Time And Wavelength Division Patents (Class 398/75)
  • Patent number: 7720379
    Abstract: An optical packet switch switches optical packets according to bit-rates at which the optical packets are provided. For example, optical packets that are received at similar bit-rates may be routed to a destination at separate time slots over a single channel wavelength, and optical packets that are received at different bit-rates may be routed to the destination over separate channel wavelengths. When optical packets are provided at different bit-rates on a plurality of input paths, optical packets provided at low bit-rates may be compacted before switching to the destination. Alternatively or additionally, the bit-rates of the optical packets may be balanced before switching to the destination. Bandwidth contention among optical packets may be resolved by polarizing optical packets originating from separate input paths in different polarization directions, and merging optical packets having different polarization directions onto a single switched channel wavelength.
    Type: Grant
    Filed: January 27, 2008
    Date of Patent: May 18, 2010
    Inventor: Doron Handelman
  • Patent number: 7720382
    Abstract: A system and method are disclosed for time-domain wavelength interleaved networking that reduce the need for complex time-slot scheduling and reduce the routing complexity. Substantially all communications in the time-domain wavelength interleaved network pass through a hub node. In addition, interior nodes in the time-domain wavelength interleaved network will forward substantially all communications received from the hub node that are destined for another node on all branches outward from the hub node. The central hub node can impose a timing reference. Thus, the transmission and reception of a message can be synchronized such that a message sent in a time-slot k by a node Ni will be received by a node Nj in the time-slot k. Further, the hub node can recover from a link failure by shifting transmission times of all nodes that are separated from the hub node by the failed link.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: May 18, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Penelope E. Haxell, Gordon Thomas Wilfong, Peter M. Winkler
  • Patent number: 7702240
    Abstract: The present invention is an optical multiplex communication system in which an optical wavelength division channel and an optical code division channel can coexist, wherein a WDM channel section 86 has a wavelength demultiplexer 36 and WDM channels W1 to W4. An optical pulse string 83-3 is demultiplexed by the wavelength demultiplexer 36, and for channel W1, an optical pulse 37 with wavelength ?1 is input to an intensity modulator 114 and converted into an optical pulse signal of channel W1, and is output as a wavelength division optical pulse signal 115, where transmission information of channel W1 is reflected.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: April 20, 2010
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Naoki Minato
  • Patent number: 7689124
    Abstract: Disclosed herein are a CDMA optical system and encoder and decoder included therein. Time domain encoding means creates a time domain code having a sequence according to inputted data bits or a complementary code which is complementary to the time domain code. An optical modulation means selectively outputs lights, in which the lights are incident upon the optical modulation means from the outside, to two output leads, respectively, according to chip bits of the time domain code or the complementary code. A wavelength domain encoding means encodes the light outputted from a first output lead of the optical modulation means to a wavelength domain sequence (two dimensional code), transmits the wavelength code to the base station, encodes the light outputted from a second output lead to a complementary sequence of the wavelength domain sequence, and transmits the complementary code of the two dimensional code to the base station.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: March 30, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Hee Yeon, Bong Kyu Kim, Sung Chan Cho, Byoung Whi Kim, Sang Jo Park
  • Patent number: 7672593
    Abstract: An OTDM transmitting method and transmitter realizing an OTDM distortion-free transmission substantially not relying upon dispersion. A time division multiplexed OTDM signal from an OTDM signal transmitter (1) enters an optical Fourier transform unit (2). Optical Fourier transform can be carried out most accurately so long as the optical pulse is a chirp-free Fourier transform limit pulse. The optical Fourier transform unit (2) converts the time waveform of the pulse into a signal on the frequency axis, and an optical inverse Fourier transform unit (2?) converts a spectral shape on the frequency axis into a time waveform (pulse). An optical fiber transmission line (3) is a transmission line having an arbitrary dispersion and a polarization mode dispersion. These dispersions may involve a time variation. An OTDM signal receiver (4) demultiplexes a transmission signal into low-speed optical signals, in a light region, receives optical pulses for respective channels and converts them into electric signals.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: March 2, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Toshihiko Hirooka, Masataka Nakazawa
  • Patent number: 7672585
    Abstract: Each of a plurality of semiconductor optical amplifiers operates as an optical gate switch and selects an optical signal indicated by a gate control signal from an optical gate switch control unit. A plurality of photodetectors monitor the power of an optical signal input through a corresponding input port. A VOA control unit calculates an amount of attenuation corresponding to each input port based on the power of each optical signal. A variable optical attenuator attenuates the selected optical signal according to the calculated amount of attenuation in synchronization with the gate control signal.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: March 2, 2010
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, Yasuhiko Aoki
  • Publication number: 20100021165
    Abstract: An optical communications network architecture and associated method which employs time and wavelength-interleaving for homing between nodes/satellites and hubs and for grooming, while employing wavelength-division-multiplexed wavelength circuits between hubs without requiring cross-connects or routers therebetween.
    Type: Application
    Filed: July 23, 2008
    Publication date: January 28, 2010
    Applicant: LUCENT TECHNOLOGIES INC.
    Inventors: Carl Jeremy Nuzman, Debasis Mitra, Iraj Saniee, Gordon Wilfong
  • Patent number: 7646979
    Abstract: A system for simultaneously transmitting and receiving multiple data messages on a unidirectional ring having a plurality of nodes coupled thereto is described. This technique utilizes a medium access (MAC) protocol for a multi-gigabit-per-second local-area optical wavelength division multiplexed (WDM) network that is particularly well suited for high-performance computing environments that need a network that provides quality of service and the ability to enforce service level agreements. The protocol uses an asynchronous, unslotted, tokenless, and collision-free access scheme that is arbitrated by a centralized scheduler. The embodiment is based on a folded-bus unidirectional ring that is passively optically tapped by the nodes to both transmit data onto the network and to receive data from the network.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: January 12, 2010
    Assignee: NetApp, Inc.
    Inventors: Gene Ciancaglini, Steven Lumetta, Muriel Medard, John D. Moores, Salil A. Parikh, Mark R. Parquette
  • Patent number: 7643754
    Abstract: A method of providing a multi-wavelength light source includes the steps of modulating an optical pulse source so as to output optical pulses with a designated repetition frequency, time-division multiplexing the optical pulses output by the optical pulse source so as to output optical pulses with a repetition frequency which is an integral multiple of the designated repetition frequency, and demultiplexing wavelengths of the optical pulses with the repetition frequency which is the integral multiple of the designated repetition frequency so as to output the wavelengths as the multi-wavelength light source.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: January 5, 2010
    Assignee: Fujitsu Limited
    Inventors: Fumio Futami, Shigeki Watanabe
  • Publication number: 20090317084
    Abstract: A passive optical network system includes: a plurality of optical signal splitter receiving optical signals from a plurality of optical network units (ONUs) to provide a plurality of upstream optical signals having different wavelengths; a hybrid optical filter multiplexing the plurality of upstream optical signals in a wavelength division multiplexing (WDM) scheme; and an optical line terminal (OLT) receiving the multiplexed upstream optical signals in a time division multiplexing (TDM) scheme. Therefore, the network system can be easily expanded when the number of subscribers increases, and the optical loss can be minimized.
    Type: Application
    Filed: September 29, 2008
    Publication date: December 24, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Bong-Kyu KIM, Yool KWON, Bin-Yeong YOON
  • Patent number: 7630642
    Abstract: In 1 to N communication based on code division multiplexing, ranging is performed by following the first to ninth steps. First step: all the optical network units are set to standby status. Second step: first and second optical network units are set to transmission enable status. Third step: the phase shift amount is set for the variable phase shifters of the first and second optical network units. Fourth step: reception of a fixed signal is attempted in the optical line terminal. Fifth step: if the fixed signal is not received, processing returns to the second step, and if received, the phase amount of the variable phase shifter is defined and fixed. In the sixth to ninth steps, an operation the same as the first to fifth steps is performed for the third to N-th optical network units.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: December 8, 2009
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Hideaki Tamai, Masayuki Kashima
  • Patent number: 7630640
    Abstract: An optical communication system which constructs, at low cost, a network that uses Time Division Multiplexing in at least one direction of the communication. The optical communication system includes an optical multiplexer/demultiplexer that mediates communication between a network unit and a plurality of terminal units. The optical multiplexer/demultiplexer regenerates a synchronization clock from a downstream signal light. In addition, the optical multiplexer/demultiplexer adjusts, using the regenerated synchronization clock, the delay times of a plurality of upstream signal lights received from the terminal units. The network unit and the terminal units do not need to control the timing of the upstream signal lights. Thus, the construction costs of the optical communication system are reduced.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: December 8, 2009
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Masatoshi Kagawa, Hiromi Tsuji
  • Patent number: 7627247
    Abstract: A method of multiplexing optical signals in a node of an optical network including as inputs a plurality of electrical signals, a plurality of laser transmitters, and as outputs a plurality of optical fibers, (a) generating clock pulses as a first clock frequency; (b) dividing the clock pulses respectively into a number of parallel trigger outputs; (c) sampling the electrical signals respectively by triggering on the parallel trigger outputs; (d) converting the sampled electrical signals to sampled optical signals by modulating respectively the laser transmitters with the sampled electrical signals and outputting respectively the sampled optical signals on the optical fibers; (e) combining the sampled optical signals onto a single optical fiber.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: December 1, 2009
    Assignee: Optiway Ltd.
    Inventors: Luca Bercovici, Michael Braiman
  • Patent number: 7616894
    Abstract: A system and method for mitigating dispersion slope is capable of reducing the performance impact on an optical communication system caused by dispersion slope. The system and method receives an optical signal, demultiplexes the optical signal and optically filters the demultiplexed optical signals. The optical filters may have a bandwidth that is wide with respect to the demultiplexed optical signals and narrow with respect to the original optical signal.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: November 10, 2009
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Georg Heinrich Mohs, Jin-Xing Cai, Morten Nissov
  • Patent number: 7613395
    Abstract: A transmission system for a passive optical network comprises a shared optical transmission apparatus, a shared electrical interface apparatus and a plurality of transmission convergence termination units. The shared optical transmission apparatus is configured for being coupled to an optical line termination unit via an optical fiber. The shared electrical interface apparatus is coupled to the shared optical transmission apparatus. The plurality of transmission convergence termination units is coupled to the shared electrical interface apparatus. Each one of the transmission convergence termination units is configured for selectively controlling the shared electrical interface apparatus.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 3, 2009
    Assignee: Alcatel Lucent
    Inventors: Jonathan Huffman, Ray Tyrrell, Hal Thorne, Dirk Corsus, Duane Remein, David Eckard, Travis Lentz
  • Patent number: 7603036
    Abstract: A method includes transmitting, at a first wavelength, a first configuration message on the PON including a first transmitter interface number and transmitting, at a second wavelength, a second configuration message on the PON including a second transmitter interface number. The method further includes receiving a configuration response message from a first set of ONUs that comprises the first transmitter interface number and from a second set of ONUs that comprises the second transmitter interface, associating the first set of ONUs with the first wavelength and the second set of ONUs with the second wavelength, and transmitting downstream traffic destined for any ONU in the first set of ONUs at the first wavelength and transmitting downstream traffic for any ONU in the second set of ONUs at the second wavelength.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 13, 2009
    Assignee: Fujitsu Limited
    Inventors: Paparao Palacharla, Martin Bouda, Takao Naito
  • Patent number: 7599624
    Abstract: A channel switching function is added to a wavelength division multiplexing passive optical network (WDM-PON) system, which is an access optical network system, and the potential transmission rate is increased by combining wide wavelength tunable lasers and a time division multiplexing (TDM) data structure and properly using the necessary optical components. In addition, when the wavelength of a light source or an arrayed waveguide grating (AWG) changes, the wavelength is traced and the magnitude of a transmitted signal is maximized without an additional detour line using a loop-back network structure. Furthermore, fewer thermo-electric controllers (TECs) are required for stabilizing the temperature of an optical line terminal (OLT) using wavelength tunable lasers, each laser electrically changing its wavelength.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: October 6, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sahng Gi Park, Su Hwan Oh, Kwang Seong Choi, Moon Ho Park, Yong Soon Baek, Kwang Ryong Oh
  • Patent number: 7596321
    Abstract: A time division multiplexing (TDM) facility is presented for time division multiplexing at least two inter-system channel (ISC) data streams to create a TDM multiplexed data stream. The TDM multiplexed data stream can be forwarded across the network over a single wavelength of a wavelength division multiplexing (WDM) network. The TDM multiplex data stream may be wavelength division multiplexed with one or more other TDM multiplexed data stream. Different protocols are presented for maintaining disparity balance within the ISC data streams depending upon whether a given sequence in one of the data streams is an idle sequence, frame sequence or continuous sequence.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: September 29, 2009
    Assignee: International Business Machines Corporation
    Inventors: Casimer M. DeCusatis, Thomas A. Gregg, Jayakrishna M. Menon
  • Patent number: 7590353
    Abstract: The present invention relates to allocating the use of optical light-trails. Optical light-trails enable a plurality of nodes included in a light-trail to share the use of an optical wavelength to transmit traffic between the nodes included in the light-trail. A method for allocating the use of an optical light-trail includes calculating a bid at each of one or more nodes included in the light-trail. Each of the nodes calculates a bid with consideration for the criticality of the node's need to transmit particular traffic on the light-trail. The method also includes transmitting the calculated bids from one or more of the nodes to an arbiter node. The arbiter node determines the maximum received bid, determines whether to allocate the use of the light-trail to the node associated with the maximum bid, and then communicates one or more control messages to the nodes that transmitted the bids indicating to which node use of the light-trail is allocated.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: September 15, 2009
    Assignee: Fujitsu Limited
    Inventor: Ashwin Anil Gumaste
  • Patent number: 7577363
    Abstract: A device and a method for converting WDM signals into an OTDM signal. A time shift is introduced between the pulses of the WDM signals carried by the optical carriers. A modulation means is (112, 113, 114) adapted to modify the optical power of the WDM signals, and an optical temporal multiplexer/ demultiplexer (120) is provided. The WDM signals are injected into a birefringent propagation medium (130) in such a manner as to achieve a soliton trapping phenomenon. An absorption means (140) is adapted to introduce optical losses into the components of the OTDM signal. This technique performs WDM/OTDM conversion at very high bit rates. It also performs OTDM/WDM conversion. It is intended to be installed in long-haul telecommunication networks.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: August 18, 2009
    Inventor: Erwan Pincemin
  • Patent number: 7574139
    Abstract: A method and an apparatus for implementing carrier suppressed data format on conventional OTDM modules is provided. Adaptive phase shifting of optical signals traversing one of the tributaries of an OTDM module is performed with feedback loop control. A tapped portion of the input carrier signal is phase modulated at a frequency fc, and is combined with a tapped portion of the output from the OTDM. A phase shifter controller fed with this combined signal photodetects and band-pass filters the signal around fc to extract the amplitude of the AC component of the envelope of the combined signal, which depends upon the phase difference between successive pulses of the OTDM output. This signal is used to control a phase shifter coupled along one of the tributaries of the OTDM to adjust the phase difference of the signals of the two tributaries so that carrier suppression results.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: August 11, 2009
    Assignee: Oplink Communications, Inc.
    Inventors: Xiaoli Fu, Genzao Zhang, Feng Shi, Tongqing Wang, Jinghui Li
  • Patent number: 7558481
    Abstract: An enhanced Dense Wave Division Multiplexing (DWDM) network is optimized through bundling subchannel traffic in DWDM channels at network nodes and “hubbing” the DWDM channels at nodes receiving a relatively higher volume of aggregate traffic than other nodes. The optimization can eliminate low rate links and supporting network equipment. The bundling and hubbing may also be used independently from one another. The DWDM network may be enhanced with SONET, SDH, Ethernet, ATM, or other technology. The DWDM network may be a BLSR, UPSR, point-to-point, mesh, or other network configuration.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: July 7, 2009
    Assignee: Tellabs Operations, Inc.
    Inventors: David W. Jenkins, Gilbert A. Buescher, III
  • Publication number: 20090169209
    Abstract: A general object of the present invention is to provide an optical communication system in which an optical transmission power of an optical communication apparatus is controlled to be a required minimum power that apparatuses of all subscribers in the optical communication system meet a prescribed error rate. An optical line terminating apparatus (OLT) transmits data to multiple optical network apparatuses (ONUs) at an optical intensity calculated based on information acquired from the multiple ONUs, which is related to optical intensities of signals that the multiple ONUs receive from the OLT, the optical intensity being calculated so that a minimum optical intensity of the optical intensities of the signals is greater than a predetermined value.
    Type: Application
    Filed: March 12, 2008
    Publication date: July 2, 2009
    Inventors: Toshiki Sugawara, Hiroki Ikeda, Yusuke Yajima, Tohru Kazawa
  • Patent number: 7548695
    Abstract: A communications system connects one or more BTS hotels with several remote access nodes on a transmission ring. Each operator has one or more separate optical wavelengths. Signal flow around the ring can either be uni-directional or bi-directional. Each optical wavelength (or wavelength pair) contains the wireless signal traffic for all remote nodes in the ring for the operator using that particular wavelength in digital form. At each node, the incoming signals are electrically demultiplexed and appropriate signals for that node are extracted for conversion to RF. These signals are copied rather than cut so that they are also available at following remote antenna nodes, thereby enabling simulcast operation.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: June 16, 2009
    Assignee: NEXTG Networks, Inc.
    Inventor: David Wake
  • Patent number: 7536105
    Abstract: A W-CDMA base station is disclosed in which a base band processing device and a plurality of remote radio devices are provided and downward data is transmitted from the plurality of remote radio devices at the same time. The base band processing device inserts a synchronous signal into downward data, and transmits the downward data to the remote radio devices. The remote radio device extracts the synchronous signal from the downward data transmitted from the base band processing device, inserts the synchronous signal into the upward data at an insertion timing based on an extraction timing when the signal is extracted, and transmits the upward data to the base band processing device.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: May 19, 2009
    Assignee: NEC Corporation
    Inventor: Tomoyuki Teramoto
  • Patent number: 7529483
    Abstract: A communication system for the mutual interconnection of a plurality of lower traffic level (5 Terabit) switch nodes via a relatively higher traffic level (Petabit) connection bus, which system comprises in operative association with each node, a two part TDM optical data management interface, wherein a first of the two parts comprises a time slot resequencer which serves to provide for the transmission of data from its associated node to the bus, and wherein a second of the two parts comprises a time slot specific combiner which serves for the transmission of data from the bus to its associated node, each node and the bus having independent data scheduling.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: May 5, 2009
    Assignee: Roke Manor Research Limited
    Inventors: Roderick Leonard Wallace Stevens, Michael John McTiffin, Paul Roderick Webb
  • Publication number: 20090074414
    Abstract: Embodiments of the present invention provide an optical network and switch architecture that provides non-blocking routing from an ingress router to an egress router in the network on a port-to-port basis. The present invention provides routing for fixed and variable length optical data packets of varying types (including Internet Protocol (IP), data, voice, TDM, ATM, voice over data, etc.) at speeds from sub-Terabit per second (Tbps), to significantly in excess of Petabit per second (Pbps). The present invention includes the functionality of both large IP routers and optical cross-connects combined with a unique, non-blocking optical switching and routing techniques to obtain benefits in speed and interconnected capacity in a data transport network. The present invention can utilize a TWDM wave slot transport scheme in conjunction with a just-in-time scheduling pattern and a unique optical switch configuration that provides for non-blocking transport of data from ingress to egress.
    Type: Application
    Filed: September 15, 2008
    Publication date: March 19, 2009
    Applicant: Yotta Networks, Inc.
    Inventors: Larry L. Miles, Lakshman S. Tamil, Scott A. Rothrock, Noland J. Posey, JR., Gregory H. Aicklen
  • Patent number: 7489879
    Abstract: A Laser device for optical packet data transmission in TDM-systems is provided. The device comprises a laser light source for outputting laser light beam and a laser driver for driving the laser light source; an optical modulator which receives and modulates the laser light beam output by the laser light source; a packet data source for outputting a packet data stream; and a modulator driver for receiving the packet data stream output by the packet data source and for driving the optical modulator in response to the packet data stream resulting in that the optical modulator modulates the laser light beam in response to the packet data stream. A filter generates an envelope signal of the data packets in the packet data stream, and a switch switches the laser driver in response to the envelope signal.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: February 10, 2009
    Assignee: Alcatel
    Inventors: Wolfram Lautenschläger, Francois Dorgeuille, Nicolas Le Sauze, Arnaud Dupas
  • Patent number: 7483633
    Abstract: An optical communication network using a communication system which is combined optical time-division multiplexing and optical wavelength-division multiplexing. The electric/optical converter converts an electric signal strings, which are input from the outside, into optical burst signals by selectively using a plurality of types of optical wavelengths. The network controller controls the optical wavelength selected by the electric/optical converter and the output timing of the optical burst signals for each one of the optical burst signals so that the optical burst signals received by the OLT are time-division multiplexed and wavelength-division multiplexed. By combining optical time-division multiplexing and optical wavelength-division multiplexing, an optical communication network of which the transmission band is wider than a TDMA system can be provided with a lower cost and lower facility scale than a WDM system.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: January 27, 2009
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Katsuhiro Ishimura
  • Patent number: 7483642
    Abstract: A receiver for an OTDM/PDM pulse train (10) in which the pulses (12) have alternating polarizations (P1, P2) has a polarization insensitive optical switch (16; 161, 162, 163, 164) for isolating optical pulses (10?) within the pulse train (10), and a polarization selective element (17) for separating from the isolated pulses (10?) at least one component that has a single polarization. This allows to considerable relax the constraints posed on the switch since components in the isolated pulses that result from interchannel interference can, at least to a large extent, be eliminated by the subsequent polarization selective element (17).
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: January 27, 2009
    Assignee: Alcatel
    Inventors: Michael Schmidt, Eugen Lach
  • Patent number: 7474853
    Abstract: A non-blocking optical matrix core switching method that includes maintaining a schedule for routing data through an optical matrix core and receiving and analyzing reports from peripheral devices. The method determines whether the schedule is adequate for the current data traffic patterns and if the schedule is not adequate a new schedule is implemented. The new schedule is then transferred to the peripheral devices for implementation and the new schedule is transferred to the optical matrix core scheduler. Implementation of the new schedule as the schedule on the peripheral devices and the optical matrix core scheduler is then performed.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: January 6, 2009
    Assignee: YT Networks Capital, LLC
    Inventors: Robert E. Best, Ramaswamy Chandrasekaran, John R. Rudin, III, Rose Q. Hu, Jeff L. Watson, Lakshman S. Tamil, Alessandro Fabbri
  • Publication number: 20080298806
    Abstract: An apparatus comprising a plurality of data framers, a time division multiplexer coupled to the data framers, and an optical transmitter coupled to the time division multiplexer. Also disclosed is an apparatus comprising an optical receiver, a time division demultiplexer coupled to the optical receiver, and a data framer coupled to the time division demultiplexer. Also disclosed is an apparatus comprising at least one component configured to implement a method comprising combining a first plurality of data frames corresponding to a first plurality of channels into a first plurality of combined data frames using time division multiplexing and transmitting the first combined data frames over a single optical channel.
    Type: Application
    Filed: March 19, 2008
    Publication date: December 4, 2008
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventor: Frank J. Effenberger
  • Patent number: 7454138
    Abstract: Span information (information about conditions of a path between a node of interest and another, adjacent node connected thereto) retained in respective nodes is cumulatively transmitted from a add-drop node, which is to become a starting-point node of a certain wavelength path, toward a add-drop node, which is to become an end-point node of the wavelength path. The end-point node autonomously determines a path satisfying predetermined transmission conditions as an optimal pathway of said wavelength path, on the basis of cumulative span information transmitted over the respective plural pathways from the starting-point node to the node of interest. As a result, a load imposed on line design to be performed by a client can be mitigated, and an optimization design for each path (wavelength) matching a mesh-type optical network can be performed.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: November 18, 2008
    Assignee: Fujitsu Limited
    Inventor: Yasuko Nozu
  • Patent number: 7450845
    Abstract: A wide-coverage high-capacity network that scales to multiples of petabits per second is disclosed. The network comprises numerous universal edge nodes interconnected by numerous disjoint optical core connectors of moderate sizes so that a route set for any edge-node-pair includes routes each of which has a bounded number of hops. A core connector can be a passive connector, such as an AWG (arrayed wave-guide grating) device, or an active connector such as an optical channel switch or an optical time-shared channel switch. The core capacity is shared. Thus, failure of a proportion of core connectors reduces network connectivity but does not result in a major service discontinuity. The network uses a source routing scheme where a set of candidate routes for each node pair is determined from the network topology and the candidate routes for a node pair are sorted according to their differential propagation delays. A method of measuring the differential propagation delay is also disclosed.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: November 11, 2008
    Assignee: Nortel Networks Limited
    Inventors: Maged E. Beshai, Bilel N. Jamoussi
  • Patent number: 7450850
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 11, 2008
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Publication number: 20080260385
    Abstract: A signal processing apparatus for use in an optical line termination or optical network unit in a gigabit passive optical network encapsulates Ethernet signals, time-division multiplexed signals, and asynchronous transfer mode signals in the same way in a novel type of frame. The same input and output circuits can accordingly be used to support all three types of communication. A low-cost chip set including at least the input and output circuits of the apparatus can be combined with conversion circuits as necessary to provide a flexible answer to the needs of specific gigabit passive optical network systems.
    Type: Application
    Filed: November 5, 2007
    Publication date: October 23, 2008
    Applicant: OKI ELECTRIC INDUSTRY CO., LTD.
    Inventor: Kohei Eguchi
  • Patent number: 7421203
    Abstract: A method for transmitting a packet in a wireless access network based on a wavelength identification code scheme. The method comprises the steps of connecting n number of RNCs (Radio Network Controllers) to one sub-ring where the “n” is a positive integer, and assigning a unique wavelength to each RNC; identifying a packet to be transmitted between the RNCs located within a same sub-ring using the assigned unique wavelength, and transmitting the packet through an SRC (Sub-Ring Controller); connecting m number of SRCs to one main-ring where the “m” is a positive integer, and assigning a unique wavelength to each SRC; and detaching a wavelength identification code from the packet to be transmitted between the RNCs located within different sub-rings, and transmitting the packet having the encapsulated wavelength identification code through an MRC (Main-Ring Controller).
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: September 2, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Jea Hoon Yu, Min Ho Kang
  • Publication number: 20080193131
    Abstract: A time division multiplexing (TDM) facility is presented for time division multiplexing at least two inter-system channel (ISC) data streams to create a TDM multiplexed data stream. The TDM multiplexed data stream can be forwarded across the network over a single wavelength of a wavelength division multiplexing (WDM) network. The TDM multiplex data stream may be wavelength division multiplexed with one or more other TDM multiplexed data stream. Different protocols are presented for maintaining disparity balance within the ISC data streams depending upon whether a given sequence in one of the data streams is an idle sequence, frame sequence or continuous sequence.
    Type: Application
    Filed: June 29, 2007
    Publication date: August 14, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, CISCO TECHNOLOGY, INC.
    Inventors: Casimer M. DeCUSATIS, Thomas A. GREGG, Jayakrishna M. MENON
  • Patent number: 7411947
    Abstract: An interface module comprises a serial signal transceiver to be connected to an external transmission path and an interface processing unit connected to the transceiver. The interface processing unit comprises a serializer/deserializer circuit, an encoder/decoder, a protocol processing unit having at least two kinds of selectable protocol processing functions, and a communicate mode switch circuit for changing reference clock to be supplied to the serializer/deserializer circuit in conjunction with switching of the protocol processing function from one to another.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: August 12, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Makio Mizuno, Akira Fujibayashi
  • Patent number: 7412169
    Abstract: A fiber to the home FTTH network for convergence of broadcasting and communication is disclosed. The network includes: an OLT for receiving and converting a first predetermined number of broadcast signals and an Ethernet signal into a plurality of converted optical signals, combining the converted optical signals into converged optical signals for subsequent transmission by an optical wavelength division multiplexing method; and an optical network unit (ONU) for classifying the optical signal transmitted from the OLT into the first predetermined number of broadcast signals and the Ethernet signal, switching a second predetermined number of broadcasting signals of the first predetermined number of broadcasting signals according to each SIU by channel selection information contained in upstream Ethernet information, and switching the Ethernet signal to be transmitted to the SIU according to each SIU so as to transmit the switched signal.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: August 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Hun Joo, Jun-Ho Koh, Chan-Yul Kim, Jae-Hun Cho
  • Publication number: 20080181610
    Abstract: An optical signal multiplexing device includes a delay-amount adjusting unit that converts wavelengths of optical signals to be multiplexed when the optical signals are obtained, and adjusts delay amounts of the optical signals by passing the wavelength-converted optical signals through waveguides that generate propagation delays corresponding to the wavelengths in the optical signals. The optical signal multiplexing device also includes a waveform-degradation compensation unit that compensates for degradation of a waveform of the optical signals while keeping a difference of propagation delay times between the optical signals delay amounts of which are adjusted by the delay-amount adjusting unit.
    Type: Application
    Filed: March 26, 2008
    Publication date: July 31, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Futoshi Izumi
  • Patent number: 7403712
    Abstract: Embodiments of present system encompass: a plurality of laser sources that produce a plurality of respectively different optical wavelengths; a matrix switch having a plurality of inputs operatively coupled to the plurality of laser sources, each of the plurality of inputs receiving a respective optical wavelength; and the matrix switch having an output that produces a series of interleaved pulses of the different optical wavelengths.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: July 22, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: David B. Hall, Paul L. Greene
  • Patent number: 7394985
    Abstract: A wavelength access server (WAS) architecture provides aggregation of traffic streams of diverse data communication protocols as well as provision of wavelength resources in an optical transport network. The WAS provides functions such as service traffic adaptation, traffic aggregation and segmentation, traffic classification, optical inter-working and system management. In particular, system management includes aspects such as signaling, connection management, resource co-ordination, protection prioritization and access policy management.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: July 1, 2008
    Assignee: Nortel Networks Limited
    Inventors: Guo-Qiang Q. Wang, Kent E. Felske
  • Patent number: 7386236
    Abstract: A passive optical network which employs multiple wavelengths to increase overall system bandwidth, with each wavelength being shared by multiple optical network units (ONUs) according to a time division multiple access (TDMA) protocol. The upstream TDMA traffic therefore includes multiple TDMA data streams at different wavelengths. An optical line terminal (OLT) preferably receives the multiple TDMA data streams and separates them to different detectors before ultimately combining all data into a single data stream using a multiplexer after performing clock and data recovery functions. In this manner, the upstream bandwidth in a passive optical network can be markedly increased without requiring an increase in data transmit speeds, and while using low cost/low speed detectors in the OLT, and low cost/low speed transceivers in the ONUs. System bandwidth can be further improved by using higher cost, higher speed components.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: June 10, 2008
    Assignee: Alloptic, Inc.
    Inventors: Jer-Chen Kuo, Gerald A. Pesavento
  • Patent number: 7376349
    Abstract: Systems and methods are disclosed herein to provide analog-to-digital converter techniques. For example, in accordance with an embodiment of the present invention, an analog-to-digital converter architecture is disclosed that utilizes optical techniques to convert an analog electrical signal to a digital electrical signal.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: May 20, 2008
    Assignee: The Boeing Company
    Inventors: Stanislav I. Ionov, Thomas W. Ball, Peter Chu, William S. Hoult, Jr.
  • Patent number: 7373084
    Abstract: A termination device for use in a WDM-SCM PON system can effectively support a multi-channel integration function of a WDM/SCM PON system.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: May 13, 2008
    Assignee: Electronics and Telecommunications Reasearch Institute
    Inventors: Hyun Ho Yun, Tae Yeon Kim, Jeong Ju Yoo, Byoung Whi Kim
  • Patent number: 7369769
    Abstract: An Ethernet passive optical network (EPON) ring for providing protection against fiber failures. The optical network unit (ONU) is coupled to the ring fiber by a three-port passive optical splitting module that has three two-way optical passages. By the three two-way optical passages, the OUN receives/transmits data from/to the two ends of the optical line termination (OLT) to provide protection while the fiber failure. Moreover, it provides better authorization of users and simpler collision detection by the two-way transmission of the three-port passive optical splitting module to prevent hackers from invading and to reduce collisions.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: May 6, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Tzu-Jian Yang, Kuan-Ming Lin, Yen-Pin Tseng, Ja-Nan Wang, Jeffrey Liu
  • Patent number: 7369771
    Abstract: An optical network terminator of the present invention includes an optical wavelength division multiplexer for receiving an optical signal and incoherent light. An optical detection unit converts a downstream high speed and low speed optical signals into electrical signals. A laser diode converts an upstream signal into an optical signal. A high speed driving unit is supplied with power from a power supply unit to drive a forward-biased laser diode and establish a data and video channel. A high speed reception unit is supplied with the power to receive a downstream data and video channel. A charging unit outputs charged power at the time of a power failure. A low speed driving unit is supplied with the charged power to reverse-bias the laser diode to establish a voice channel. A low speed reception unit is supplied with the charged power to receive a voice channel.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: May 6, 2008
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang Hee Lee, Kwang Pyo Hong, Jin Serk Baik, Sung Man Kim, Sang Mook Lee, Sil Gu Mun
  • Patent number: 7349630
    Abstract: A method and apparatus for configuring a server/client network architecture. A server network device impresses an optical signal onto an optical link at a specified wavelength, where distinct wavelengths are associated with one or more of a plurality of client devices. Thus, the server addresses a specified client device, thereby polling the specified device for a response. An optical demultiplexer/combiner directs the server optical signal to the specified recipient client device on the basis of the wavelength of the server optical signal, and combines all responses on the client devices for transmission back to the server. Any transmission by the specified client device in response to polling by the server is thus received by the server.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: March 25, 2008
    Assignee: Nortel Networks Limited
    Inventor: William Melaragni
  • Publication number: 20080063399
    Abstract: Example methods and apparatus to implement communication networks using electrically conductive and optical communication media are disclosed. An example method involves receiving first communication information via a conductive communication medium and second communication information via a first optical fiber communication medium. The first communication information and the second communication information are multiplexed to form a multiplexed communication signal. The multiplexed communication signal is communicated via a second optical fiber communication medium to a subscriber distribution device.
    Type: Application
    Filed: September 13, 2006
    Publication date: March 13, 2008
    Inventors: Arvind R. Mallya, Kapil Shrikhande