Add Or Drop Patents (Class 398/83)
  • Patent number: 10412694
    Abstract: A technique for providing a synchronized clock signal across a wireless mesh network is described. The technique includes choosing one of a plurality received radio frequency signals to provide a synchronization signal to which a local clock signal can be synchronized.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: September 10, 2019
    Assignee: BLUWIRELESS TECHNOLOGY LIMITED
    Inventor: Ray McConnell
  • Patent number: 10389470
    Abstract: Example embodiments of the present invention relate to programmable ROADMs used to construct optical nodes. Example embodiments include wavelength switches and waveguide switches, wherein the waveguide switches may be programmed to direct wavelength division multiplexed optical signals to and from the wavelength switches.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: August 20, 2019
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 10374740
    Abstract: Provided is a wavelength path communication node device with no collision of wave lengths and routes, capable of outputting arbitrary wavelengths, and capable of outputting them to arbitrary routes. An add/drop multiplexer (11) includes a communication unit (101) that communicates an optical signal with at least one client device and at least one network and a control unit (102) that indicates a transfer destination of the optical signal according to an attribute of the received optical signal to the communication unit (101). The control unit (102) indicates an attenuation amount of the optical signal to the communication unit (101) for each connected device. When a connected device is changed, the control unit (102) instructs the communication unit (101) to change the attenuation amount. The communication unit (101) attenuates the optical signal with the attenuation amount indicated by the control unit (102) and transfers the attenuated optical signal to a transfer destination.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: August 6, 2019
    Assignee: NEC Corporation
    Inventor: Yurie Matsuyama
  • Patent number: 10348437
    Abstract: A method and system is provided for cassette based wavelength division multiplexing and may include an optical system with an aggregating cassette. The optical system may include optical transceivers, with each generating optical signals at a different wavelength. The aggregating cassette may include one or more multiplexers coupled to each of the optical transceivers via optical fibers. The optical transceivers may generate modulated optical signals at one of the different wavelengths. The optical fibers may communicate one of the modulated optical signals from each of the optical transceivers to the one or more multiplexers. The modulated optical signals may be multiplexed to one or more output optical fibers. The multiplexed signals may be communicated to one or more receiving demultiplexers using the one or more output optical fibers. The one or more demultiplexers may demultiplex said multiplexed signals into separate wavelength signals.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: July 9, 2019
    Assignee: Luxtera, Inc.
    Inventor: Brian Welch
  • Patent number: 10277419
    Abstract: Provided is a hybrid network end system device for a network system with an end system unit and a switch. The switch here exhibits at least one first port of the switch and a second port of the switch for connection with the network system.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: April 30, 2019
    Assignee: AIRBUS DEFENCE & SPACE GMBH
    Inventor: Ferdinand Huber
  • Patent number: 10270554
    Abstract: A device and method for optical power measurement in an optical network supporting upstream and downstream signal propagation along an optical transmission path. The device includes an upstream wavelength analyzer receiving upstream light extracted from the optical transmission path and configured to determine an upstream spectral characteristic of the extracted upstream light. The device also includes a downstream filter assembly receiving downstream light extracted from the optical transmission path and configured to spectrally split the extracted downstream light into a plurality of downstream signals, one of which corresponding to a downstream signal of interest.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 23, 2019
    Assignee: EXFO INC.
    Inventors: Bernard Ruchet, Mario L'Heureux, Daniel Gariepy, Etienne Morin-Drouin
  • Patent number: 10243666
    Abstract: A communication apparatus comprises a regular optical transceiver that generates regular subcarrier signals serving as subcarrier signals, a narrowband optical transceiver capable of generating narrowband subcarrier signals serving as subcarrier signals each having a narrower frequency band than the regular subcarrier signal, and a subcarrier configuration determiner that determines the configuration of a plurality of subcarrier signals in a super-channel signal, based on information on the number of optical filter stages to pass through. The regular optical transceiver shifts the positions of the regular subcarrier signals in the super-channel signal, according to optical frequency shift amounts indicating shift amounts of the plurality of subcarrier signals represented by the configuration determined by the subcarrier configuration determiner.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: March 26, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Takahiro Kodama, Kenji Ishii, Tsuyoshi Yoshida
  • Patent number: 10203454
    Abstract: A dense wavelength-division multiplexing (DWDM) optical network includes an optical input port configured to receive unmodulated optical signals from the optical fiber comprising wavelength channels; one or more modulators coupled to the optical input port wherein the one or more modulators are each configured to modulate a respective first wavelength channel of the wavelength channels with respective data to produce a modulated first wavelength channel when the modulator is in a transmit state; wherein an input optical power of each modulator is kept at substantially a first level and an output optical power of the each modulator is kept at substantially a second level during operation of the modulator. A method and an optical network node are also disclosed therein.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: February 12, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Tiangong Liu, Xiao Andy Shen, Qianfan Xu, Feng Zhang
  • Patent number: 10128971
    Abstract: Example embodiments of the present invention relate to a multi wavelength-routing-plane optical architecture. Example embodiments include a Reconfigurable Optical Add Drop Multiplexer (ROADM) supporting a multi wavelength-routing-plane optical architecture, and optical networks supporting a multi wavelength-routing-plane optical architecture.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 13, 2018
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 10103834
    Abstract: Embodiments of the disclosure relate to wireless distribution systems (WDSs) employing an optical star communications architecture based on quad small form-factor pluggable (QSFP) coarse wavelength division multiplexing (CWDM) transceivers. In one aspect, a selected QSFP CWDM transceiver among one or more QSFP CWDM transceivers wavelength multiplexes a plurality of downlink optical communications signals to generate a WDM downlink communications signal and provides WDM downlink communications signal to a selected remote unit branch among one or more remote unit branches in the WDS. In another aspect, the selected QSFP CWDM transceiver wavelength de-multiplexes a WDM uplink communications signal received from the selected remote unit branch into a plurality of uplink optical communications signals.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 16, 2018
    Assignee: Corning Optical Communications Wireless Ltd.
    Inventor: Pinhas Yehuda Rosenfelder
  • Patent number: 10050738
    Abstract: Methods and systems for implementing a low noise CDC ROADM include incorporating individual stages of an optical PSA before and after WSSs included in the CDC ROADM. The WSSs may be used to route the pump and idler signals, as well as to perform phase tuning for optimal phase-sensitive amplification.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: August 14, 2018
    Assignee: Fujitsu Limited
    Inventors: Youichi Akasaka, Takeshi Hoshida, Tadashi Ikeuchi
  • Patent number: 10003655
    Abstract: A device may receive a request to establish a connection between a first device and a second device. The request may include information identifying a network connectivity type. The device may determine one or more network devices to provision based on the network connectivity type; determine, based on the network connectivity type, provisioning parameters used to provision the one or more network devices; and provision the one or more network devices in accordance with the provisioning parameters to establish the connection between the first device and the second device.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 19, 2018
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Anurag Kumar Mishra, Brian E. Stephenson, Chris F. Sefcik, William F. Copeland, Stephen R. Morris, Syed Ammar Ahmad
  • Patent number: 9948423
    Abstract: A variation-tolerant receiver includes a plurality of receiver resonators configured to demultiplex a multiplexed modulated signal received from at least one wavelength division multiplexing (WDM) transmitter having a plurality of transmitter resonators and wherein operationally each of the receiver resonators has a receiver resonance linewidth not exceeding a minimum spacing between two adjacent transmitter resonances of the transmitter resonators, the receiver resonances collectively spanning a free spectral range of one of the receiver resonators such that the variation-tolerant receiver achieves gapless spectral response.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: April 17, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE
    Inventors: Alan Mickelson, Zheng Li, Moustafa Mohamed, Xi Chen
  • Patent number: 9948058
    Abstract: An optical amplifier assembly for determining a parameter of an optical fiber configured to amplify an optical signal being propagated therethrough, the assembly comprising: at least one amplifier pump light source assembly configured to transmit light at a plurality of wavelengths into the optical fiber; a receiver configured to receive light that has propagated through at least part of the optical fiber; and a processor configured to determine the parameter of the optical fiber based on the received light.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: April 17, 2018
    Assignee: II-VI INCORPORATED
    Inventors: Ian Peter McClean, Manish Sharma
  • Patent number: 9923660
    Abstract: An optical add-drop multiplexer and a branching unit are provided, where implementation of the optical add-drop multiplexer includes: an optical processing component, a first combining device, a second combining device, and a second scrambler, where the optical processing component includes an input end, a first output end, a second output end, and a third output end; the first output end of the optical processing component is connected to a first input end of the second combining device, and the second output end of the optical processing component is connected an input end of the second scrambler; an output end of the second scrambler is connected to a second input end of the second combining device; and the third output end of the optical processing component is connected to a first input end of the first combining device.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: March 20, 2018
    Assignee: Huawei Marine Networks Co., Ltd.
    Inventor: Wendou Zhang
  • Patent number: 9883263
    Abstract: A free-space MCS may include an input port to launch a beam of light, N output ports, a beam splitter to split the beam of light into N portions, and a deflector array including N deflectors aligned in an array direction. Each deflector may have an active region with a size in the array direction that matches a size in the array direction of a portion, of the N portions, incident thereon. The free-space MCS may include first beam shaping optics to form a first elliptical beam spot at the beam splitter with a major axis substantially perpendicular to the switching direction, and an angle-to-offset element to direct each of the N portions from the beam splitter to a different deflector of the N deflectors. Each of the N portions may have, at the deflector, a second elliptical beam spot with a major axis substantially parallel to the switching direction.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: January 30, 2018
    Assignee: Lumentum Operations LLC
    Inventor: Paul Colbourne
  • Patent number: 9780904
    Abstract: A method in an optical Wavelength Selective Switch, WSS, for multidirectional switching of optical signals. The optical WSS comprises a reflective element, a first tributary port and a second tributary port. The optical WSS switches (304) an optical signal between the first tributary port and the second tributary port with the reflective element.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: October 3, 2017
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Ahmad Rostami, Björn Skubic
  • Patent number: 9755733
    Abstract: An optical communication system includes: a first network-side device and a second network-side device each coupled to a communication network; and a first terminal-side device and a second terminal-side device configured to communicate with the first network-side device and the second network-side device by being coupled to the first network-side device and the second network-side device via a first communication cable and a second communication cable, respectively, wherein the first network-side device is coupled to the first terminal-side device via the communication network, the second network-side device, and a third communication cable for coupling the second network-side device and the first terminal-side device so as to communicate between the first network-side device and the first terminal-side device.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: September 5, 2017
    Assignee: FUJITSU LIMITED
    Inventor: Yasuhiko Aoki
  • Patent number: 9753220
    Abstract: System and method embodiments are provided for optical I/O arrays for wafer scale testing. A wafer includes a plurality of dies of PIC chips. Each die includes a plurality of first and second optical I/O elements each configured to couple to a testing probe array. A row of I/O elements includes alternating ones of the first and second optical I/O elements. Each die also includes a first waveguide and a second waveguide coupling a first one of the first and second optical I/O elements to a second one of the first and second optical I/O elements, respectively. The first and second optical I/O elements configured such that the testing probe array couples to at least some of the first optical I/O elements from a first side of the PIC chip and couples to at least some of the second optical I/O elements from a second side of the PIC chip.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: September 5, 2017
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Dritan Celo
  • Patent number: 9742520
    Abstract: Components of an optical communications network are described at a node of the network providing switching from one or more degrees of received optical signal routed to a plurality of receivers. The switch at the node generally includes a passive reconfigurable optical add drop multiplexer (ROADM) having drop or output ports that connector to optical channels leading to optical receivers without optical amplifiers between the ROADM outputs and the receivers. Configurations of the node and corresponding parameters are described that provide for use of lower cost components due to the absence of an array of optical amplifiers connected to the ROADM outputs.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: August 22, 2017
    Assignee: NeoPhotonics Corporation
    Inventors: Winston Way, Ilya Vorobeichik
  • Patent number: 9680566
    Abstract: A transmission apparatus includes: a storage unit to store a table in which a wavelength terminated by each of transmission apparatuses is associated with each of the transmission apparatuses; a transmission unit to transmit a message including failure information to other transmission apparatus when a failure occurs; a switch controller to determine whether its own transmission apparatus is a last transmission apparatus that terminates the wavelength among transmission apparatuses that are present on a path up to a link where the failure, based on the table, when receiving the message from other transmission apparatus, and to perform a control of switching a transmission direction of a signal having the wavelength when the switch controller determines that its own transmission apparatus is the last transmission apparatus to terminate the wavelength; and a switch to switch a transmission direction of the signal for each wavelength under a control of the switch controller.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: June 13, 2017
    Assignee: FUJITSU LIMITED
    Inventors: Yasuki Fujii, Takao Naito
  • Patent number: 9680596
    Abstract: Methods and systems are provided for optical signal transmission using span-wise spectrum management. The method includes transmitting a first optical signal at a first wavelength by a control system. The first optical signal has a first optical path distance. The method further includes determining a first guard band requirement for the first optical signal, and transmitting a second optical signal by the control system. The second optical signal has a second optical path distance. The method includes determining a second guard band requirement for the second optical signal, and placing the second optical signal spectrally adjacent to the first optical signal by selecting a second wavelength. The second wavelength is selected to satisfy the first and second guard band requirements.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: June 13, 2017
    Assignee: Fujitsu Limited
    Inventors: Martin Bouda, Paparao Palacharla, Motoyoshi Sekiya
  • Patent number: 9667374
    Abstract: Example embodiments of the present invention relate to An optical node comprising of at least two optical degrees; a plurality of directionless add/drop ports; and at least one wavelength equalizing array, wherein the at least one wavelength equalizing array is used to both select wavelengths for each degree, and to perform directionless steering for the add/drop ports.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: May 30, 2017
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 9654223
    Abstract: Methods and systems for superchannel power pre-emphasis based on transmission criteria may determine a guardband used when transmitting multiple superchannels over an optical transport network. The guardband values may depend on various transmission criteria, such as a reach distance for the superchannels and a number of reconfigurable add-drop multiplexer nodes over a given optical path. An amount of power pre-emphasis for each superchannel may then be determined based on the actual guardband values used. Certain values used for superchannel power pre-emphasis based on transmission criteria may be pre-calculated and stored in advance.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: May 16, 2017
    Assignee: Fujitsu Limited
    Inventors: Olga Vassilieva, Inwoong Kim, Motoyoshi Sekiya
  • Patent number: 9634787
    Abstract: Input light includes a multicarrier signal and first CW light of a first optical frequency. A transmitter generates a modulated optical signal based on an inverted signal of a dropped signal. A light source generates second CW light of a second optical frequency. A delay element adjusts a phase difference between the modulated optical signal and the second CW light. The multicarrier signal, the first CW light, the modulated optical signal and the second CW light are input to nonlinear optical medium. A detector detects beat frequency component between the modulated optical signal and the second CW light. A controller controls the delay element so as to increase the beat frequency component. A difference between the first optical frequency and an optical frequency of the dropped optical signal is substantially the same as a difference between the second optical frequency and an optical frequency of the modulated optical signal.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: April 25, 2017
    Assignee: FUJITSU LIMITED
    Inventors: Takahito Tanimura, Shigeki Watanabe, Tomoyuki Kato
  • Patent number: 9280740
    Abstract: According to one embodiment of the present disclosure, a system for translating a boosting algorithm includes an interface communicatively coupled to a processor. The interface is operable to receive a trained boosting model. The processor is operable to identify a plurality of split-node variables associated with the trained boosting model. Each of the plurality of split-node variables comprises a variable name, a cutoff point, and a weight. The processor may aggregate the split-node variables by variable name and cutoff point and then combine the weights of each of the plurality of split-node variables having the same variable name and cutoff point. The processor may then create a linear model based on the combined variables.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: March 8, 2016
    Assignee: Bank of America Corporation
    Inventors: Kasilingam Basker Laxmanan, Yudong Chen, Peng Song
  • Patent number: 9276695
    Abstract: Example embodiments of the present invention relate to An optical node comprising of at least two optical degrees; a plurality of directionless add/drop ports; and at least one wavelength equalizing array, wherein the at least one wavelength equalizing array is used to both select wavelengths for each degree, and to perform directionless steering for the add/drop ports.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: March 1, 2016
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 9171259
    Abstract: In one embodiment, a system for enhancing predictive modeling includes an interface operable to receive a first dataset. The system may also include a processor communicatively coupled to the interface that is operable to generate a holdout dataset based on the first dataset. The processor may also train each of a plurality of boosting models in parallel using the first dataset, wherein for each of a number of iterations, training comprises: building a one-level binary decision tree to train a split-node variable; calculating an impurity of the split-node variable; and calculating an optimal split node, wherein the optimal split node is the split-node variable with a lowest impurity between the plurality of boosting models. The system may then determine a final model based on one of the plurality of boosting models that provides the lowest error rate when applied to the holdout dataset.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: October 27, 2015
    Assignee: Bank of America Corporation
    Inventors: Kasilingam Basker Laxmanan, Yudong Chen, Peng Song
  • Patent number: 9166692
    Abstract: The present disclosure describes systems and methods for reconfiguring the links made by a plurality of optical circuit switches between the nodes of the first layer and the nodes of the second layer that reduces the throughput loss when the network transitions form a first logical topology to a second logical topology. More particularly, the first logical topology is realized by a specific physical topology, while the second logical topology may be realized by one or more physical topologies. The disclosure describes a method for selecting a second physical topology from the one or more physical topologies that will realize the second logical topology while reducing the number of links within each of the optical circuit switches that must be reconfigured (i.e, disconnected from their present ports and reconnected to new ports within the optical circuit switch) to transition from the first to second logical topology.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 20, 2015
    Assignee: Google Inc.
    Inventors: Robert Felderman, Abdul Kabbani
  • Patent number: 9130692
    Abstract: A method for routing C-band and L-band optical signals, and a system, apparatus, and computer program that operate in accordance with the method. The method comprises selecting one or more C-band optical signals using one or more C-band components, resulting in one or more selected C-band optical signals. One or more L-band optical signals are selected using one or more L-band components, resulting in one or more selected L-band optical signals. The selected C-band and L-band optical signals are combined.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: September 8, 2015
    Assignee: Coriant Operations, Inc.
    Inventors: David William Jenkins, Julia Y. Larikova, Richard C. Younce
  • Patent number: 9112636
    Abstract: An apparatus for an optical communications network comprising a demultiplexer, a plurality of add/drop optical switches for adding and dropping wavelength channels. The add/drop optical switches arranged in a matrix with a number of rows corresponding to a number of output ports of the demultiplexer and a number of columns corresponding to a number of transponders. Each drop optical switch has an express input port associated with an output port of the demultiplexer, a drop output port associated with an individual transponder, and an express output port. Each add optical switch has an express input port, an add input port associated with an individual transponder, and an express output port. The apparatus also comprises a multiplexer with a plurality of input ports associated with express output ports of the add/drop optical switches.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: August 18, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Francesco Testa, Mauro Rudi Casanova, Antonio D'Errico
  • Patent number: 9106983
    Abstract: Methods and systems for optical communication in a submarine network are provided. An input signal is received from a terminal at a reconfigurable branching unit (BU), and the input signal is split into at least two parts, with one part being associated with one or more trunk terminals and another part being associated with one or more branch terminals. Each of one or more spectrum channels are selected and individually switched to one of a plurality of paths using at least one wavelength selective switch (WSS), with the at least one WSS being configured to transmit the one or more spectrum channels to their respective target output port and to combine signals switched to a specific port into a wavelength division multiplexing (WDM) signal. Individual spectrum channels are filtered out using at least one wavelength blocker (WB).
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: August 11, 2015
    Assignees: NEC Laboratories America, Inc., NEC Corporation
    Inventors: Philip N. Ji, Ryuji Aida, Ting Wang
  • Patent number: 9106982
    Abstract: An electro-optical switch (170) for receiving N data streams optically, each of said N data streams having an amplitude and a phase and each being located at an optical center frequency FO1+RFM, where FO1 is a first optical modulation frequency and RFM is a signal center frequency. The electro-optical switch is arranged to convert the N data streams to electrical data signals at the data stream's signal center frequency RFM, the electrical data signals having the amplitude and phase of the optical data stream. The electro-optical switch is further arranged to convert electrical data signals to optical output signals at optical center frequency FO2+RFOut with the amplitude and phase of the first electrical data signal maintained, and to transmit the optical output signals, with RFM and RFOut, being equal to or different from each other, and FO1 and FO2 also being equal to or different from each other.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: August 11, 2015
    Assignee: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventor: Bengt-Erik Olsson
  • Patent number: 9083472
    Abstract: A feed-forward equalizer can be used in the host optical receiver to perform at least some of the desired signal processing in the optical domain, e.g., prior to coherently detecting and digitizing the received optical signal(s). In some embodiments, the signal processing implemented in the feed-forward equalizer can at least partially compensate the adverse effects of chromatic dispersion, polarization-mode dispersion, and/or spatial-mode mixing/crosstalk imparted on the received optical signal(s) in the optical transport link. This reduces the signal-processing load of and the signal-processing requirements to the receiver's electrical DSP.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: July 14, 2015
    Assignee: Alcatel Lucent
    Inventor: Roland Ryf
  • Patent number: 9042729
    Abstract: This invention relates to provisioning wavelength-selective switches and reconfigurable optical add-drop multiplexers to minimize the bandwidth narrowing effect from the optical filters. Novel architectures and methods are disclosed that can significantly reduce bandwidth-narrowing on channels in a reconfigurable WDM network where a large number of optical filter elements are cascaded. Instead of blocking unused channels as in the prior art, unused channels are selectively provisioned depending on the state of their adjacent channels. Unused adjacent channels of an active channel are provisioned to follow the same path as the active channels. As each channels is deployed, the channel frequency is selected so as to minimize bandwidth narrowing.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 26, 2015
    Assignee: TREQ LABS, INC.
    Inventors: Chris Wilhelm Barnard, Piotr Myslinski
  • Publication number: 20150139654
    Abstract: Methods and systems for post-transient gain control of optical amplifiers may include using a gain offset control module in an optical amplifier to generate a gain offset cancelling signal. The gain offset cancelling signal may be output to a gain control module in the optical amplifier to generate at least one of a pump signal and an attenuation control signal. In this manner, a gain offset may be cancelled for a plurality of wavelengths in an optical signal transmitted by an optical network.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Inventors: Idan Mandelbaum, Dogan Atlas
  • Patent number: 9020353
    Abstract: An optical-branching unit enables suppression of deterioration of the transmission characteristic of a survivor signal without executing complex control of constant-power output. Optical-amplification means amplifies and supplies a input optical signal, and when not receiving the optical signal, amplifies and supplies amplified spontaneous emission that the optical-amplification means generates. Detection means detects whether the optical signal is input to the optical-amplification means. When the optical signal is not input to the optical-amplification means, control means sets gain that determines the magnitude of amplification in the optical-amplification means to a predetermined value greater than gain at the time the optical signal is input to the optical-amplification means.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: April 28, 2015
    Assignee: NEC Corporation
    Inventor: Takanori Inoue
  • Patent number: 9014557
    Abstract: An optical intensity control system for use with an optical switch providing individual signal paths between input and output ports. The system has optical splitters connectable to output multiplexers of the switch and has variable optical intensity controllers (VOICs) for insertion into the individual signal paths to individually control the intensity of optical signals present in the signal paths via intensity control signals. An equalizer is connected to the splitters and to the VOICs produces an estimate of the optical power of each individual switched optical signal and generates the intensity control signals. The equalizer is adapted to controllably isolate individual switched optical signals. In this way, individual and independent control of the power on each optical channel is provided.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: April 21, 2015
    Assignee: RPX Clearinghouse LLC
    Inventors: Alan Frank Graves, John G. Gruber, Andrew John Bryant
  • Patent number: 9008514
    Abstract: Example embodiments of the present invention relate to An optical node comprising of at least two optical degrees; a plurality of directionless add/drop ports; and at least one wavelength equalizing array, wherein the at least one wavelength equalizing array is used to both select wavelengths for each degree, and to perform directionless steering for the add/drop ports.
    Type: Grant
    Filed: June 22, 2013
    Date of Patent: April 14, 2015
    Inventors: Mark E. Boduch, Kimon Papakos
  • Patent number: 9002194
    Abstract: A multi-path provisioning scheme is provided to ensure full protection while reducing or minimizing resource overbuild. A signal to be provisioned is divided at a source node into a plurality of sub-signals that are independently routed from the source node to a destination node. Bandwidth for back-up traffic B is allocated in addition to bandwidth for primary traffic T. In some embodiments, the initial bandwidth B of the backup traffic equals the bandwidth of the primary traffic. The T+B traffic is initially distributed so that no link carries more than B traffic. The traffic distribution pattern is then iteratively revised to reduce the bandwidth requirements for the backup traffic while still meeting requirements for protection.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: April 7, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Ming Xia, Stefan Dahlfort
  • Publication number: 20150086206
    Abstract: A fiber optic sensing system. The fiber optic sensing system includes an optical source adapted to provide an optical signal at a plurality of wavelengths. The fiber optic sensing system also includes a plurality of wavelength taps for separating the optical signal into signal portions at each of the plurality of wavelengths. The fiber optic sensing system further includes a plurality of optical sensors, each of the optical sensors configured to receive one of the signal portions at a respective one of the plurality of wavelengths. The fiber optic sensing system still further includes a plurality of wavelength combiners for combining signal portions from the plurality of optical sensors into a recombined signal. Also included in the fiber optic sensing system is an optical receiver for receiving the recombined signal. The fiber optic sensing system also includes an optical fiber path between the optical source and the optical receiver.
    Type: Application
    Filed: May 3, 2013
    Publication date: March 26, 2015
    Inventors: Eric Lee Goldner, Agop Hygasov Cherbettchian, Eric Udd, Sophie Pierrette Laut
  • Patent number: 8983298
    Abstract: An optical channel monitor includes: a first optical device to include first, second and third optical ports, light input through the first optical port being led to the second optical port, light input through the second optical port being led at least to the third optical port; a second optical device to include fourth, fifth and sixth optical ports, light input through the fourth optical port being led to the fifth optical port, light input through the fifth optical port being led at least to the sixth optical port; an optical filter to include seventh and eighth optical ports optically connected to the second and fifth optical ports, respectively, a specified wavelength being transmitted between the seventh and eighth optical ports; a first photo detector to detect light output from the sixth optical port; and a second photo detector to detect light output from the third optical port.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Limited
    Inventor: Norifumi Shukunami
  • Patent number: 8977129
    Abstract: Various architectures of a multi-degree reconfigurable optical add-drop multiplexer with reduced contention are provided. These architectures allow the degree of contention reduction to be managed in a flexible and modular way. The degree of the node and the amount of add/drop at the node can also be managed in a flexible and modular way. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: March 10, 2015
    Assignee: Empire Technology Development LLC
    Inventor: Trenton Gary Coroy
  • Patent number: 8977121
    Abstract: An optical transport network based on multimode/multicore fibers includes a mode-multiplexer to multiplex independent data streams from one or more transmitters; a multimode erbium-doped fiber amplifier (MM EDFA) to compensate for MMF loss; a multimode optical add-drop multiplexer (MM OADM) to add and/or drop multimode channels in multimode networks; a multimode optical cross-connect; and a mode-demultiplexer to separate various mode streams to one or more receivers.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: March 10, 2015
    Assignee: NEC Laboratories America, Inc.
    Inventors: Ivan B. Djordjevic, Lei Xu, Ting Wang
  • Publication number: 20150063816
    Abstract: A method and apparatus for visually indicating the connections between optical interfaces is provided. The optical interfaces may include multi-wavelength optical interfaces and uni-wavelength optical interfaces. The optical interfaces may reside within optical nodes contained within an optical network.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Inventors: Kimon Papakos, Mark E. Boduch
  • Patent number: 8971726
    Abstract: A network element has at least one input, to which an optical signal can be fed, and at least one output, which is equipped to emit an optical signal; a first coupler having an input linked to the network element input and a first and a second output; an optical receiver having at least one input coupled to the second output of the first coupler and at least one output; an optical sender having at least one input of which is linked to the output of the optical receiver; a signal processing device being arranged in the signal path; a second coupler having a first input linked to the first output of the first coupler, a second input linked to the output of the optical sender, and an output which is linked to the first output of the network element.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: March 3, 2015
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Martin Schell, Philipp Vorreau
  • Publication number: 20150055952
    Abstract: An intranodal reconfigurable optical add/drop multiplexer (ROADM) fiber management apparatus, and a system employing the apparatus. The apparatus comprises a plurality of ingress optical ports, a plurality of egress optical ports, and a plurality of optical interconnections interposed between ones of the plurality of ingress optical ports and ones of the plurality of egress optical ports. Each of the plurality of ingress optical ports corresponds to one of the plurality of egress optical ports. Each one of the plurality of ingress optical ports is optically coupled by way of the optical interconnections to at least one of the plurality of egress optical ports. Each one of the plurality of egress optical ports is optically coupled by way of the optical interconnections to at least one of the plurality of ingress optical ports.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 26, 2015
    Inventors: Richard Y. Younce, Yajun Wang, Julia Y. Larikova, Bradley R. Kangas
  • Patent number: 8965207
    Abstract: A device for inserting/extracting at least one optical subband into an optical channel consisting of a plurality of optical subbands. The device includes an extraction means that is capable of extracting a first optical subband belonging to the optical channel, a suppression means that is arranged so as to obtain a filtered optical channel from the optical channel wherein at least one second subband is suppressed, and a coupling means that is capable of inserting a replacement optical subband in place of the second subband in the filtered optical channel so as to obtain a modified optical channel. The device moreover relates to an optical insertion/extraction switcher, using one or more insertion/extraction devices, and to the corresponding insertion/extraction methods.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: February 24, 2015
    Assignee: Orange
    Inventor: Erwan Pincemin
  • Patent number: 8965220
    Abstract: A reconfigurable optical add drop multiplexer (ROADM) includes local interfaces at which optical signals of different wavelengths are locally input into the ROADM, and a network interface configured to connect the ROADM to a network from which multiplexed optical signals of different wavelengths are transmitted to the network. In a first configuration, the ROADM is configured to transmit from the network interface to the network multiplexed signals of different wavelengths having a first minimum frequency difference. In a second configuration, the ROADM is configured to transmit from the network interface to the network multiplexed signals of different wavelengths having a second minimum frequency difference. The second minimum frequency difference is greater than the first minimum frequency difference. This arrangement reduces the power of four wave mixing cross products produced when optical signals of three wavelengths are multiplexed and transmitted from the ROADM to NZDSF or DSF fiber types.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: February 24, 2015
    Assignee: Tellabs Operations, Inc.
    Inventors: Julia Y. Larikova, Richard C. Younce, Mark E. Boduch
  • Patent number: 8965198
    Abstract: A method for shared mesh restoration includes configuring a switch to allow sharing of a plurality of backup line cards across a plurality of node degrees associated with a reconfigurable optical add/drop multiplexer (ROADM). The switch is communicatively coupled to the ROADM. The method further includes configuring a number of backup line cards coupled to the switch. The number of backup line cards is based on determining a number of active backup lightpaths for each of a plurality of network failures associated with each of the plurality of node degrees of the ROADM, identifying which node degree and failure has the largest number of active backup lightpaths for all of the plurality of node degrees of the ROADM and for each of the plurality of network failures, and determining the number of backup line cards to configure based on the identified largest number of active backup lightpaths.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 24, 2015
    Assignee: Fujitsu Limited
    Inventors: Qiong Zhang, Paparao Palacharla, Xi Wang, Motoyoshi Sekiya