Abstract: Embodiments herein provide drill hole location transfer between remote components. One embodiment is an apparatus for replicating drill holes of a first workpiece on a second workpiece remotely located from the first workpiece. The apparatus includes an interface to receive coordinate data of first alignment pins installed to first template holes of a first drill plate, and a receptacle to receive a second drill plate having second template holes that match a pattern of the first templates holes of the first drill plate. A pin setting device moves a reference member in a plane over the receptacle, and positions the reference member with respect to the second drill plate based on the coordinate data of the first alignment pins, thus indicating locations within the second template holes to position drill bushings for replicating the first holes of the first workpiece on the second workpiece.
Type:
Grant
Filed:
September 28, 2018
Date of Patent:
December 8, 2020
Assignee:
The Boeing Company
Inventors:
Jake Aspen Wilson, James A. Aske, Mark Edward Nestleroad, Andrew John Ponton
Abstract: A process for machining a blank from all directions with a machine tool, such as a milling machine, involves the machining from all directions being based on a three-dimensional template. In a first step, the three-dimensional form and, if need be, also the surface finish of the three-dimensional template may be automatically measured, and the associated data may be saved. In a second step, a blank may be held by at least one clamping adapter and a first region is brought into its final, ready to use partial form by the machine tool or the milling machine using said data for numerical control. In a third step, the partially machined blank may be held by at least one clamping adapter in the first, finally machined region and the remaining region may be brought into its final, ready to use overall form by the same machine tool or milling machine.
Type:
Grant
Filed:
July 29, 2005
Date of Patent:
April 7, 2009
Assignee:
ALSTOM Technology Ltd
Inventors:
Hans Volker Boehm, Volker Dietmar Harr, Josef Scherer
Abstract: The invention relates to an automatic machine tool, for the production of base structures, for false teeth, in particular, for tooth crowns and/or tooth bridges of exact three-dimensional shape. Said base structures may be fixed to prepared natural and/or artificial tooth stumps. The machine tool comprises a machine frame, or a body, a work piece carrier, with a rotation shaft, at least one digitization unit, at least one machining unit and an electronic arithmetic and control unit for all drive lines. A carrier for the workpiece, a blank, and/or for the machining unit(s), serves as displacement unit, with three translational axes in the x-, y- and z-directions. The digitization of the preparation model and the machining of the blank are carried out on the same machine tool, at different times. The machining paths for the blank are calculated from the measured and stored digitized data and a predetermined material-specific scaling factor, before the machining of the blank.
Abstract: A sandbox filler crook comprising a feed pipe in which a granular material is transported by compressed air, which pipe presents successively an upstream portion for holding by an operator, a curved intermediate portion, and a downstream portion for insertion into a feed orifice of the sandbox, the upstream and downstream portions being rectilinear and substantially vertical during filling, wherein said downstream portion of the pipe includes at least one side orifice for air exhaust.
Abstract: A mandrel, and a method using a mandrel, for fabricating a cosmetic cover for a prosthetic limb having a socket for placement over a wearer's residual limb and having a component positioned outside, and attached to, the socket through aligned holes of the component and the socket. The mandrel has a mandrel plate attached to a mandrel shaft. The mandrel plate has holes aligned with the holes of the socket so the mandrel plate may be attached to the socket and the component thereby supporting the prosthetic limb. The mandrel shaft is placed in a chuck of a milling machine when the supported prosthetic limb, with an attached cosmetic cover blank, is attached to the mandrel plate, and the outside surface of the cosmetic cover blank is milled to match a mirror image of the wearer's sound limb.
Abstract: The present invention pertains to a tracer control system for a system performing tracing in an arbitrary direction using a combination tracer control-numerical control unit which is a combination of a tracer control unit and a numerical control unit, and is intended to increase the cutting accuracy and cutting speed by controlling the feed by tracer control, as compared with a conventional system which controls the feed by numerical control.The numerical control unit is provided with a signal generating device, such as a controller, for generating a signal representing the angle of a feed shaft according to numerical information indicating a path of cutting.
Abstract: A cam grinding machine which includes a machine frame, a turning grinding wheel adjacent the frame, a swingable table positioned opposite to the frame, and a turnable work shaft for holding a workpiece mounted on the table. The table is controlled in the swing movement by a touch roller device mounted on the table and a master cam device mounted on the frame. The touch roller device is disposed to face and contact the master cam device so that the workpiece may be ground in correspondence to the master cam device by the grinding wheel provided on the forward side of forward and rearward swing direction of the table. The master cam device includes a driving shaft which is turned synchronously with the turning of the work shaft and is adjustable in its turning phase in relation to the work shaft.
Abstract: A device comprised of a work table, tracing device and cutting device positioned above the table. The work table is capable of holding a workpiece to be cut and a model which serves as a basis for cutting the workpiece to a form identical to that of the model. The tracer includes a spindle and a stylus connected to the bottom of the spindle. The stylus moves against the outer edge of the model and, as it moves, causes the spindle to incline from side to side and displace vertically. Sensors are positioned about the spindle to monitor its movement. The sensors sends signals to the cutter so that the movement of the cutter mirrors the movement of the stylus over the model.