Broadcast And Distribution System Patents (Class 398/66)
  • Publication number: 20120093512
    Abstract: A method of managing optical network terminals (ONTs) and an optical line terminal (OLT) for managing the ONTs are provided. A method of managing ONTs in an OLT includes receiving ONT type information in management information base (MIB) information of ONTs connected to the OLT from the ONTs; not uploading MIBs of other ONTs having the same type as the ONT when MIB upload data for the other ONTs is present in the OLT, and uploading the MIBs of the other ONTs having the same type as the ONT when the MIB upload data for the other ONTs is not present in the OLT; and driving an interface of the ONT.
    Type: Application
    Filed: December 3, 2010
    Publication date: April 19, 2012
    Inventors: Bo Kil LEE, Yu Sik NA
  • Patent number: 8160448
    Abstract: An OLT transmits and receives a CMTS/CM apparatus control signal through an apparatus physical management interface which is physically identical to or different from a main signal interface (NNI) and processes the CMTS apparatus control signal by itself. When connection of a new ONU is detected by an ONU apparatus control signal, an IP address is allocated by using the CM apparatus control signal in a manner similar to the CM. The CM apparatus control signal regarding the ONU is transmitted and received by using the IP address and a mutual conversion is performed between the CM apparatus control signal and the ONU apparatus control signal. The ONU processes the ONU apparatus control signal in a manner similar to the ONU based on an ordinary PON standard.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: April 17, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Munetoshi Tsuge, Takashi Mori, Masanobu Kobayashi, Yoshio Miyamori, Shinobu Gohara
  • Patent number: 8160447
    Abstract: An OLT transmits and receives a CMTS/CM apparatus control signal through an apparatus physical management interface which is physically identical to or different from a main signal interface (NNI) and processes the CMTS apparatus control signal by itself. When connection of a new ONU is detected by an ONU apparatus control signal, an IP address is allocated by using the CM apparatus control signal in a manner similar to the CM. The CM apparatus control signal regarding the ONU is transmitted and received by using the IP address and a mutual conversion is performed between the CM apparatus control signal and the ONU apparatus control signal. The ONU processes the ONU apparatus control signal in a manner similar to the ONU based on an ordinary PON standard.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 17, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Munetoshi Tsuge, Takashi Mori, Masanobu Kobayashi, Yoshio Miyamori, Shinobu Gohara
  • Publication number: 20120087662
    Abstract: The OLT manages information of optical intensity and communication bit rate receivable by each ONU, and transmits a signal at suitable optical intensity and a bit rate. The OLT decides a signal transmission plan for each ONU according to a status of accumulated information waiting to be transmitted in the OLT's own device buffer, and inserts the signal transmission plan in a header or payload of a downlink frame, thereby notifying the ONUs of the information prior to transmitting accumulated information (primary signal). The ONU recognizes the signal transmission plan of the OLT according to the time information in a downlink intensity map, receives only a signal having the optical intensity and bit rate suitable for the ONU's own device, and blocks other signals.
    Type: Application
    Filed: September 22, 2011
    Publication date: April 12, 2012
    Inventors: Katsuyoshi Suzuki, Masao Niibe, Shinya Fujioka, Masahiko Mizutani
  • Publication number: 20120087663
    Abstract: [Problem] This invention aims at solving the problem of how a subscriber premises-side optical network unit can be switched to an evaluation mode without the use of a jig board. [Means for Solving the Problem] The invention refers to a subscriber premises-side optical network unit (ONU 10) which is connected to a center-side optical network unit (OLT 1a) via an optical transmission line (optical fiber 2, 4) and to an external device (switch 6) via an electric signal line (electric signal line 5); comprising a memory (memory switch 15a) the stored content of which can be directly or indirectly rewritten by the external device; a detection part (CPU 15) for detecting that the content of the memory has been rewritten; and a control part (CPU 15) for performing, when the detection part detects that the stored content of the memory has been rewritten, a control whereby the optical sending part which sends optical signals to the optical transmission line is put into a continuous light emission state.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 12, 2012
    Inventors: Nobuhiko Hattori, Naoto Nakamura
  • Publication number: 20120087664
    Abstract: Systems and methods are disclosed for providing media access control (MAC) in an optical network by providing a separate control channel and data channel; dedicating each optical network unit (ONU) with one control channel, wherein the control message is transmitted at any time without constraints; sending a grant message to an ONU just before an allocated time is about to start; and sending data traffic from the ONU immediately after receiving the grant message without synchronizing with an optical line terminal (OLT) clock.
    Type: Application
    Filed: October 10, 2011
    Publication date: April 12, 2012
    Applicant: NEC LABORATORIES AMERICA, INC.
    Inventors: Jingjing Zhang, Ting Wang
  • Patent number: 8155518
    Abstract: Systems and methods herein provide for load balancing Fiber Channel traffic. In this regard, a Fiber Channel load balancer may be operable to monitor Fiber Channel paths coupled to a host bus adapter and determine the speeds of the Fiber Channel ports within the Fiber Channel paths. The Fiber Channel load balancer may also be operable to determine certain characteristics of the Fiber Channel traffic being passed over the Fiber Channel paths. For example, a load balancer may determine Fiber Channel traffic sizes of pending requests and, based in part on the traffic sizes and operable normalized speeds of the Fiber Channel ports, adaptively route the pending original traffic across the Fiber Channel ports.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: April 10, 2012
    Assignee: LSI Corporation
    Inventor: Howard Young
  • Patent number: 8150262
    Abstract: An optical communications network in which one optical line terminal is connected to multiple optical network units and in which code division multiplexing communication is carried out between the optical line terminal and the optical network units. The optical intensities of upstream optical signals transmitted from each optical network unit are made constant at the time of multiplexing by an optical directional coupler, and the optical intensity of a downstream optical signal received by an optical network unit and an upstream optical signal received by the optical line terminal is contained within a dynamic range. Each optical network unit is provided with a variable optical attenuator that is common for an upstream optical signal and a downstream optical signal. The upstream optical signal and the downstream optical signal are attenuated by an equal attenuation. Moreover, the optical line terminal controls the attenuation at the variable optical attenuator.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: April 3, 2012
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hideaki Tamai
  • Patent number: 8139940
    Abstract: There is provided a wavelength division multiplexing transmission system and apparatuses used therein, in which a remote apparatus to be newly added to a station apparatus autonomously sets a wavelength to be used in the remote apparatus, thereby avoiding the need for presetting a wavelength to be used in the remote apparatus. The remote apparatus includes wavelength determining means that determines an available wavelength on the basis of an optical signal received from the station apparatus. The wavelength determining means may determine the wavelength of an unreceived optical signal as the available wavelength or may determine the wavelength of a received optical signal as the available wavelength, and may set that wavelength as a transmission and reception wavelength to be used in the remote apparatus.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: March 20, 2012
    Assignee: NEC Corporation
    Inventor: Shigekazu Harada
  • Publication number: 20120063778
    Abstract: An optical add/drop multiplexer incorporates an integrated receiver module and an integrated transmitter which are interfaced to an intervening electrical network to provide an add/drop/pass-through functionality. The receiver module incorporates a wavelength demultiplexer which is in turn combined with optical/electrical converters PIN photodiodes, and amplifiers on a per wavelength basis to output a plurality of parallel electrical signals in response to a common optical input. The transmitter module combines an integrated plurality of drive circuits and lasers for converting a plurality of parallel input electrical signals to a plurality of optical signals, on a per wavelength basis, which in turn are coupled via an optical wavelength multiplexer to a common output optical fiber. The interconnected electrical network, ring mesh or tree, can provide a reconfigurable electrical add/drop interface to other portions of the network.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 15, 2012
    Applicant: Tellabs Operations, Inc.
    Inventors: Philip J. Lin, James D. Mills
  • Patent number: 8135278
    Abstract: Provided is a bidirectional wavelength division multiplexed passive optical network (WDM-PON) which includes a central office (CO) that transmits and receives multiplexed optical signals, a remote node (RN) that communicates with the CO, receives a multiplexed optical signal to demultiplex, and receives a demultiplexed optical signal to multiplex, an optical network unit (ONU) that transmits and receives demultiplexed optical signals to and from the RN, operational and protective backbone optical fibers that connect the CO to the RN, and operational and protective distribution optical fibers that connect the RN to the ONU.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: March 13, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: Kwan-Il Lee, Sang-Bae Lee
  • Publication number: 20120045211
    Abstract: A signal transmission processing method and apparatus and a distributed base station are provided according to the embodiments of the present invention. The distributed base station includes a Base Band Unit (BBU) and a Remote Radio Unit (RRU). A transmitting end connected to one of the BBU and the RRU receives at least one of interface signals from the one connected thereto, performs optical transport network (OTN) electrical layer multiplexing to obtain OTN signal frames and transmit optical signals including the OTN frames to a receiving end connected to the other of the BBU and the RRU. The receiving end performs frame processing for the OTN frames received from the transmitting end to obtain the interface signals, and transmit the interface signals to the other connected thereto.
    Type: Application
    Filed: November 2, 2011
    Publication date: February 23, 2012
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jingxin TAN, Xin XIAO, Zhiyong HUANG, Chaoyang LI, Binghua ZHANG, Wei DU, Hanguo LI
  • Publication number: 20120045200
    Abstract: An apparatus comprising an optical line terminal (OLT) configured to transmit a bandwidth map (BWmap) for a plurality of burst signals to be transmitted by a plurality of optical network units (ONUs), wherein the BWmap comprises a plurality of allocations, and wherein each allocation comprises a start time for the allocation, a grant size for the allocation, and a header error correction (HEC) for the allocation.
    Type: Application
    Filed: October 28, 2011
    Publication date: February 23, 2012
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Frank J. Effenberger, Yuanqiu Luo
  • Publication number: 20120045210
    Abstract: An optical subscriber network for power reduction is provided. The optical subscriber network may include an Optical Line Terminal (OLT) and an Optical Network Terminal (ONT). The OLT may manage a plurality of ONTs by classifying the plurality of ONTs into a sleep group, and may multicast a sleep allowance message only to ONTs included in a predetermined sleep group.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 23, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Sung Chang KIM, Jong Deog KIM, Dong Soo LEE, Hark YOO, Geun Yong KIM, Young Suk LEE, Mun Seob LEE
  • Publication number: 20120045209
    Abstract: Systems and methods are disclosed to provide an upstream rate between 1 Gbps and 10 Gbps in a cost effective manner in a 10GEPON. In an embodiment, an optical network unit (ONU) transmitter includes a burst transceiver and a physical layer (PHY) including a high performance digital to analog converter (DAC), a pulse amplitude modulation (PAM) module configured to encode end user data using a modulation scheme having more than two levels, and a laser. The ONU transmitter transmits the encoded end user data to an optical line terminal (OLT) receiver, which demodulates the data using a PAM demodulator and sends it to a service provider.
    Type: Application
    Filed: June 1, 2011
    Publication date: February 23, 2012
    Applicant: Broadcom Corporation
    Inventors: Edward Wayne BOYD, Ryan Edgar HIRTH, Rick Weidong Li
  • Publication number: 20120042357
    Abstract: Network interface circuitry for a secure one-way data transfer from a sender's computer (“Send Node”) to a receiver's computer (“Receive Node”) over a data link, such as an optical fiber or shielded twisted pair copper wire communication cable, comprising send-only network interface circuitry for transmitting data from the Send Node to the data link, and receive-only network interface circuitry for receiving the data from the data link and transmitting the received data to the Receive Node, wherein the send-only network interface circuitry is configured not to receive any data from the data link, and the receive-only network interface circuitry is configured not to send any data to the data link. The network interface circuitry may use various interface means such as PCI interface, USB connection, FireWire connection, or serial port connection for coupling to the Send Node and the Receive Node.
    Type: Application
    Filed: October 24, 2011
    Publication date: February 16, 2012
    Applicant: OWL COMPUTING TECHNOLOGIES, INC.
    Inventor: Ronald MRAZ
  • Publication number: 20120039609
    Abstract: Method and apparatus for transporting client signals in an OTN are illustrated. In one embodiment, the method includes: receiving a client signal; determining a quantity of n-bit data units of the client signal based on a clock of the client signal and a local clock; mapping the quantity of n-bit data units of the client signal to an overhead of a first Optical Channel Data Tributary Unit (ODTU) frame; mapping the n-bit data units of the client signal to a payload area of a second ODTU frame next to the first ODTU frame according to the quantity of n-bit data units mapped in the overhead of the first ODTU frame; mapping each n-bit data unit of the second ODTU frame to an Optical Channel Payload Unit-k Tributary Slot (OPUk TS) in an OPUk frame; and forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 16, 2012
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Limin DONG, Qiuyou WU
  • Publication number: 20120039608
    Abstract: A reduced size multiplexer and, in particular, a reduced size optical signal multiplexer module is provided for use in a reduced size enclosure. The optical signal multiplexer module has electrical and optical connectors on its faceplate to provide ease in access without having to remove the optical signal multiplexer from the enclosure. The optical signal multiplexer circuit is configured in a standard Type 400 mechanics circuit board arrangement. The optical signal multiplexer module therefore can be inserted into an enclosure in a direction opposite to that in which the DS1 or DS3 connector projects from the face plate, so that the DS1 or DS3 connector remains freely accessible outside of the enclosure when the optical signal multiplexer module is fully loaded into the enclosure. DS1 and DS3 cables and optical fibers can thus be easily coupled to the DS1 and DS3 and optical connectors, respectively, when the SONET multiplexer circuit is fully loaded into the enclosure.
    Type: Application
    Filed: September 2, 2011
    Publication date: February 16, 2012
    Inventors: Bruce M. Lipski, Gary M. Miller, David O. Corp
  • Patent number: 8116627
    Abstract: When a signal of weak optical power is received immediately after a signal of intense optical power, input of the signal of intense optical power readily causes saturation, and the influence interferes in the signal of weak optical power to deteriorate receiver sensitivity. Moreover, when a reverse-bias voltage of APD is changed, if a difference between the voltages is large, a next optical signal is received until the receiver sensitivity of the APD becomes stable, so that receiver sensitivity deteriorates. A DBA order is determined so that a difference in reverse-bias voltage is small, and reverse-bias voltage is controlled in line with reception timing from ONU.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: February 14, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hiroki Ikeda, Toshiki Sugawara, Yusuke Yajima
  • Patent number: 8111991
    Abstract: Systems and methods are described for an optiplex. A method includes: conveying a first narrowcast signal to a first optical combiner; conveying a second narrowcast signal to a second optical combiner; tapping into said first narrowcast signal; monitoring a first characteristic of said first narrowcast signal; tapping into said second narrowcast signal; monitoring a second characteristic of said second narrowcast signal; combining a broadcast signal with the first narrowcast signal using the first optical combiner; and combining said broadcast signal with the second narrowcast signal using the second optical combiner.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: February 7, 2012
    Assignee: Aurora Networks Inc.
    Inventors: Charles Barker, Krzysztof Pradzynski
  • Publication number: 20120027411
    Abstract: The present disclosure discloses a passive optical network (PON) user terminal comprising a passive optical network interface unit (PONIU) having access to a PON system, a service data distribution unit (SDDU) connected to the PONIU for distributing service data, a plurality of service processing units (SPUs) for receiving and accordingly processing the service data distributed by the SDDU, a power source for providing power to the above units, and a power supply control unit (PSCU) for controlling the activating/deactivating of the energy-saving power supply to the SPUs, the SDDU, and the PONIU. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.
    Type: Application
    Filed: October 11, 2011
    Publication date: February 2, 2012
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Yinghu Dong
  • Patent number: 8107815
    Abstract: In one embodiment, a method for providing wireless communications utilizing a passive optical network (PON) is disclosed. The method includes receiving, at a PON, downstream packets from a base station destined for a mobile station, and transmitting the downstream packets to wireless transceivers associated with PON. The method also includes receiving, at the first wireless transceiver communicatively coupled to a first optical network terminal (ONT), the downstream packets from the first ONT and transmitting a first wireless signal comprising the downstream packets to a first cell. The method also includes receiving, at a second wireless transceiver communicatively coupled to a second ONT, the downstream packets from the second ONT and transmitting a second wireless signal comprising the downstream packets to a second cell.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: January 31, 2012
    Assignee: Fujitsu Limited
    Inventors: Youichi Akasaka, Takao Naito, Satoshi Mizutani
  • Patent number: 8098990
    Abstract: A network system and method include a wireless base station integrated at a central office of a service provider. The wireless base station is configured to provide portable and fixed services to customers. A passive optical network is coupled to the wireless base station at the central office to provide a link to extend an antenna for wireless operations of the wireless base station to a remote site such that a wireless signal from the wireless base station is transmitted in parallel with a passive fiber network signal through the link.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: January 17, 2012
    Assignees: NEC Laboratories America, Inc., NEC Corporation
    Inventors: Junqiang Hu, Ting Wang, Dayou Qian, Yuanqiu Luo, Yoshihiko Suemura, Makoto Shibutani
  • Publication number: 20120008953
    Abstract: The present invention discloses a method and system for accurate time transfer in PON. An Optical Line Terminal (OLT) ranges Optical Network Units (ONUs) and obtains ranging information, then, triggered by the periodic Pulse per n Second (PPnS), generates a PPnS timestamp based on the local reference counter and the Time of Day (TOD) above second; OLT transmits the ranging information, the periodic PPnS timestamp and TOD to ONUs; ONUs predicts the time of the next second according to said periodic PPnS timestamp, TOD and ranging information, and outputs the corresponding PPnS. The invention is characterized by the combination of the features of PON point to multi-point and PON ranging into its time transfer method, the high accuracy of time transfer, and the low hardware costs for OLT and ONU, as well as the extremely small bandwidth occupancy.
    Type: Application
    Filed: September 30, 2009
    Publication date: January 12, 2012
    Applicant: ZTE CORPORATION
    Inventors: Jianxin Lu, Jingxuan Wang
  • Publication number: 20120002966
    Abstract: A technique for controlling power of a network node in an optical mesh network, comprising: determining a number of optical paths ingressing or expected to ingress the node, determining capacity or expected capacity of each of the paths; calculating for each of the paths a virtual input power Pvirtual, based on estimation of relative capacity of a specific path with respect to total capacity of all the paths; applying to the network node a power control mechanism, while utilizing a corresponding virtual input power Pvirtual as input power of any of the paths.
    Type: Application
    Filed: June 27, 2011
    Publication date: January 5, 2012
    Applicant: ECI TELECOM LTD.
    Inventors: Michael GUTIN, Alexander VELDER, Lior TOURGEMAN
  • Publication number: 20110318008
    Abstract: An optical line terminal which includes an observing unit that observes information of any one or all of an arrival interval of frames, an instantaneous bandwidth under use of a flow, a queue length of a queue temporarily storing the frames, and a traffic type, and a stop determining unit that dynamically determines a sleep time to be a period in which a sleep state where partial functions of the ONU are stopped is maintained, on the basis of the information obtained by the observing unit. The ONU is entered into a sleep state, immediately after communication ends, after a predetermined waiting time passes from when the communication ends, or after a waiting time determined on the basis of the information passes from when the communication ends.
    Type: Application
    Filed: February 19, 2010
    Publication date: December 29, 2011
    Inventors: Ryogo Kubo, Jun-ichi Kani, Akihiro Otaka
  • Publication number: 20110305458
    Abstract: A service adaptation device includes: a service access unit, configured to obtain service data, where the service data includes a Gigabit-Passive Optical Network (GPON) Encapsulation Method (GEM) frame, Time Division Multiplex (TDM) service data, and Ethernet (ETH) service data; and an Enhanced GPON Encapsulation Method (E-GEM) adaptation unit, configured to encapsulate the service data obtained by the service access unit into an E-GEM frame. A service adaptation method includes: obtaining service data, where the service data includes a GEM frame, TDM service data, and ETH service data; and encapsulating the obtained service data into an E-GEM frame.
    Type: Application
    Filed: August 25, 2011
    Publication date: December 15, 2011
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Jianlin Zhou, Shimin Zou, Xing Hu, Yang Cao
  • Patent number: 8078055
    Abstract: The present disclosure is directed to a passive optical avionics network system and method. A passive avionics network may comprise: (a) an optical line terminal (OLT); (b) at least one optical network unit (ONU); (c) a fiber optic bus operably coupling the OLT and the ONU; and (d) an avionics module operably coupled to the ONU. An integrated modular avionics (IMA) system may comprise: (a) a line-replaceable unit (LRU), the LRU comprising: (i) a processing unit; and (ii) an optical line terminal (OLT); (b) at least one optical network unit (ONU); (c) a fiber optic bus operably coupling the LRU and the ONU; and (d) an avionics module operably coupled to the ONU. A method for avionics network communication may comprise: (a) providing avionics data; (b) transmitting the avionics data via a fiber optic network; (c) receiving the avionics data; and (d) controlling functionality of an avionics module according to the avionics data.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: December 13, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel E. Mazuk, Peter J. Morgan, David A. Miller, Nicholas H. Bloom, Mark A. Kovalan
  • Publication number: 20110302283
    Abstract: Secure downloading of a certificate to an ONU (Optical Network Unit) over an ODN (Optical Distribution Network), by storing the certificate in association with an OLT (Optical Line Terminal). The OLT instructs the ONU to download a file comprising the certificate, and optionally also comprising an address to an ACS (Auto-configuration Server), and indicating the file location. Thereby, the ONU is able to fetch the file over the secure ODN, unpack the file, install the certificate, and connect to the ACS for provisioning.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Inventor: Niclas Nors
  • Patent number: 8073329
    Abstract: The present disclosure discloses a passive optical network (PON) user terminal comprising a passive optical network interface unit (PONIU) having access to a PON system, a service data distribution unit (SDDU) connected to the PONIU for distributing service data, a plurality of service processing units (SPUs) for receiving and accordingly processing the service data distributed by the SDDU, a power source for providing power to the above units, and a power supply control unit (PSCU) for controlling the activating/deactivating of the energy-saving power supply to the SPUs, the SDDU, and the PONIU. The present disclosure further provides a method for controlling the PON power supply and for reporting the power supply state. The present disclosure allows control of the energy usage of the PON user terminal to save power when a service in the PON user terminal is not used or when the user terminal uses a backup power source to supply power.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: December 6, 2011
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Yinghua Dong
  • Patent number: 8073331
    Abstract: According to one embodiment of the present invention, a wavelength-shifted dynamic intelligent bidirectional access optical system utilizes key optical elements such as: a quantum dot enabled semiconductor optical amplifier, a phase modulator and an intensity modulator to provide upstream optical signals. These key optical elements reduce the Rayleigh backscattering effect on the transmission of optical signals. to enable a longer-reach access network topology between a subscriber unit and a super node (e.g., many local nodes collapsed into one super node). Such a longer-reach access network topology eliminates operational and capital costs related routers and switches. Furthermore, a wavelength to a subscriber unit may be protected and dynamically varied for on-Demand bandwidth, information and services and also a subscriber's unit may be configured with any array of connectivity options.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: December 6, 2011
    Inventor: Mohammad A. Mazed
  • Patent number: 8073330
    Abstract: A Digital Subscriber Line Access Multiplexer (DSLAM) includes a Digital Subscriber Line interface unit for processing Physical Layer and Data Link Layer of the Digital Subscriber Line (DSL); at least two virtual DSLAM units adapted to simulate DSLAM to process a packet from the DSL interface unit; and a backhaul interface unit adapted to receive a packet processed by the DSLAM unit, and to send a packet from an access edge node or carrier equipment to the virtual DSLAM unit for processing. The disclosure further provides an Optical Network Unit, an Optical Line Terminal and a Base Station.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: December 6, 2011
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Ruobin Zheng
  • Publication number: 20110293277
    Abstract: A fiber optic network having one or more zones is disclosed. Each zone of the fiber optic network includes one or more zone terminals or devices. Such zone terminals or devices may be located at a mid-span access point of a distribution cable optically connected to a service provider's feeder cable. The zone terminal has a plurality of connector ports with at least one adapter positioned within one of the plurality of connector ports. The adapter is configured to establish an optical connection with one or more optical fibers of the distribution cable. The second multi-fiber optical connector is suitable for outside-plant installation, and the terminal is configured to extend optical service from a service provider toward at least one subscriber premises in a zone. The fiber optic terminal is reconfigurable based on at least one of, a number of subscriber premises in the zone, a geographical relationship of the subscriber premises in the zone, and a demographic make-up of the subscriber premises in the zone.
    Type: Application
    Filed: August 9, 2011
    Publication date: December 1, 2011
    Inventors: Daniel Aurel Bradea, Peter Charles Ballhaussen
  • Patent number: 8068733
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 29, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Patent number: 8068732
    Abstract: A network design apparatus includes an information acquiring unit acquiring optical network information, a section dividing unit dividing an optical network into linear sections, a combination candidate determining unit determining candidates for combinations of various kinds of optical transmission equipment to be placed in each station in each of the linear sections, a noise amount upper limit determining unit determining an upper limit to the amount of noise allowed for each wavelength path, and an equipment placement unit solving an integer programming problem having an objective function that minimizes the cost of the optical transmission equipment and OEO regenerators, subject to the constraints that one optical transmission equipment combination is selected for each linear section and that the number of OEO regenerators necessary for each wavelength path is determined by the cumulative amount of noise of the wavelength path and the noise upper limit determined for the wavelength path.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: November 29, 2011
    Assignee: Fujitsu Limited
    Inventors: Tomohiro Hashiguchi, Toru Katagiri, Kazuyuki Tajima, Yutaka Takita
  • Patent number: 8068731
    Abstract: A dynamic bandwidth allocation method of an Ethernet passive optical network, comprises a predictor and a rule of QoS-promoted dynamic bandwidth allocation (PQ-DBA); the predictor predicts a client behavior and numbers of various kinds of packets by using a pipeline scheduling predictor consisted of a pipelined recurrent neural network (PRNN), and a learning rule of the extended recursive least squares (ERLS); the present invention establishes a better QoS traffic management for the OLT-allocated ONU bandwidth and client packets sent by priority.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: November 29, 2011
    Assignee: Chunghwa Telecom Co., Ltd.
    Inventors: Jan-Wen Peng, Hsing-Yi Wu, Chung-Ju Chang
  • Publication number: 20110280576
    Abstract: A system for delivering optical power over optical conduits includes more than one optical power source and an optical power distribution node configured for selectively delivering optical power to multiple optical power sinks.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 17, 2011
    Inventors: Alistair K. Chan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Lowell L. Wood, JR.
  • Patent number: 8059961
    Abstract: A customer premises optical network unit (ONU) comprises: an electrical/optical transform unit 6 to be connected with an optical transmission path 2 at a central office side for performing an opto-electrical transform and an inverse opto-electrical transform; an ONU function part 7 to be connected with an electric signal input and output terminal of the electrical/optical transform unit 6; a serial/parallel transform unit 8 to be connected with a parallel signal terminal of the ONU function part 7 for performing a serial/parallel transform and an inverse serial/parallel transform; and a multi source agreement interface module 9 to be connected with a serial signal terminal of the serial/parallel transform unit 8.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 15, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kazutaka Shimoosako, Kunio Odaka, Katsuya Aboshi
  • Patent number: 8055132
    Abstract: Optical remote node (NR) device which is situated at a remote point in a fiber-optic metropolitan or access network, carries out the functions of connecting, and transmitting information between, various sections of the network in a passive manner without a power supply using various optical components which extract the necessary optical signals and optical pumping power from the network to which the remote node is connected, and introduces the optical signals from the sections which it connects into said network, and support equipment which is situated at a point in the network with a power supply, uses the network to provide the pumping power required by the remote nodes and has the electronics needed to carry out functions of monitoring the operation of the remote nodes and regulating their activity.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: November 8, 2011
    Assignee: Universitat Politecnica De Catalunya
    Inventors: Josep Prat Gomà, José Antonio Lázaro Villa
  • Patent number: 8050560
    Abstract: A distributed resources sharing method using weighting factors of sub-domains in an optical network includes connecting working paths to an optical network according to a request of a subscriber, and calculating weighting factors for measurement of concentration of the sub-domains including the working paths by using information on connected working paths. The method also includes setting up the backup paths by using the weighting factors, and allocating resources in response to connection request at the time of setting up the backup path and sharing the allocated resources. With this method, it is possible to prevent a waste of idle resources caused from concentration of allocated resources. In addition, since the information of the idle resources in the network can be sensed at the time of selecting the backup paths by using a weight factor, the shared resources can be distributed, thereby maximizing efficiency of the resources.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 1, 2011
    Assignee: Electronics & Telecommunications Research Institute
    Inventors: Hyeon Park, Byung Ho Yae
  • Patent number: 8050561
    Abstract: A passive optical network (PON) system comprising a plurality of optical network units (ONUs) having one downstream receiver and one upstream transmitter, an optical line terminal (OLT) having a downstream transmitter and a plurality of upstream receivers, wherein each upstream receiver is associated with a subset of the ONUs, and an optical distribution network (ODN) that connects the OLT to the ONUs is disclosed. An OLT for a PON, comprising a downstream transmitter, and a plurality of upstream receivers, wherein a downstream transmitter bandwidth is greater than each upstream receiver bandwidth is also disclosed. A network component comprising a processor configured to implement a method comprising determining a downstream bandwidth and an upstream bandwidth for a PON, and increasing a number of upstream channels per downstream channel for the PON when asymmetry between the downstream bandwidth and the upstream bandwidth is greater than a threshold amount is also disclosed.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: November 1, 2011
    Assignee: Futurewei Technologies, Inc.
    Inventor: Frank J. Effenberger
  • Publication number: 20110262138
    Abstract: The present invention discloses a method for processing broadcast packets/multicast control messages, comprising: replicating data to different broadcast/multicast logical channels in accordance with ONU types of users who join a VLAN when an OLT, on which a same port is connected to different types of ONUs, transmits the downlink broadcast packets/multicast control messages. The present invention also discloses a device for processing broadcast packets/multicast control messages. In accordance with the present invention, efficient processing of downlink broadcast packets and multicast control messages is realized when different types of ONUs coexist, unnecessary interference with ONUs from excessive data is avoided, and meanwhile the bandwidth between an OLT and an ONU can be utilized efficiently and meaningless bandwidth occupation by data streams can be avoided.
    Type: Application
    Filed: April 28, 2010
    Publication date: October 27, 2011
    Applicant: ZTE CORPORATION
    Inventor: Yuanling He
  • Publication number: 20110262139
    Abstract: A method for localizing an optical network termination (ONT) of a passive optical network is disclosed. The passive optical network comprises an optical line terminal (OLT) and an optical distribution network (ODN) having a plurality of optical links. The ONT is connectable to the OLT by a given optical link of the optical distribution network. The method includes the steps of detecting that the ONT has been connected to the OLT by an optical link of the optical distribution network; determining length information indicative of a length of the optical link; comparing the length information with a reference length information indicative of a length of the given optical link; and if the length information matches the reference length information, localizing the ONT by confirming that it is connected to the OLT by the given optical link.
    Type: Application
    Filed: December 29, 2008
    Publication date: October 27, 2011
    Applicant: TELECOM ITALIA S.P.A.
    Inventors: Luciana Costa, Roberta D'Amico, Paolo De Lutiis, Luca Viale
  • Patent number: 8045857
    Abstract: In an optical access network using an optical switching device, a 2×1 optical splitter in the uplink and downlink directions is eliminated to extend the transmission distance between the OLT and the ONU. An optical switching device includes a downlink optical switch element for switching a downlink optical signal sent by an OLT, an uplink optical switch element for switching an uplink optical signal sent by a plurality of ONU, an O/E for converting a downlink optical signal to a first electrical signal, an E/O for converting the first electrical signal to a downlink optical signal and inputting the downlink optical signal to the downlink optical element, an O/E for converting an uplink optical signal output from the uplink optical switch element to a second electrical signal, and an E/O for converting the second electrical signal to an uplink optical signal and sending the uplink optical signal to the OLT.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 25, 2011
    Assignee: NEC Communications Systems, Ltd.
    Inventors: Takumi Nomura, Hiromi Ueda, Kunitetsu Makino, Hiroaki Kurokawa, Toshinori Tsuboi, Hiroyuki Kasai, Hirokazu Kobayashi
  • Patent number: 8041216
    Abstract: In a passive optical network, an upstream transmission rate from an ONT to an OLT can be optimized by matching a transmission scheme for a channel to the upstream transmission characteristics of the channel. An FEC coding can be made channel dependent so that channels with low error rates can use minimal protection, and therefore minimal overhead, while channels with high input bit error rates can use the level of FEC coding required to produce a desired output bit error rate.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: October 18, 2011
    Assignee: Alcatel Lucent
    Inventor: Adriaan J. de Lind van Wijngaarden
  • Patent number: 8041217
    Abstract: In accordance with the teachings of the present invention, a system and method for managing wavelength drift in an optical network is provided. In a particular embodiment, the method includes receiving traffic in one or more optical channels transmitted by one or more transmitters, each channel having successive timeslots, each transmitter assigned to transmit in a channel in allocated timeslots in the channel. The method also includes determining whether the traffic received in a particular channel in a particular timeslot was transmitted by one of the transmitters that was not assigned to transmit in the particular channel.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: October 18, 2011
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda
  • Publication number: 20110249972
    Abstract: An apparatus for decreasing the hardware load from L2 switch MAC address learning for Ethernet-Over-SONET technology that uses VLAN, simplifying frame transmission between Ethernet and SONET, and improving the reliability of each device is disclosed. An Ethernet frame and SONET frame convertible interface part establishes a register that holds an Ethernet frame specific VLANID and SONET frame specific STS path ID in opposition, and a multiplexing part that multiplexes an Ethernet frame having a specific VLANID corresponding to a specific STS path ID that is held by a register among an input plurality of Ethernet frame VLAN ID's.
    Type: Application
    Filed: March 10, 2011
    Publication date: October 13, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Sachiko Nemoto, Sumio Koseki
  • Patent number: 8036530
    Abstract: A translation agent adapts DOCSIS information, primarily QoS information, for transmission over a PON. The agent places into an IP address field of a DHCP message the MAC address of an ONU associated with a CPE device attempting to register with a CMTS. The translation agent intercepts DHCP reply messages from the DHCP server using the MAC address of the ONU. The translation agent extracts information, including an IP address of the client CPE assigned by the DHCP server. The agent downloads a configuration file for the CPE device using the configuration filename and configuration file server contained in a DHCP reply message. Information contained in the configuration file is converted from content in a format used by DOCSIS, to content in a format used by PON devices. The translated content includes QoS parameters, functions related to which are controlled at the ONU by an OLT coupled to the CMTS.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: October 11, 2011
    Assignee: ARRIS Group, Inc.
    Inventors: Erich Arnold, Jeff Howe, Thomas Cloonan, Mike Emmendorfer
  • Patent number: 8032016
    Abstract: An arrangement is provided for transporting information from a central information distribution center (CIDC) to locations where such information is intended. Upon receiving a request for narrowcast information to be delivered to a node associated with a head end, the CIDC selects the requested information, generates an optical signal encoded with the requested information using information channels dedicated to narrowcast information transport for the node, and sends the optical signal to the head end via an optical fiber. When the head end receives the optical signal, the narrowcast information transport channels dedicated to the node are translated into subcarriers acceptable to the node before the requested narrowcast information is forwarded to the node.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: October 4, 2011
    Assignee: ARRIS Group, Inc.
    Inventors: Irl N. Duling, Sandeep T. Vohra, Paul J. Matthews
  • Publication number: 20110236020
    Abstract: Technique for low cost delivery of a high bit rate electric signal via an optical network, by using a group of optical channels in the network for respectively delivering there-through a number of component electric signals of the high bit rate signal, The optical channels are respectively associated with different wavelengths, and each of the optical channels comprises optical elements suitable for conducting an optical signal having bandwidth significantly narrower than bandwidth of any of the component signals. The high bit rate electric signal is then successively restored from the optical signals delivered via the optical channels.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 29, 2011
    Applicant: ECI TELECOM LTD.
    Inventor: Amitay MELAMED