Selectively Adjustable Patents (Class 415/173.2)
  • Patent number: 10655501
    Abstract: A turbine ring assembly includes ring sectors made of ceramic matrix composite material forming a turbine ring and a ring support structure having first and second annular flanges, each ring sector having first and second tabs held between the flanges. First and second holder elements secured to the first annular flange being received in first and second openings in the first tab, while first and second holder elements secured to the second annular flange are in first and second openings in the second tab. Radial clearance is being present when cold between the openings and the portions of the holder elements present in the openings. The first and second annular flanges include, on their faces facing the first and second tabs, a plurality of thrust portions distributed in circumferential manner over the flanges, the ends of the tabs, when cold, being in radial abutment against two thrust portions.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: May 19, 2020
    Assignees: SAFRAN CERAMICS, SAFRAN AIRCRAFT ENGINES
    Inventors: Gilles Lepretre, Thierry Tesson, Adéle Lyprendi, Thomas Revel
  • Patent number: 10619514
    Abstract: An assembly adapted for use in a gas turbine engine. The assembly includes a support component comprising metallic materials, a supported component comprising ceramic matrix composite materials, and an attachment pin configured to couple the supported component to the support component. The attachment pin includes compliant features to distributes loads applied to the supported component.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: April 14, 2020
    Assignee: Rolls-Royce Corporation
    Inventors: Jeffrey A. Walston, Daniel K. Vetters
  • Patent number: 10619517
    Abstract: A turbine ring assembly includes ring sectors made of ceramic matrix composite forming a ring and a ring support structure. Each sector includes an annular base with, in a radial direction, an inside face and an outside face from which extend two attachment tabs held between two radial tabs of the structure. The assembly also includes, for each sector, at least two pins cooperating with one of the attachment tabs and the corresponding radial tab, and at least one pin cooperating with the other attachment tab and the corresponding radial tab. The first radial tab includes a first annular radial portion integral to the structure, and a removable second annular radial portion extending radially toward the center of the ring over a greater portion than said first radial annular portion, the portion extending beyond the first annular radial portion including orifices for receiving one of the pins.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: April 14, 2020
    Assignee: SAFRAN AIRCRAFT ENGINES
    Inventors: Lucien Henri Jacques Quennehen, Sébastien Serge Francis Congratel, Clément Jean Pierre Duffau, Nicolas Paul Tableau
  • Patent number: 10612405
    Abstract: A system for retaining stators and reducing air leakage in a gas turbine engine having an axis includes a stator having an inner platform, an outer platform, a low pressure side, a high pressure side, and at least one foot, and designed to turn air. The system also includes a case positioned radially outward from the stator and having at least one recess designed to interface with the at least one foot to resist movement of the stator relative to the case. The system also includes a bladder positioned between the outer platform of the stator and the case and designed to receive pressurized fluid having a greater pressure than ambient pressures experienced at the low pressure side of the stator and to further resist movement of the stator relative to the case in response to receiving the pressurized fluid.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: April 7, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventor: Anthony R. Bifulco
  • Patent number: 10598045
    Abstract: A turbine ring assembly includes ring sectors forming a turbine ring and a ring support structure, each ring sector having, in a section plane defined by an axial direction and a radial direction of the turbine ring, a portion forming an annular base with, in the radial direction, an inside face defining the inside face of the turbine ring and an outside face from which a first and a second attachment tab protrude, the ring support structure having a central annulus from which a first and a second radial tab protrude, between which the first and second attachment tabs of each ring sector are held. The first radial tab comprises a one-piece annular flange that is fastened in a removable manner to the central annulus of the ring support structure.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: March 24, 2020
    Assignee: Safran Aircraft Engines
    Inventors: Nicolas Paul Tableau, Sébastien Serge Francis Congratel, Clément Jean Pierre Duffau, Lucien Henri Jacques Quennehen
  • Patent number: 10378385
    Abstract: A turbine ring assembly includes ring sectors made of ceramic matrix composite material forming a turbine ring, and a ring support structure having first and second annular flanges, each ring sector having tabs. The first tab includes an annular groove in which there is received an annular projection of the first flange. The second tab of each ring sector is connected to the ring support structure by a resilient retention element. The second tab includes an opening in which there is received a portion of a retention element secured to the second annular flange of the ring support structure. The retention element is made of a material having a coefficient of thermal expansion that is greater than the coefficient of thermal expansion of the ceramic matrix composite material of the ring sectors.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: August 13, 2019
    Assignee: SAFRAN AIRCRAFT ENGINES
    Inventors: Thierry Tesson, Maxime Carlin, Jordan Caron
  • Patent number: 10301960
    Abstract: Shroud assemblies for gas turbine engines are provided. A shroud assembly includes a hanger having a forward hanger arm, a rear hanger arm, and a hanger body extending between the forward hanger arm and the rear hanger arm. The shroud assembly further includes a shroud having a forward surface, a rear surface, and an inner surface and outer surface extending between the forward surface and the rear surface, the outer surface radially spaced from the inner surface, the shroud connected to the hanger. The shroud assembly further includes a support member positioned axially forward of the forward hanger arm, the support member having a radially outer portion connected to the forward hanger arm and a radially inner portion axially spaced from the shroud such that a gap is defined between the radially inner portion and an axially adjacent surface of the shroud.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: May 28, 2019
    Assignee: General Electric Company
    Inventors: David Scott Stapleton, Bryce Loring Heitman, Laura Isabelle Armanios
  • Patent number: 10190503
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component, the series of cycle synthesis modules including a rotary apparatus module which estimates a tip clearance between the rotor and the rotor case.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 29, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Boris Karpman, Ian Michael Dinsmore, Richard P. Neisner, John L. Shade
  • Patent number: 10087770
    Abstract: A shroud for radially encasing a turbine in a gas turbine engine is provided. The shroud comprises a carrier which defines a pin-receiving carrier bore, and a ceramic matrix composite (CMC) seal segment comprising an arcuate flange with a surface facing the turbine and a part that defines a pin-receiving seal segment bore. The seal segment bore is radially spaced from the arcuate flange by a spacing flange which extends radially outward from the arcuate flange to effect receipt within the seal segment bore of an elongated pin. The elongated pin extends through the carrier bore and the seal segment bore, and the elongated pin has a lateral cross-sectional dimension of at least three-eighths of an inch.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: October 2, 2018
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies Inc., Rolls-Royce High Temperature Composites Inc.
    Inventors: Daniel Kent Vetters, David J. Thomas, Ted Freeman, Douglas David Dierksmeier, Jun Shi, Todd Engel
  • Patent number: 10024163
    Abstract: Methods for material build-up on a tip of a blade of a gas turbine engine are provided. The method can include inserting a material supply and an inflatable bladder between the tip and a shroud such that the material supply is exposed to the tip and the inflatable bladder is positioned between the material supply and a shroud, inflating the inflatable bladder to force contact between the material supply and the tip, and causing relative movement between the material supply and the tip. The relative movement, in combination with the radial biased contact between the material supply and the tip, creates heat through friction. As such, the relative movement can frictionally weld new material from the material supply onto the tip of the blade. For example, the heat created can be sufficient to melt the surface of the material supply to transfer material from the material supply to the tip.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: July 17, 2018
    Assignee: General Electric Company
    Inventors: David Scott Diwinsky, Herbert Chidsey Roberts
  • Patent number: 9835039
    Abstract: A turbomachine in the form of a stationary gas turbine or an aircraft engine, respectively a housing structure therefor; the housing structure including an outer housing wall (1) and an inner wall (2) defining the flow channel; and a hollow space (4) being formed between the inner wall and the outer housing wall. The hollow space is separable into at least two regions (5, 6); a movable wire element (slide ring seal) (10, 10?), which is adapted to rest against the contact faces (8, 9), being configured in the hollow space for purposes of the separation.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: December 5, 2017
    Assignee: MTU Aero Engines AG
    Inventors: Manfred Feldmann, Norbert Schinko, Janine Sangl
  • Patent number: 9631510
    Abstract: According to an aspect of an exemplary embodiment, there is provided a turbine seal assembly comprising: a seal installation groove formed inside a casing; at least one seal member that has at least one tip portion formed in a blade direction and is installed in the seal installation groove; at least one elastic member for elastically connecting the casing to the seal member, wherein an inlet for an inflow of compressed gas is formed in the seal installation groove, and wherein a first space which the compressed gas enters is formed in the seal member, and at least one flow pathway which connects the first space to a space between a blade and the seal member is formed in the seal member.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: April 25, 2017
    Assignee: Hanwha Techwin Co., Ltd.
    Inventor: Chan-sun Lim
  • Patent number: 9488062
    Abstract: A clearance control system for a turbine having a stator assembly and a rotor assembly includes a hydraulic or pneumatic controller that axially drives, through a shaft, one or more actuators connected to the stator assembly casing. The controller causes relative movement between the stator and rotor assemblies to adjust the clearances between portions of the stator and rotor in accordance with the varying operating conditions of the turbine. More particularly, the controller moves the stator relative to the rotor in first and second axial directions to compensate for thermal expansion and contraction during the operating conditions of the turbine.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: November 8, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kenneth Black, Rohit Pruthi, Sanjay Shankar Jadhav, Pradeep Ghute
  • Patent number: 9255524
    Abstract: An example turbomachine system includes a first variable outer air seal including at least one channel. The first variable outer air seal configured to selectively communicate a fluid in response to movement of a second variable outer air seal relative to the first variable outer air seal. An example fluid control method includes selectively covering a channel inlet using a variable outer air seal to control flow through the channel.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 9, 2016
    Assignee: United Technologies Corporation
    Inventor: Meggan Harris
  • Patent number: 9228447
    Abstract: An adjustable blade outer air seal apparatus includes a case structure that extends circumferentially, a support ring structure mounted radially inwards of the case structure and at least one blade outer air seal segment radially adjustably mounted relative to the support ring structure.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: January 5, 2016
    Assignee: United Technologies Corporation
    Inventor: Michael G. McCaffrey
  • Patent number: 9057281
    Abstract: An axial turbomachine including a rotor-blade cascade is provided. The turbomachine includes a casing in which the cascade is installed and a guide-blade carrier which encloses the cascade and is integrated into the inner side of the housing. The guide-blade carrier is arranged immediately adjacently to the blade tips faulting a radial gap, wherein the guide-blade carrier is mounted in the housing, such that it may be displaced parallel to the axis of the axial turbomachine, and includes an adjusting ring which is supported on contact surfaces on the housing and guide-blade carrier and may be rotated about the axis, wherein the contact surfaces of the adjusting ring and of the housing and/or of the guide-blade carrier are set with respect to a plane perpendicular to the axis, so that, when the adjusting ring is rotated about the axis, the guide-blade carrier is displaced axially by the adjusting ring.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: June 16, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Francois Benkler, Andreas Böttcher, Uwe Kahlstorf, Torsten Matthias, Dieter Minninger, Oliver Schneider, Peter Schröder, Vyacheslav Veitsman
  • Publication number: 20150098807
    Abstract: A system for providing sealing in a turbine is provided. The sealing system includes a retaining channel oriented within a housing structure proximate a moving turbine component. A seal member is coupled within the retaining channel. A first end of the seal member is secured to the housing structure. A second end of the seal member is movable relative to the retaining channel between first and second positions corresponding to a transient operational mode and a steady state operational mode, respectively. The transient operational mode defines a first clearance between the seal member and the moving turbine component. The steady state configuration defines a second clearance that is smaller than the first clearance. A take-up device coupled to the second end of the seal member moves the second end between the first and second positions.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: General Electric Company
    Inventor: Fred Thomas Willett, JR.
  • Patent number: 8998563
    Abstract: An active clearance control system for a gas turbine engine includes a structural member that is configured to be arranged near a blade tip. A plenum includes first and second walls respectively providing first and second cavities. The first wall includes impingement holes. The plenum is arranged over the structural member. A fluid source is fluidly connected to the second cavity to provide an impingement cooling flow from the second cavity through the impingement holes to the first cavity onto the structural member. A method includes the steps of providing a conditioning fluid to an outer cavity of a plenum providing an impingement cooling flow through impingement holes from an inner wall of the plenum to an inner cavity, directing the impingement cooling flow onto a structural member, and conditioning a temperature of the structural member with the impingement cooling flow to control a blade tip clearance.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: April 7, 2015
    Assignee: United Technologies Corporation
    Inventor: Philip Robert Rioux
  • Patent number: 8985944
    Abstract: A composite annular shroud supported by a support assembly including at least two single piece full 360 degree rings and at least partially disposed within an innermost one of the rings. The shroud is biased against and in sealing engagement with an inner flange of the innermost ring. A three ring assembly includes the inner ring disposed radially inwardly of a middle ring disposed radially inwardly of an outer ring and the shroud at least partially disposed within the inner ring. At least three clocking pins extend radially inwardly from the middle ring through slots in the inner ring into notches in the shroud. The middle ring may be an aft end of a support ring fixedly connected to an engine backbone. Mounting pins may be press fitted into pin holes in the middle ring and extend radially outwardly from the middle ring through radial holes in the outer ring.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Jason David Shapiro, Jared Peter Buhler, Brian Kenneth Corsetti
  • Patent number: 8961115
    Abstract: A gas turbine engine section has a rotor carrying a plurality of blades. The blades have airfoils which define a radially outer tip. A blade outer air seal is positioned radially outwardly of the tips of the blades. The blade outer air seal is provided by at least a plurality of circumferentially spaced segments, which slide circumferentially relative to each other to adjust an inner diameter of an inner surface of the blade outer air seal segments. An actuator actuates the blade outer air seal segments to slide towards each other to control a clearance between the inner periphery of the blade outer air seal segments and the radially outer tip of the blade airfoils. A gas turbine engine is also disclosed.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: February 24, 2015
    Assignee: United Technologies Corporation
    Inventors: William E. Rhoden, Peter L. Jalbert
  • Publication number: 20150044018
    Abstract: One embodiment of the present disclosure is a unique active seal system. Another embodiment is another unique active seal system. Another embodiment is a unique method for operating a turbomachine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for active seal systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Type: Application
    Filed: December 4, 2013
    Publication date: February 12, 2015
    Inventor: Douglas D. Dierksmeier
  • Patent number: 8944756
    Abstract: An example blade outer air seal assembly includes a blade outer air seal that is biased toward a second part. The blade outer air seal and the second part move together radially during operation. Radial inward movement of the blade outer air seal is limited exclusively by the second part during operation.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: February 3, 2015
    Assignee: United Technologies Corporation
    Inventor: Ken Lagueux
  • Patent number: 8939709
    Abstract: A system for operating a turbine includes a rotating component and a non-rotating component separated from the rotating component by a clearance. A first actuator is connected to the non-rotating component, and the first actuator comprises a shape-memory alloy. A method for operating a turbine includes sensing a parameter reflective of a clearance between a non-rotating component and a rotating component and generating a parameter signal reflective of the clearance. The method further includes generating a control signal to at least one actuator based on the parameter signal and moving at least a portion of the non-rotating component relative to the rotating component to change the clearance.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventors: Biju Nanukuttan, Rakesh Adoor, Hariharan Sundaram, James Adaickalasamy, Prasad Punna
  • Patent number: 8939715
    Abstract: A turbine bucket tip clearance control system includes a rotor assembly having a rotor supporting a plurality of axially spaced wheels, each wheel mounting an annular row of buckets, the annular row of buckets on at least one of the plurality of axially-spaced wheels having a radially outer tip shroud provided with at least one seal tooth. A stator assembly includes a radially inwardly facing, axially-stepped surface, formed with radially inner and outer seal surfaces connected by a shoulder. The stator assembly and rotor assembly are moveable axially relative to each other, enabling selective positioning of the at least one seal tooth radially opposite one of the radially inner and outer seal surfaces to thereby selectively alter a clearance gap between the at least one seal tooth and the radially inward facing axially-stepped surface.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventor: Harold Edward Miller
  • Publication number: 20150016946
    Abstract: An apparatus and method for controlling a clearance between the blades of a turbomachinery component and flow forming surface are disclosed herein, and includes controlling the clearance by moving the surface axially relative to the turbomachinery component. In one embodiment the apparatus includes an impeller rotatable about a first axis, a shroud encircling the impeller, and a first ring encircling the first axis. An actuator is operably engaged with the first ring to pivot the first ring about the first axis. The apparatus also includes at least one cam engaged with the first ring and at least one cam follower engaged with the shroud. Pivoting movement of the first ring about the first axis results in the at least one cam urging the at least one cam follower and the shroud along the first axis to vary a distance between the plurality of blades and the shroud.
    Type: Application
    Filed: December 30, 2013
    Publication date: January 15, 2015
    Inventor: Nathan W. Ottow
  • Publication number: 20150003972
    Abstract: According to an aspect of an exemplary embodiment, there is provided a turbine seal assembly comprising: a seal installation groove formed inside a casing; at least one seal member that has at least one tip portion formed in a blade direction and is installed in the seal installation groove; at least one elastic member for elastically connecting the casing to the seal member, wherein an inlet for an inflow of compressed gas is formed in the seal installation groove, and wherein a first space which the compressed gas enters is formed in the seal member, and at least one flow pathway which connects the first space to a space between a blade and the seal member is formed in the seal member.
    Type: Application
    Filed: February 13, 2013
    Publication date: January 1, 2015
    Applicant: SAMSUNG TECHWIN CO., LTD.
    Inventor: Chan-sun Lim
  • Patent number: 8894358
    Abstract: A clearance control arrangement includes first and second components defining a clearance therebetween. The first component includes a surface portion having at least a layer of material that changes thickness when actuated. The clearance control arrangement also includes an actuator to actuate the layer of material.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: November 25, 2014
    Assignee: Rolls-Royce PLC
    Inventor: Marko Bacic
  • Publication number: 20140271147
    Abstract: A turbine shroud or blade track assembly adapted to extend around a turbine wheel assembly is disclosed. The turbine shroud includes a carrier and a blade track coupled to the carrier. The blade track is movable between a radially-inward position having a first inner diameter and a radially-outward position having a second inner diameter larger than the first inner diameter.
    Type: Application
    Filed: December 19, 2013
    Publication date: September 18, 2014
    Inventors: Richard C. Uskert, Joseph P. Lamusga, Aaron D. Sippel
  • Patent number: 8801361
    Abstract: A machine includes a rotor supported to rotate about a rotational axis and an actuator arranged to act on the rotor and control a position of the rotor about the rotational axis. A bladed turbomachine wheel is coupled to the rotor and has blade tips that pass closely to an adjacent, non-rotating surface. A sensor is adjacent to the turbomachine wheel and arranged to sense the blade tips and output a position signal representative of the position of blade tips relative to the sensor. A controller is coupled to the sensor and the actuator and is adapted to receive the position signal from the sensor and generate and send a control signal to the actuator to control the position of the rotor based on the position signal from the sensor.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: August 12, 2014
    Assignee: Calnetix Technologies, LLC
    Inventor: Lawrence A. Hawkins
  • Patent number: 8734090
    Abstract: A rotor blade tip clearance control apparatus for a gas turbine engine includes a plurality of circumferentially distributed segments which form an annular shroud surrounding the outer tips of a row of rotor blades. A mechanical arrangement is operatively connected to the segments. Actuation of the arrangement causes the segments to move in a radial direction thereby controlling a clearance between the segments and the outer tips. A case cooling system supplies cooling air to an engine case to which the segments are mounted. The cooling air regulates thermal expansion of the case and thereby also controls the clearance between the segments and the outer tips.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: May 27, 2014
    Assignee: Rolls-Royce PLC
    Inventor: Leo V. Lewis
  • Patent number: 8678742
    Abstract: The invention relates to a clearance control system for adjusting a running clearance (L) between a rotor (12) having rotor blades (10) of a turbomachine (14), especially a gas turbine, and a casing (18) that surrounds at least sections thereof and comprises at least two segments (16a-d), the clearance control system having at least one adjusting device (20), which can be coupled to at least one segment (16a-d) of the casing (18), and by means of which the at least one segment (16a-d) can be moved radially in relation to a rotational axis (D) of the rotor (12) for adjusting the running clearance (L), wherein each segment (16a-d) of the casing (18) is coupled to at least three adjusting devices (20) of the clearance control system. The invention also relates to a turbomachine (14), especially a gas turbine, as well as to a method for adjusting a running clearance (L).
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: March 25, 2014
    Assignee: MTU Aero Engines GmbH
    Inventor: Hermann Klingels
  • Patent number: 8677728
    Abstract: A gas turbine engine (10) comprises a diffuser (14) and a nozzle (16) affixed to an annular housing (12), a bearing assembly including first and second bearings (24,26) mounted on a support tube (28) affixed at one end (28a) in cantilever fashion to a radially inner portion (16c) of the nozzle, a compressor (18) and a turbine (20) affixed to axially spaced apart ends of a shaft (22) rotatably mounted in the bearings, and an annular combustor (32) disposed between the compressor and turbine and concentric to the shaft. The diffuser is adjustably attached to the housing external threads (14e) on an outer annular surface of the diffuser and received in internal threads (12e) in an internal annular surface of the housing. An electric generator (42) is disposed radially inward of the annular combustor axially between the diffuser and nozzle. A fuel slinger (30), affixed to the shaft, receives fuel from an air/fuel annulus (88) defined by a stator (44) and a rotor (46) of the generator.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 25, 2014
    Assignee: Technical Directions, Inc
    Inventors: Joseph J. Kovasity, Vern E. Brooks
  • Patent number: 8668438
    Abstract: A turbine assembly having a bladed turbine wheel and a turbine casing (1000), extending axially of the turbine assembly, radially outwardly surrounding the tips of the blades of the turbine wheel, the casing having at least one radially outwardly extending dummy flange (2100, 2200) off which, in axial direction, one or more cooling manifolds (1100, 1200, 1300), wrapping radially outwardly around the casing, are mounted, the or each cooling manifold being adapted to receive cooling air and to discharge the cooling air radially inwardly towards the casing, for cooling the casing.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 11, 2014
    Assignee: Rolls-Royce PLC
    Inventor: Rajinder Saroi
  • Publication number: 20140064937
    Abstract: A fan assembly is provided. The fan assembly includes a rotor having a hub and a plurality of rotor blades extending radially outward from the hub. Each rotor blade includes a blade tip at a radially distal end of each blade. The rotor blade tips define a rotor diameter. The fan assembly also includes a first cylindrical casing substantially axially aligned with the blade tips, the first casing including a first inner diameter that is greater than the rotor diameter. The fan assembly further includes a brush seal assembly coupled to the blade tip of a least one of the plurality of rotor blades, the brush seal assembly configured to contact the casing segment during a first operational mode of the fan assembly, the brush seal assembly configured to avoid contact with the casing segment during a second operational mode of the fan assembly.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: GENERAL ELECTRIC COMPANY
  • Publication number: 20140033735
    Abstract: A gas turbomachine includes a casing having a first casing half including first and second edge portions and a second casing half including first and second edge sections. The first edge portion is configured and disposed to be joined to the first edge section to form a first horizontal joint and the second edge portion is configured and disposed to be joined to the second edge section to form a second horizontal joint. At least one of the first edge portion and the first edge section including a first fluid passage, and at least one of the second edge portion and second edge section including a second fluid passage. The first and second fluid passages are configured and disposed to guide heated fluid along respective ones of the first and second horizontal joints.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sendilkumaran Soundiramourty, Srinivasa Rao Pakkala
  • Patent number: 8636464
    Abstract: A liner for an interior surface of an engine casing, comprises a number of liner panels disposed radially outwardly of a rotatable component of the engine, such as a fan blade, and the panels are mounted on the interior surface of the casing, wherein each panel is individually adjustable, such that the clearance between the panel and the rotatable component of the engine may be varied individually for each panel.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: January 28, 2014
    Assignee: Rolls-Royce PLC
    Inventor: Kristofer J. Bottome
  • Publication number: 20140020390
    Abstract: A gas turbine engine section has a rotor carrying a plurality of blades. The blades have airfoils which define a radially outer tip. A blade outer air seal is positioned radially outwardly of the tips of the blades. The blade outer air seal is provided by at least a plurality of circumferentially spaced segments, which slide circumferentially relative to each other to adjust an inner diameter of an inner surface of the blade outer air seal segments. An actuator actuates the blade outer air seal segments to slide towards each other to control a clearance between the inner periphery of the blade outer air seal segments and the radially outer tip of the blade airfoils. A gas turbine engine is also disclosed.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Inventors: William E. Rhoden, Peter L. Jalbert
  • Publication number: 20140017060
    Abstract: A diaphragm assembly includes a cylinder, a circular flange, and a diaphragm. The cylinder defines an axis and includes a first end and a second end opposite the first end. The circular flange is coaxial with the cylinder and at a greater radial distance from the axis than the cylinder. The diaphragm extends from the second end of the cylinder to the flange.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Loc Quang Duong, Xiaolan Hu
  • Patent number: 8616827
    Abstract: A system for adjusting a clearance between blade tips of a turbine and a shroud assembly encircling the turbine in a turbine engine is disclosed herein. The system includes a first fluid passageway operable to extend from a first source of fluid at a variable pressure to a shroud assembly of a turbine engine. The first fluid passageway directs a first stream of fluid to the shroud assembly. The system also includes a first valve positioned along the first fluid passageway and moveable between open and closed configurations. The first valve is biased to the open configuration and moved to the closed configuration passively and directly by a first predetermined level of pressure of the first stream of fluid. During periods of relatively low power production of the turbine engine, the first valve is in the open configuration and moves to the closed configuration when power production of the turbine engine increases from relatively low power production.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: December 31, 2013
    Assignee: Rolls-Royce Corporation
    Inventor: Mark O'Leary
  • Patent number: 8613590
    Abstract: An article of manufacture has a body formed in part of a first metal alloy and in part of a second metal alloy, the second metal alloy having a thermal coefficient of expansion that is less than the thermal coefficient of expansion of the first metal alloy. A BOAS segment for a gas turbine engine is disclosed wherein the formation of cracks due to thermal mechanical fatigue in the body of the disclosed BOAS segment is minimized, if not eliminated, through a unique construction of the disclosed BOAS segment, whether original equipment manufacture or a repaired blade outer air seal. A method for manufacture of a BOAS segment and a method for modifying a BOAS segment are disclosed.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: December 24, 2013
    Assignee: United Technologies Corporation
    Inventors: Philip R. Belanger, Susan M. Tholen
  • Patent number: 8613596
    Abstract: One embodiment of the present invention is a unique turbomachinery device, a non-limiting example of which is a gas turbine engine. Another embodiment is a unique vane assembly for a turbomachinery device. Another embodiment is a unique seal assembly for a vane of a turbomachinery device. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for turbomachinery devices, and for vane assemblies and seal assemblies for turbomachinery devices. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
    Type: Grant
    Filed: September 19, 2010
    Date of Patent: December 24, 2013
    Assignee: Rolls-Royce Corporation
    Inventor: Theodore J. Fritsch
  • Patent number: 8608427
    Abstract: An arrangement for optimizing the running clearance for turbomachines of the axial type, such as turbocompressors, gas turbines, and steam turbines, in particular for compressors of stationary gas turbines, by controlling the inner diameter, which is relevant to the running clearance, of at least one stator structure that surrounds a rotor blade ring, including: the stator structure has a closed, circular inner ring, a circular outer ring that is situated concentric to the inner ring at a radial distance therefrom, and a plurality of links that integrally connect the inner ring to the outer ring, the links being circumferentially inclined at a defined angle (?) to the radial direction and distributed around the circumference of the stator structure, and the arrangement includes an adjustment device for rotating the inner ring relative to the outer ring with elastic modification of the running clearance-relevant inner diameter (D) of the inner ring.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: December 17, 2013
    Assignee: MTU Aero Engines GmbH
    Inventor: Alexander Böck
  • Patent number: 8585356
    Abstract: An electrode (54) in the tip (31) of a turbine or compressor blade (30), and a series of electrodes (68) in a shroud (36, 64) that surrounds a rotation path (33) of the blade tip. As the blade tip reaches each shroud electrode, a controller (74) activates an electrical potential between them that generates a plasma-induced gas flow (76) directed toward the pressure side (PS) of the airfoil. The plasma creates a seal between the blade tip and the shroud, and induces a gas flow that opposes a leakage gas flow (52) from the pressure side to the suction side (SS) of the blade over the blade tip (31).
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: November 19, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Matthew D. Montgomery
  • Patent number: 8555477
    Abstract: A method and system for adjusting the clearance between a stator member and the tip of a rotor member in a rotor apparatus. The system comprises a position adjustment mechanism for adjusting the radial position of the stator member to any one of at least two and preferably three different radial positions. The system further comprises a variable pressure chamber having a first pressure state and a second pressure state. The system is arranged for applying a force for maintaining the stator member in either one of said at least two radial positions when said chamber is in said first pressure state and for allowing the position adjustment mechanism to adjust the radial position of the stator member between said at least two positions when the chamber is in said second pressure state.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: October 15, 2013
    Assignee: Rolls-Royce PLC
    Inventor: Peter R Bates
  • Patent number: 8550767
    Abstract: A regulating system for a gas turbine, in particular an aircraft engine, has devices for blade-tip injection for increasing the compressor stability, these devices being activated as needed. The regulating system has devices for active clearance control, preferably in the high-pressure compressor, with which the radial clearance in the high-pressure compressor is kept in an optimum operating range, and the regulating system has a shared engine regulator for both devices. The technical problems of the prior art are avoided through the present invention, and an improved regulating system for a gas turbine, in particular an aircraft engine, is made available for active stabilization of the compressor.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: October 8, 2013
    Assignee: MTU Aero Engines GmbH
    Inventors: Wolfgang Horn, Klaus-Juergen Schmidt
  • Patent number: 8534996
    Abstract: A compressor stator vane and rotor blade tip clearance control assembly in which a plurality of stator vane segments each with vanes extending inward are connected to an annular sync ring through eccentric cranks so that circumferential movement of the sync ring will produce radial displacement of the vane segments and control the clearance between the blade tips. An actuator piston is rigidly fixed to the sync ring and forms an actuator chamber with stationary actuator housing. Bleed off pressure from one of the compressor stages is used to move the actuator piston, which moves the sync ring to radially displace the vane segments.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: September 17, 2013
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: William W. Pankey, Jack W. Wilson, Jr.
  • Publication number: 20130230389
    Abstract: A valve, for example for controlling a clearance at a tip of turbine blades, includes a piston and a supply mechanism supplying fluid under pressure to cause the piston to move inside a hollow body, and a mechanism detecting a position of the piston, including a shut-off element that moves as one with the piston and is mounted such that it can move in a fluid passage between two positions, open and closed respectively, the fluid passage connecting the supply mechanism to a pressure sensor that generates an output signal representative of the position of the piston of the valve.
    Type: Application
    Filed: November 8, 2011
    Publication date: September 5, 2013
    Applicant: SNECMA
    Inventor: Salvatore Giannotta
  • Publication number: 20130209240
    Abstract: An adjustable blade outer air seal apparatus includes a case structure that extends circumferentially, a support ring structure mounted radially inwards of the case structure and at least one blade outer air seal segment radially adjustably mounted relative to the support ring structure.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Inventor: Michael G. McCaffrey
  • Patent number: 8475118
    Abstract: Within such machines as gas turbine engines it is desirable to provide close association between rotating assemblies and a rotor path arrangement to reduce leakage. However, such arrangements of rotor assemblies and rotor path arrangements are subject to thermal cycling and differentials between the respective parts can lead to rub associations. In order to allow closer thermal responses between the respective rotor path arrangement and rotor assembly, a flexible assembly is provided for a liner. A face surface is presented upon a backer plate or floating ring such that the thermal response can be tuned to the reciprocal similar effects under the same conditions of the rotor assembly. In such circumstances, closer gap control can be achieved. Furthermore, rather than requiring an entire integral casing to be overhauled, generally only the face surfaces and/or the flexible assembly will require remedial action.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: July 2, 2013
    Assignee: Rolls-Royce PLC
    Inventors: Thomas Gerard Mulcaire, Steven Aleksy Radomski
  • Publication number: 20130136583
    Abstract: A fluid sealing device for rotating machines having a rotor part including at least one disk carried by a rotating shaft rotating in and relatively to a stator part in the presence of a fluid is disclosed. The rotating shaft has a sealing system defining a first environment at a first pressure. The stator part has a wall in front of the disk of the stator part defining a second environment therewith containing a fluid at a second pressure. The device includes a movable ring placed between the wall of the stator part and the disk of the rotor part and has a front sealing gasket facing towards the disk. The movable ring is moved in the active position when the rotating machine is stopped to prevent the fluid passage from one environment to the other.
    Type: Application
    Filed: July 6, 2011
    Publication date: May 30, 2013
    Applicant: TURBODEN S.R.L.
    Inventors: Davide Colombo, Roberto Bini