Dispersion Compensation Patents (Class 398/81)
  • Patent number: 8111993
    Abstract: A system (100) for transmitting digital information includes a transmitting apparatus (102) for generating an optical signal bearing digital information, a dispersive optical channel (104), and a receiving apparatus (110) for receiving the optical signal. The dispersive optical channel (104) is disposed to convey the optical signal from the transmitting apparatus (102) to the receiving apparatus (110). The transmitting apparatus includes an encoder (114) for encoding digital information into a series of blocks, each including a plurality of data symbols corresponding with one or more bits of digital information. A signal generator (118) generates a time-varying signal corresponding with each of said blocks.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: February 7, 2012
    Assignee: Ofidium Pty Ltd.
    Inventors: Arthur James Lowery, Jean Armstrong
  • Publication number: 20120027412
    Abstract: In various embodiments, electronic apparatus, systems, and methods include electronic compensation of nonlinearity in optical communication. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: October 1, 2010
    Publication date: February 2, 2012
    Inventors: M. Imran Hayee, Nisar Ahmed
  • Patent number: 8107167
    Abstract: A beam combining system suitable of pulsed fiber laser applications is able to produce non-spatial-dispersive beams using an highly efficient filter, such as a multilayer dielectric filter, in transmission and reflection configurations. The techniques therefore can overcome constraints on laser line-width and beam width and allow for more stable systems for high peak power pulsed laser energy, such as may be used in extreme ultraviolet lithography and other applications.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: January 31, 2012
    Assignee: The Regents of The University of Michigan
    Inventors: Almantas Galvanauskas, Kai-Chung Hou
  • Patent number: 8107817
    Abstract: A method for receiving an optical orthogonal frequency-division multiplexing (OFDM) signal and a receiver thereof are applicable to an optical OFDM system. The receiving method includes the following steps. An optical signal is converted into a digital signal. A symbol boundary of the digital signal is estimated. A guard interval of the digital signal is removed according to the symbol boundary, so as to generate an electrical signal. The electrical signal is converted into a plurality of frequency domain sub-carriers in a fast Fourier transform (FFT) manner. A timing offset is estimated with pilot carriers and frequency domain sub-carriers corresponding to the same symbol period. The estimated symbol boundary is compensated with the timing offset. Each frequency domain sub-carrier includes a plurality of pilot carrier signals. Through the receiving method, the timing offset arisen from chromatic dispersion of an optical fiber is effectively estimated and adopted for compensation.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: January 31, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Min Lin, Dar-Zu Hsu, Hung-Lin Chen
  • Patent number: 8107826
    Abstract: A method of communicating digital information over a dispersive optical channel includes encoding the digital information into a plurality of data blocks, each of which includes a number of bits of the information. A time-varying electrical signal is generated which corresponds with each of said data blocks. The time-varying electrical signal is applied to an optical transmitter (122) to generate an optical signal which includes an asymmetrically amplitude limited transmitted signal modulated onto an optical carrier. The optical signal is then transmitted over the dispersive optical channel (106). At a receiving apparatus (104) the optical signal is detected to produce an electrical signal which corresponds with the asymmetrically amplitude limited transmitted signal.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: January 31, 2012
    Assignee: Ofidium Pty Ltd.
    Inventors: Jean Armstrong, Arthur James Lowery
  • Patent number: 8103173
    Abstract: An optical homodyne communication system and method in which a side carrier is transmitted along with data bands in an optical data signal, and upon reception, the side carrier is boosted, shifted to the center of the data bands, and its polarization state is matched to the polarization state of the respective data bands to compensate for polarization mode dispersion during transmission. By shifting a boosted side carrier to the center of the data bands, and by simultaneously compensating for the effects of polarization mode dispersion, the provided system and method simulate the advantages of homodyne reception using a local oscillator. The deleterious effects of chromatic dispersion on the data signals within the data bands are also compensated for by applying a corrective function to the data signals which precisely counteracts the effects of chromatic dispersion.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: January 24, 2012
    Assignee: Teradvance Communications, LLC
    Inventors: Marcel F. C. Schemmann, Zoran Maricevic, Antonije R. Djordjevic, Darby Racey
  • Publication number: 20120002968
    Abstract: A system and a method for quantum key distribution between a transmitter and a receiver over wavelength division multiplexing (WDM) link are disclosed. The method includes providing one or more quantum channels and one or more conventional channels over the WDM link; assigning a different wavelength to each of the one or more quantum channels and each of the one or more conventional channels; transmitting single photon signals on each of the one or more quantum channels; and transmitting data on each of the one or more conventional channels. The data comprises either conventional data or trigger signals for synchronizing the transmission of the single photon signals on the quantum channels. All channels have wavelengths around 1550 nm. The WDM link can be a 3-channel WDM link comprising two quantum channels for transmitting single photon signals and one conventional channel for transmitting conventional data or triggering signals.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 5, 2012
    Applicant: The Chinese University of Hong Kong
    Inventors: Yuhui Luo, Kam Tai Chan
  • Publication number: 20110318010
    Abstract: Embodiments of the present invention disclose a dispersion slope compensation method and apparatus, which relates to the field of communication. The method includes: performing dispersion slope compensation on a main optical channel; and dividing the main optical channel into a preset number of sub-bands, and performing the dispersion slope compensation on each sub-band. The apparatus includes: a main optical channel compensation module, a band-division module and a compensation module. The method and apparatus have the following beneficial effects. The dispersion slope compensation is performed on the main optical channel, and then band division is performed on the main optical channel after the compensation, and the dispersion slope compensation is performed on each sub-band. The configuration of the method is simple, the number of the sub-bands is few, and the cost is dramatically reduced as compared with the dispersion slope compensation method in the prior art.
    Type: Application
    Filed: September 6, 2011
    Publication date: December 29, 2011
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Fei Bai, Yiquan Lu, Liyuan Shi, Hao Liu
  • Patent number: 8078053
    Abstract: Various example embodiments are disclosed. According to one example embodiment, a method may include transmitting a semiconductor laser-generated optical signal from a first end of a multi-mode fiber (MMF) optical link to a second end of the link. The optical signal may have a reference bandwidth at the first end of the link. The method may further include converting the optical signal to an electrical signal. The method may further include analyzing the electrical signal with an electronic dispersion compensator to determine an effective modal bandwidth (EMBW) of the received optical signal. The method may further include analyzing the electrical signal with an electronic dispersion compensator to determine an intersymbol interference (ISI) penalty of the optical link.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: December 13, 2011
    Assignee: Cisco Technology, Inc.
    Inventors: Marco Mazzini, Carlo Tosetti, Carlo Mariotti
  • Patent number: 8068736
    Abstract: The tunable dispersion compensator 10 of the present invention comprises: the Mach-Zehnder interferometers (MZIs) 21 to 25 cascaded on a planar lightwave circuit; and the tunable couplers 31 to 34 connected to between each corresponding pair of the MZIs respectively. The Y-branch waveguide 15 and 16 are used for connecting to between the MZIs 21, 25 as both end sides and the input/output optical waveguides 13, 14 respectively. The waveguide loop mirror 40 is connected to the final stage MZI 25 among the MZIs 21 to 25 which an incident light is propagated last therethrough. The half-wave plate 50 is inserted to the loop waveguide 41 of the waveguide loop mirror 40. And it becomes able to enhance (double) the amount of tunable dispersion because an input light signal is passed twice through the similar path by the waveguide loop mirror 40.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: November 29, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kawashima, Kazutaka Nara
  • Patent number: 8064767
    Abstract: The present invention provides a system and method of optical communications that utilize coherent detection technique and optical orthogonal frequency division multiplexing for phase encoded data transmission. In particular the invention addresses a device and method for digital polarization compensation of optical signals with up to 100 Gb/s transmission rate received via an optical link. The polarization compensation operates in two modes: acquisition mode and tracking mode. The polarization recovery is performed at the receiver side using the received digital signal conversion into frequency domain and separate reconstruction of the polarization state in each spectral component.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 22, 2011
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Alexander Genusov, Yehouda Meiman, Jacob Khurgin
  • Patent number: 8059965
    Abstract: Methods and systems for PMD compensation in an optical communication system are implemented by transmitting multiple optical signals through a common optical conduit to an optical compensator that adjustably rotates the polarization states of the multiple optical signals and transmits the rotated optical signals to an optical receiver. The receiver, upon sensing an excessive error condition, commands the optical compensator to change the polarization state of rotation, which changes the PMD profile of the received optical signals.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: November 15, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Michael Herbert Eiselt, Jonathan A. Nagel
  • Patent number: 8055135
    Abstract: A dispersion compensator (10) that compensates dispersion occurring in an optical pulse includes a spatial filter (100) from which a pulsed light having a single peak is emitted as an autocorrelation light when a light having a strong correlation with an optical pulse to be dispersion-compensated is introduced into the spatial filter, and from which a scattered light is emitted as a cross-correlation light when a light having a weak correlation with an optical pulse to be dispersion-compensated is introduced into the spatial filter, wherein the dispersion compensator compensates dispersion occurring in the optical pulse having the strong correlation with the optical pulse to be dispersion-compensated, with the autocorrelation light treated as a dispersion-compensated optical pulse.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: November 8, 2011
    Assignee: Osaka University
    Inventor: Tsuyoshi Konishi
  • Patent number: 8055140
    Abstract: According to particular embodiments, reducing cross-phase modulation includes sending instructions to a phase modulation array comprising channel pixel sets that modulate phases of channels. The channel pixel sets comprise a first channel pixel set that modulates a first phase of a first channel and a second channel pixel set that modulates a second phase of a second channel that uses a phase modulation format. The first channel pixel set is instructed to modulate the first phase at a first constant phase. The second channel pixel set is instructed to modulate the second phase at a second constant phase different from the first constant phase in order to create a group delay between the first channel and the second channel.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: November 8, 2011
    Assignee: Fujitsu Limited
    Inventors: Olga I. Vassilieva, Richard L. Colter, Daniel Bihon, Paparao Palacharla
  • Patent number: 8045856
    Abstract: The present disclosure provides polarization mode dispersion compensation (PMDC) and polarization de-multiplexing systems and methods for polarization multiplexed (PolMux) optical transmission systems. The PMDC detects an error signal before a polarization splitter in PolMux systems for controlling polarization controllers (PC) and/or DGDs in the PMDC for return-to-zero (RZ) differential m-phase shift keying (DmPSK) signals. For bit-aligned PolMux systems, the error signal could be the level of clock frequency at one, two, or more times of the baud rate at one polarization. For bit-interleaved PolMux systems, the error signal could be the level of clock frequency at two times of the baud rate at one polarization. The PMDC can operate in PolMux systems with any arbitrary time offset between the two polarizations. The polarization de-multiplexer utilizes error detection at both output arms of a polarization splitter to mitigate PDL impact on any PolMux type of signal.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 25, 2011
    Assignee: Ciena Corporation
    Inventors: Yunfeng Shen, Shan Zhong, Harshad Sardesai
  • Patent number: 8041157
    Abstract: The present invention is directed towards systems and methods for adjusting intensity, wavelength and higher and lower frequency components of an optical signal. Photonic apparatus receives a first and a second optical signal. A waveguide provides an anomalous group velocity dispersion the first optical signal or the second optical signal and adjusts intensity or wavelength of the first optical signal or the second optical signal, in response to the anomalous group velocity dispersion. In some embodiments photonic apparatus receives an optical signal comprising a lower frequency component received an amount of time prior to a higher frequency component of the optical signal. A waveguide provides an anomalous group velocity dispersion for the optical signal and adjusts the amount of time between the higher frequency component and the lower frequency component in response to the anomalous group velocity dispersion.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: October 18, 2011
    Assignee: Cornell University
    Inventors: Mark Foster, Alexander Gaeta, Michal Lipson, Jay Sharping, Amy Turner
  • Publication number: 20110236023
    Abstract: A signal light processing apparatus includes a first wavelength selection switch, a dispersion compensator, and a second wavelength selection switch. The first wavelength selection switch divides an input wavelength-multiplexed signal light into signal lights of each wavelength and outputs the signal lights from a first output port or a second output port in accordance with wavelengths of the divided signal lights. The dispersion compensator compensates dispersion compensation on the signal light output from the first output port by the first wavelength selection switch. The second wavelength selection switch combines the signal light on which dispersion compensation is compensated by the dispersion compensator and the signal light output from the second output port by the first wavelength selection switch.
    Type: Application
    Filed: February 16, 2011
    Publication date: September 29, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Norifumi Shukunami, Tatsuya Tsuzuki, Kentaro Nakamura
  • Patent number: 8014668
    Abstract: A method and apparatus for distributed measurement of chromatic dispersion in an optical network is disclosed. The network comprises optical switching nodes interconnected by optical links. An optical link may comprise multiple spans, each span ending in a transport module which comprises signal-processing components. At least one optical switching node has a probing signal generator transmitting an optical probing signal along a selected path in the network. Probing-signal detectors placed at selected transport modules determine chromatic-dispersion values and send results to a processing unit which determines appropriate placement of compensators or appropriate adjustments of compensators placed along the path. A preferred probing signal has the form of wavelength modulated optical carrier which is further intensity modulated by a periodic, preferably sinusoidal, probing tone.
    Type: Grant
    Filed: January 20, 2008
    Date of Patent: September 6, 2011
    Assignee: Alcatel Lucent
    Inventors: Ping Wai Wan, Derrick Remedios, Patrick Chilufya Chimfwembe, Colin Geoffrey Kelly, James Benson Bacque
  • Publication number: 20110211840
    Abstract: An apparatus for transmitting signals in a telecommunications network includes a light source that generates an optical signal for encoding information transmitted from the apparatus over a light path of the telecommunications network, a modulator configured for controlling the optical signal to generate chirped optical pulses of the optical signal, the chirped optical pulses having a first frequency spectrum controlled by the modulator, such that when the pulses are transmitted from the apparatus and received at an end of the first light path the pulses have a chromatic dispersion penalty that is less than a predetermined penalty.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: Cisco Technology, Inc.
    Inventors: Maurizio Gazzola, Giacomo Losio, Alessandro Squazzotti, Andrea Castoldi
  • Patent number: 8005360
    Abstract: A feedback signal indicative of the average RF power of an APol-DPSK optical signal is used by a PMD compensator to adjust the amount of compensation applied to the optical signal.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: August 23, 2011
    Assignee: Alcatel Lucent
    Inventor: Chongjin Xie
  • Patent number: 8005368
    Abstract: A signal equalizer for compensating impairments of an optical signal received through a link of a high speed optical communications network. At least one set of compensation vectors are computed for compensating at least two distinct types of impairments. A frequency domain processor is coupled to receive respective raw multi-bit in-phase (I) and quadrature (Q) sample streams of each received polarization of the optical signal. The frequency domain processor operates to digitally process the multi-bit sample streams, using the compensation vectors, to generate multi-bit estimates of symbols modulated onto each transmitted polarization of the optical signal. The frequency domain processor exhibits respective different responses to each one of the at least two distinct types of impairments.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: August 23, 2011
    Assignee: Ciena Corporation
    Inventors: Kim Roberts, Han Sun
  • Patent number: 7995888
    Abstract: A multimode optical fiber has an equivalent modal dispersion value (DMDinner&outer) of less than 0.11 ps/m for (??max×D)>0.07 ps/m as measured on a modified DMD graph. The modified DMD graph accounts for chromatic dispersion to ensure that the multimode optical fiber has a calculated effective bandwidth EBc greater than 6000 MHz-km when used with multimode transverse sources.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: August 9, 2011
    Assignee: Draka Comteq, B.V.
    Inventors: Asghar Gholami, Denis Molin, Pierre Sillard, Yves Lumineau
  • Publication number: 20110188861
    Abstract: A system for transmitting a plurality of data channels and an optical service channel through an optical fiber link of a Wavelength Division Multiplexed (WDM) optical communications system. The system comprises a first transmitter at a first end of the optical fiber link, for transmitting the data channels as a wavelength division multiplexed optical signal through the optical fiber link in a first direction. A second transmitter is connected at a second end of the optical fiber link, for transmitting the optical service channel through the optical fiber link in a second direction opposite to the first direction.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: NORTEL NETWORKS LIMITED
    Inventors: Maurice O'SULLIVAN, Jamie GAUDETTE, Roger CARROLL
  • Patent number: 7991295
    Abstract: A method is provided for dispersion compensation of an optical signal communicated in an optical network comprising a plurality of spans of low chromatic dispersion fiber. The method includes receiving an optical signal comprising a plurality of channels, where the information communicated in a first set of one or more of the channels is modulated using a first modulation technique and where the information communicated in a second set of one or more of the channels is modulated using a second modulation technique. The method also includes uniformly undercompensating for optical dispersion in the optical signal across all of the channels of the optical signal such that the accumulated dispersion in the optical signal increases with each span over which the optical signal is communicated. In particular embodiments, all of the channels of the optical signal are uniformly undercompensated in the range of approximately 60% to approximately 85% dispersion compensation for each span.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 2, 2011
    Assignee: Fujitsu Limited
    Inventors: Olga I. Vassilieva, Susumi Kinoshita
  • Patent number: 7983564
    Abstract: A wavelength division multiplexing system according to the present art adjusts the amount of dispersion compensation (the amount of dispersion compensation of an NZ-DSF and a DCF) every all spans on the basis of the time slot when an intensity modulation signal transmitter outputs an intensity modulation signal and the wavelength interval when a wavelength coupler multiplexes a phase modulation signal (output from a phase modulation signal transmitter) and the intensity modulation signal.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: July 19, 2011
    Assignee: Fujitsu Limited
    Inventors: Hiroki Ooi, Akira Miura, Takeshi Hoshida, Kentaro Nakamura, Yasushi Sugaya, Ryosuke Goto
  • Publication number: 20110164879
    Abstract: In a method and system to fabricate a compact optical device, a periodic group-delay device (PGDD) includes N optical input ports, N being a positive integer number, each port being configured to include one or more wavelength-division- multiplexing (WDM) channels; N corresponding optical output ports, each port being configured to include one or more WDM channels. The PGDD also includes a first slab waveguide region (FSWR) coupled to the N optical input ports, a second slab waveguide region (SSWR) coupled to the said N optical output ports, a first optical grating coupled to the FSWR, a second optical grating coupled to the SSWR, and; a third slab waveguide region (TSWR) coupled to at least one of the first and second optical gratings. The TSWR is configured to provide a configurable amount of dispersion to the N optical output ports. Optical signals carried by each WDM channel are processed concurrently and independently.
    Type: Application
    Filed: January 5, 2010
    Publication date: July 7, 2011
    Applicant: Board of Regents, The University of Texas System
    Inventors: Michael Vasilyev, Nikolai M. Stelmakh
  • Patent number: 7970248
    Abstract: Included among the many structures described herein are photonic bandgap fibers designed to provide a desired dispersion spectrum. Additionally, designs for achieving wide transmission bands and lower transmission loss are also discussed. For example, in some fiber designs, smaller dimensions of high index material in the cladding and large core size provide small flat dispersion over a wide spectral range. In other examples, the thickness of the high index ring-shaped region closest to the core has sufficiently large dimensions to provide negative dispersion or zero dispersion at a desired wavelength. Additionally, low index cladding features distributed along concentric rings or circles may be used for achieving wide bandgaps.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: June 28, 2011
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Xiang Peng
  • Patent number: 7957619
    Abstract: An all-fiber optical pulse compression arrangement comprises a concatenated arrangement of a section of input fiber (e.g., a single mode fiber), a graded-index (GRIN) fiber lens and a section of pulse-compressing fiber (e.g., LMA fiber). The GRIN fiber lens is used to provide mode matching between the input fiber (supporting the propagation of chirped optical pulses) and the pulse-compressing fiber, with efficient pulse compression occurring along the length of the LMA fiber. The dispersion and length of the LMA fiber section are selected to provide the desired degree of pulse compression; for example, capable of reconstituting a femtosecond pulse as is used in supercontinuum generation systems.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 7, 2011
    Assignee: OFS Fitel, LLC
    Inventors: Jeffrey W. Nicholson, Andrew D. Yablon
  • Patent number: 7953309
    Abstract: An optical fiber, which has a zero-material dispersion wavelength equal to or greater than 2 ?m, and a high nonlinear susceptibility ?3 equal to or greater than 1×10?12 esu, and uses tellurite glass having sufficient thermal stability for processing into a low loss fiber, employs a PCF structure or HF structure having strong confinement into a core region. This enables light to propagate at a low loss. The size and geometry of air holes formed in the core region, and the spacing between adjacent air holes make it possible to control the zero dispersion wavelength within an optical telecommunication window (1.2-1.7 ?m), and to achieve large nonlinearity with a nonlinear coefficient ? equal to or greater than 500 W?1 km?1.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: May 31, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Atsushi Mori, Masao Kato, Kouji Enbutsu, Shinichi Aozasa, Kiyoshi Oikawa, Takashi Kurihara, Kazuo Fujiura, Makoto Shimizu, Kouji Shikano
  • Patent number: 7949257
    Abstract: One embodiment sets forth a technique for measuring chromatic dispersion using reference signals within the operational range of amplifiers used to refresh data signals. One red/blue laser pair in the transmission node is used for measuring dispersion and chromatic dispersion compensation is added at each line node in the system. Since reference and data signals propagate through each amplifier, the reference signals used to measure chromatic dispersion receive the same dispersion compensation (and will have the same residual dispersion) as the data signals. Therefore, any residual dispersion in the data signals will manifest itself in downstream dispersion measurements and, thus, can be corrected. The tunable dispersion compensator in each line node may be set to compensate for the measured dispersion, thereby compensating for both the chromatic dispersion of the link connecting the current node to the prior node and any uncorrected residual dispersion from prior nodes.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: May 24, 2011
    Assignee: Oclaro (North America), Inc.
    Inventors: Christopher Lin, Mark Summa, Martin Williams, Douglas Butler, Peter Wigley
  • Publication number: 20110116800
    Abstract: An optical communications link is described, comprising first and second fiber lines in substantial scaled translational symmetry by a common scaling factor with respect to a second-order dispersion coefficient profile (oppositely signed) and with respect to at least one of a loss/gain coefficient profile and a nonlinear coefficient-power product profile for facilitating progressive compensation along the second fiber line of at least one nonlinearity introduced along the first fiber line.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 19, 2011
    Applicant: OLAMBDA, INC.
    Inventor: Haiqing Wei
  • Patent number: 7944613
    Abstract: A light dispersion filter is composed of three or more optically transparent layers each having a value equal to the value of the product of the refractive index and thickness of the optically transparent layer and transmitted light, and a plurality of partially reflective layers arranged alternately with the optically transparent layers and having predetermined reflectivities. Alternatively, a light dispersion filter has a plurality of etalon resonators which are arranged in series such that the value of the product of the refractive index of air and the interval of the etalon resonators is equal to the value of the product of the refractive index and thickness of the optically transparent layers.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: May 17, 2011
    Assignee: NEC Corporation
    Inventor: Kenji Sato
  • Patent number: 7936993
    Abstract: In order to compensate for chromatic dispersion ad dispersion slope over an entire wavelength band of the optical signal, the wavelength band is split into a plurality of bands, and chromatic dispersion compensation is made to make chromatic dispersion in a central wavelength of each of the bands zero.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: May 3, 2011
    Assignee: Fujitsu Limited
    Inventors: Hiroki Ooi, Takashi Iwabuchi, Takafumi Terahara, Junichi Kumasako, George Ishikawa, Tomoo Takahara
  • Publication number: 20110097087
    Abstract: An optical assembly in an optical link coupling two optical terminals. The optical assembly receives and demultiplexes two groups of optical wavelength channels which are each treated separately as far as dispersion compensation and discrete amplification are concerned. The optical assembly then multiplexes the two groups back into the same fiber for further transmission. For instance, one group of optical wavelength channels may each be coherent channels, and subject to no dispersion in the optical assembly, while the other group may contain non-coherent channels, which are subject to dispersion compensation in the optical assembly.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 28, 2011
    Applicant: XTERA COMMUNICATIONS, INC.
    Inventors: DO-IL Chang, Wayne S. Pelouch
  • Publication number: 20110097088
    Abstract: The mixing of coherent optical wavelength channels with non-coherent optical wavelength channels. Before mixing, a dispersive element introduces dispersion into the coherent optical wavelength channels and/or into the non-coherent optical wavelength channels such that the dispersion map of the coherent optical wavelength channels is different than the dispersion map of the non-coherent optical wavelength channels. By allowing the coherent channels to have a different dispersion map, the dispersion map may be moved further from the zero dispersion point, which can degrade coherent detection. Accordingly, coherent optical channels and non-coherent optical channels may be transmitted effectively over the same optical link.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 28, 2011
    Applicant: XTERA COMMUNICATIONS, INC.
    Inventors: Wayne S. Pelouch, DO-IL CHANG
  • Patent number: 7933522
    Abstract: Influence of polarization mode dispersion, occurring in an optical fiber is mitigated by means of polarization scrambling, differential group delay which a received optical signal has is optically suppressed; the optical signal in which differential group delay is thus suppressed is converted into an electric signal; and error correcting processing is carried out on the electric signal obtained, a jitter amplitude in the received optical signal is suppressed, influence of which to a jitter tolerance increases due to increase in speed of the polarization scrambling.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: April 26, 2011
    Assignee: Fujitsu Limited
    Inventors: Jens Rasmussen, Akihiko Isomura
  • Patent number: 7920793
    Abstract: An inline repeater that uses a forward-pumped DRA that can use a pumping light source such as an FBG pumping light source and a fiber laser, which are the most commonly used, and an optical fiber communication system are realized.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: April 5, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hiroji Masuda, Kenji Sato, Yutaka Miyamoto
  • Patent number: 7917031
    Abstract: A device and method for stabilizing the polarization of polarization multiplexed optical radiation includes an identified channel which is provided with a pilot signal.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: March 29, 2011
    Assignee: PGT Photonics S.p.A.
    Inventors: Pierpaolo Boffi, Lucia Marazzi, Paolo Martelli, Mario Martinelli, Aldo Righetti, Rocco Siano
  • Publication number: 20110052198
    Abstract: An optical transmission device includes: a variable dispersion compensator to give chromatic dispersion and output an input light, a branching unit to branch the light output from the variable dispersion compensator to a first part and a second part, a reproduction unit to reproduce an electric signal from the first part of the input light, a monitor unit to perform reproducing processing on the electric signal from the second part of the input light, control the variable dispersion compensator based on a result of the reproducing processing, and has a sensitivity to a variation of the chromatic dispersion which is higher than the sensitivity to the variation of the chromatic dispersion of the reproduction unit.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 3, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Toshihiro OHTANI
  • Patent number: 7894697
    Abstract: The present invention relates to an optical fiber which has a structure for further increasing an FOM (=|dispersion|/loss) and which can be applied to a dispersion compensation module. The optical fiber is mainly composed of silica glass and has a core region including a center of an optical axis, a depressed region surrounding the core region, a ring region surrounding the depressed region, and a cladding region surrounding the ring region and doped with F. As compared with the refractive index of pure silica glass, a relative refractive index difference of the core region is greater than 2% but less than 3%, a relative refractive index difference of the depressed region is ?1% or more but ?0.5% or less, a relative refractive index difference of the ring region is 0.01% or more but 0.24% or less, and a relative refractive index difference of the cladding region is ?0.3% or more but ?0.1% or less. The FOM at the wavelength of 1550 nm is 250 ps/nm/dB or more.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: February 22, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Sasaki, Kazumasa Makihara, Tetsuya Haruna, Masashi Onishi, Masaaki Hirano
  • Patent number: 7885541
    Abstract: According to one aspect of the invention, an optical network including multiple optical network devices, or nodes, is provided. At each node, an optical performance monitor analyzes dispersion while a dispersion compensation module reduces the amount of dispersion in the signals. Information about the dispersion and the amount of compensation performed by the dispersion compensation module is generated by the optical performance monitor and stored in a memory. If the bit error rate of a particular path between nodes becomes too high, a new path is used. A monitoring computer then accesses the information about the dispersion stored in at least one node of the old path. The information allows a user to determine where along the path the greatest amount of dispersion is occurring.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: February 8, 2011
    Assignee: Dynamic Method Enterprises Limited
    Inventor: Christopher M. Look
  • Patent number: 7885545
    Abstract: A dispersion compensation method comprising the steps of: a) providing a compensation node for each predetermined number of in-line repeaters; b) carrying out dispersion compensation for the in-line repeaters with the different bit rates in common; c) carrying out wavelength demultiplexing on the optical signal for each of the different bit rates in the compensation node; and d) setting an optimum dispersion compensation amount for the optical signal of each bit rate.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: February 8, 2011
    Assignee: Fujitsu Limited
    Inventors: Hiroki Ooi, Akira Miura, Kentaro Nakamura, George Ishikawa
  • Publication number: 20110026927
    Abstract: A transmission apparatus is provided. The transmission apparatus in a transmission system that performs dispersion compensation on a transmission line includes a receiver, an information collection unit and a chromatic dispersion providing unit. The receiver receives a wavelength division multiplexing optical signal for each wavelength from the transmission line. The information collection unit collects information regarding a reception method applied to each wavelength of the optical signal received by the receiver, as reception method information. The chromatic dispersion providing unit provides respective chromatic dispersion amounts different from each other to an optical signal received using a digital coherent reception method and an optical signal received using a reception method other than the digital coherent reception method, based on the information regarding a reception method collected by the information collection unit.
    Type: Application
    Filed: July 20, 2010
    Publication date: February 3, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Toshiki Tanaka, Takeshi Hoshida
  • Patent number: 7876852
    Abstract: According to the invention, a very narrow-band transfer signal (LS) is generated by serially connecting a frequency modulator (2) and an amplitude modulator (4). The frequency modulator (2) is operated at a modulation index which at least largely suppresses the carrier signal (TS) while the amplitude modulator (4) suppresses the broadband portion of the spectrum by fading out the transfer signal (LS) during frequency-shift keying.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: January 25, 2011
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventor: Robert Schimpe
  • Patent number: 7869716
    Abstract: Described is a method and system for reducing system penalty from polarization mode dispersion. The method includes receiving a plurality of signals at a receiving end of a transmission line, each signal being received on one of a plurality of channels of the transmission line and measuring a signal degradation of at least one of the channels of the transmission line. An amount of adjustment of a polarization controller is determined based on the signal degradation, the amount of adjustment being selected to reduce the polarization mode dispersion. The amount of adjustment is then transmitted to the polarization controller.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: January 11, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Mikhail Boroditsky, Mikhail Brodsky, Nicholas J. Frigo, Peter Magill
  • Patent number: 7865082
    Abstract: The optical transmitter and receiver of the invention includes: a variable dispersion compensator that performs wavelength dispersion compensation on an optical signal of a differential M-phase modulation format input from a transmission path; an optical amplifier that compensates an optical loss in the variable dispersion compensator; a delay interferometer that delays and interference processes the optical signal output from the optical amplifier; and a photoelectric conversion circuit that photoelectric converts the output light from the delay interferometer to generate a demodulated electric signal. The output level of the optical amplifier is decreased at the time of start up to deteriorate the OSNR of the optical signal input to the photoelectric conversion circuit, to thereby realize a state in which an error occurs more easily, and then optimization control of the variable dispersion compensator and the delay interferometer is started.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: January 4, 2011
    Assignee: Fujitsu Limited
    Inventors: Toshiki Honda, Takeshi Ono
  • Publication number: 20100329683
    Abstract: Digital compensation of chromatic dispersion (CD) effect experienced by optical orthogonal frequency-division multiplexed (OFDM) signal in fiber transmission is provided in the frequency domain using a Fast Fourier Transform/Inverse Fast Fourier Transform (FFT/IFFT) pair with equal length of digital samples prior to OFDM receiver signal processing, wherein the equal length is larger than the length of a FFT used for OFDM subcarrier demultiplexing of the received signal. The OFDM signal processing is independent of fiber CD, so small guard-interval (GI) can still be used to achieve high spectral efficiency even under the experience of large CD. The GI need only to be large enough to accommodate other effects such as polarization-mode dispersion.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventor: Xiang Liu
  • Patent number: 7860406
    Abstract: A self-polarization diversity technique to combat PMD in a direct-detection optical OFDM system. This technique does not require any dynamic polarization control, and can simultaneous compensate PMD in a WDM system with one device. Simulation results show that this technique virtually completely eliminates the PMD impairments in direct-detection optical OFDM systems.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: December 28, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Chongjin Xie
  • Publication number: 20100303459
    Abstract: A dispersion compensating apparatus includes a tunable dispersion compensator that dispersion-compensates an optical signal using a group delay property that is asymmetrical in bands outside an effective band; a set device that sets a dispersion compensation amount in the tunable dispersion compensator; and a shifter that shifts a central frequency of the effective band of the tunable dispersion compensator, based on the dispersion compensation amount set by the set device.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Masahiro YUKI, Tsukasa TAKAHASHI, Miki ONAKA, Norifumi SHUKUNAMI, Tatsuya TSUZUKI, Toshihiro OHTANI, Ryosuke GOTO
  • Patent number: 7840103
    Abstract: A wavelength division multiplexing system has a wavelength division multiplexer and a wavelength division demultiplexer. The wavelength division demultiplexer is in series with the wavelength division multiplexer to process at least one optical signal to generate at least one processed optical signal. The wavelength division multiplexer and the wavelength division demultiplexer cooperate to introduce substantially zero total chromatic dispersion in the processed optical signal. In one version, the wavelength division multiplexer and the wavelength division demultiplexer introduce opposing functions of chromatic dispersion into the at least one processed optical signal.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: November 23, 2010
    Assignee: Infinera Corporation
    Inventors: Wei Chen, Jeff Rahn, Stephen G. Grubb