.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 19, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Weizhen YAN, Zhenning TAO