Means, Disposition Or Arrangement For Causing Supersonic Working Fluid Velocity Patents (Class 415/181)
  • Patent number: 11041405
    Abstract: A turbocharger turbine assembly can include a turbine housing that includes a longitudinal axis, an exhaust inlet, a shroud portion, and an exhaust outlet; and a turbine wheel that includes a hub that includes a rotational axis aligned with the longitudinal axis of the turbine housing, a backdisk and a nose, where the rotational axis defines an axial coordinate (z) in a cylindrical coordinate system; and blades that extend outwardly from the hub, where each of the blades includes a shroud edge, a leading edge, a trailing edge, a pressure side, and a suction side, where the shroud edge includes a minimum axial coordinate position where the shroud edge meets the leading edge, and a maximum axial coordinate position where the shroud edge meets the trailing edge, and where, from the minimum axial coordinate position to the maximum axial coordinate position, the shroud edge has a decreasing radial coordinate position.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: June 22, 2021
    Assignee: Garrett Transportation I Inc.
    Inventors: Ashraf Mohamed, Wagner Magalhaes
  • Patent number: 11015449
    Abstract: The present invention provides a steam turbine blade and a steam turbine capable of further improving efficiency. A steam turbine blade includes a proximal end portion T11 which is formed in a blade shape having an intermediate reaction degree, an intermediate portion T12 which is formed in a blade shape having a low reaction degree; and a distal end portion T13 which is formed in a blade shape having a high reaction degree.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: May 25, 2021
    Assignee: MITSUBISHI HEAVY INDUSTRIES COMPRESSOR CORPORATION
    Inventors: Takuro Koda, Yuichi Sasaki
  • Patent number: 11002141
    Abstract: An apparatus and method of managing negative incidence of an airfoil are provided. The apparatus includes a first row of stationary turbine main vanes and a second row of auxiliary vanes extending radially inwardly from a stationary casing of the turbine proximate the adjacent leading edge of the main vane. The apparatus also includes a flow channel defined between a pressure side of an auxiliary vane of the second row of auxiliary vanes and a suction side of an adjacent main vane of the row of stationary turbine main vanes.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: May 11, 2021
    Assignee: General Electric Company
    Inventors: David Paul Lurie, Sherif Alykadry Abdelfattah, Michael Julian Castillo, Anthony Louis DiPietro, Jr., Aspi Rustom Wadia, Gregory Burr Heitland
  • Patent number: 10995677
    Abstract: A gas turbine engine comprises a fan mounted to rotate about a main longitudinal axis; an engine core, comprising in axial flow series a compressor, a combustor, and a turbine coupled to the compressor through a shaft; a reduction gearbox that receives an input from the shaft and outputs drive to the fan so as to drive the fan at a lower rotational speed than the shaft; wherein the compressor comprises a first stage at an inlet and a second stage, downstream of the first stage, comprising respectively a first rotor with a row of first blades and a second rotor with a row of second blades, the first and second blades comprising respective leading edges, trailing edges and tips, and wherein the ratio of a maximum leading edge radius of the first blades to a maximum leading edge radius of the second blades is greater than 2.8.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: May 4, 2021
    Assignee: ROLLS-ROYCE PLC
    Inventors: Ian J Bousfield, Duncan A Macdougall
  • Patent number: 10962021
    Abstract: A centrifugal impeller is disclosed having a non-axisymmetric flowpath surface. The centrifugal compressor may comprise a hub and a plurality of circumferentially spaced vanes. The hub has a flowpath surface and an axis of rotation. The plurality of circumferentially spaced vanes extend from the flowpath surface, with each of the vanes having a pressure-side fillet and a suction-side fillet extending from a leading edge to a trailing edge of the vane. The pressure-side fillet and suction-side fillet intersect the flowpath surface at a runout. The runout of the pressure-side fillet of a first vane is asymmetric to the runout of the suction-side fillet of the first vane.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: March 30, 2021
    Assignee: Rolls-Royce Corporation
    Inventor: Steven Mazur
  • Patent number: 10954798
    Abstract: A gas turbine engine 10 is provided in which a fan having fan blades 139 in which the camber distribution relative to covered passage of the fan 13 allows the gas turbine engine to operate with improved efficiency when compared with conventional engines, whilst retaining an acceptable flutter margin.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: March 23, 2021
    Inventors: Benedict Phelps, Stephane M M Baralon, Mark J. Wilson
  • Patent number: 10934942
    Abstract: A high-Mach engine includes a gas turbine core, an inlet assembly, and a transmission. The inlet assembly including an inlet turbine and the transmission configured to couple the inlet turbine and a core turbine of the gas turbine core cooperate to control air moving through the high-Mach engine.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: March 2, 2021
    Assignee: Rolls-Royce North American Technologies Inc.
    Inventors: Douglas D. Dierksmeier, Edward C. Rice, Steven W. Tomlinson, Bradley E. Auker, Donald Klemen
  • Patent number: 10914182
    Abstract: Disclosed is a gas turbine including a housing, a rotor rotatably provided in the housing to transfer a rotary force to a compressor, the compressor receiving the rotary force from the rotor and compressing air, a combustor mixing a fuel with the compressed air supplied from the compressor and igniting the mixture of the fuel and the air to generate combustion gas, and a turbine receiving the rotary force caused by the combustion gas generated by the combustor and rotating the rotor by using the received rotary force.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: February 9, 2021
    Assignee: Doosan Heavy Industries Construction Co., Ltd
    Inventor: Jin Ho Bae
  • Patent number: 10898663
    Abstract: A fan unit that forms part of a gases supply unit used as part of a breathing assistance system for providing heated gases to a user is provided. The fan unit has an impeller surrounded by an upwardly sloped surface to facilitate improved airflow performance under surge conditions. The impeller includes a plurality of blades capped by a lid having a central aperture to provide an inlet to the impeller.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: January 26, 2021
    Assignee: Fisher & Paykel Healthcare Limited
    Inventor: Johannes Nicolaas Bothma
  • Patent number: 10883515
    Abstract: An apparatus and method of managing negative incidence of an airfoil are provided. The apparatus includes a row of vane pairs including a first row of main vanes extending radially inwardly from a stationary casing member and spaced circumferentially about a first axial location of the stationary casing member. The apparatus also includes a second row of auxiliary vanes extending radially inwardly from the stationary casing member and spaced circumferentially about a second axial location of the stationary casing member. The apparatus also includes a flow channel defined between a pressure side of each auxiliary vane and a suction side of an adjacent main vane proximate a leading edge of the adjacent main vane.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: January 5, 2021
    Assignee: General Electric Company
    Inventors: David Paul Lurie, Sherif Alykadry Abdelfattah, Michael Julian Castillo, Anthony Louis DiPietro, Jr., Aspi Rustom Wadia, Eric Andrew Falk, William Joseph Solomon, Andrew Breeze-Stringfellow
  • Patent number: 10794282
    Abstract: An inlet assembly for a high-mach engine includes a gas turbine core, an inlet turbine, and a core-flow director. When in a closed position, the core-flow director forces air to interact with the inlet turbine before entering the gas turbine core.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: October 6, 2020
    Assignee: Rolls-Royce North American Technologies Inc.
    Inventors: Douglas D. Dierksmeier, Edward C. Rice, Steven W. Tomlinson, Bradley E. Auker, Donald Klemen
  • Patent number: 10774842
    Abstract: Turbomachines having one or more flow guiding features designed to increase the performance of the turbomachine (3400, 3700, 4000, 4800). In some examples, flow guiding features are designed and configured to bias a circumferential pressure distribution at a diffuser inlet (2210, 2310, 3410, 4204, 4810, 5208, 808) toward circumferential uniformity, otherwise account for such low-frequency spatial pressure variations, increase the controllability of spatial flow field variations, or modifying flow field variations, etc.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: September 15, 2020
    Assignee: Concepts NREC, LLC
    Inventor: David Japikse
  • Patent number: 10760424
    Abstract: A compressor rotor airfoil in a gas turbine engine is presented. Opposed pressure and suction sides are joined together at chordally opposite leading and trailing edges. The pressure and suction sides extend in a span direction from a root to a tip. A leading edge dihedral angle is defined at a point on the leading edge between a tangent to the airfoil and a vertical. The leading edge dihedral angle has a span-wise distribution. The distribution has at least one inflection point. A method of reducing a rub angle between a compressor rotor blade and a casing surrounding the blade is also presented.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 1, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Hien Duong, Krishna Prasad Balike, Thomas Veitch, Keegan Lobo, Raman Warikoo
  • Patent number: 10711800
    Abstract: The invention concerns a radial turbo compressor (TCO) including at least one impeller (IP) at least one casing (CS), the impeller (IP) is rotatable about an axis (X), the casing (CS) comprises an inlet (IL) upstream of the impeller (IP), the inlet (IL) comprising an inlet flange (IF) to be mounted to a process gas pipe (PGP), the casing (CS) comprises an outlet (OL) down-stream of the impeller (IP) comprising an outlet flange (OF), the casing (CS) comprises an outlet volute (VL) extending about the axis (X) downstream of the impeller (IP) and upstream of the outlet (OL), and the radial turbo compressor (TCO) comprises a drive unit (DRU) driving the impeller (IP) and being mounted to the casing (CS).
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: July 14, 2020
    Assignee: Howden Turbo GmbH
    Inventors: Tomasz Kamil Boguta, Claus Smits Hansen, Joergen Lyquist
  • Patent number: 10711738
    Abstract: An electric supercharger includes an electric motor, a compressor wheel rotated by the electric motor, and a compressor housing. The compressor housing includes a first passage through which air is introduced, an introducing port connecting to an EGR device, a second passage through which at least one of air and EGR gas is flowed, a bypass passage through which at least one of air and EGR gas is flowed, and a bypass valve to open and close the bypass passage. When the bypass valve is opened, air introduced from the first passage and EGR gas introduced from the introducing port are flowed through the bypass passage to the internal combustion engine. When the bypass valve is closed, air introduced from the first passage and EGR gas introduced from the introducing port are compressed in the compressor wheel and flowed through the second passage to the internal combustion engine.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: July 14, 2020
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Makio Oshita, Toshihiro Yamamichi
  • Patent number: 10690149
    Abstract: A turbine engine part or set of parts including at least first and second obstacles each having a leading edge and a trailing edge, and a platform from which the obstacles extend; wherein the platform has, between the pressure side of the first obstacle and the suction side of the second obstacle a non-axisymmetric surface defining at least one fin with a substantially triangular cross-section, each fin being associated with a leading position and a trailing position on the surface between which the fin extends, such that the leading position is upstream of each of the leading edges; the trailing position is downstream of each of the leading edges.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 23, 2020
    Assignee: Safran Aircraft Engines
    Inventors: Vincent Benoit Zielinger, William Henri Joseph Riera
  • Patent number: 10612471
    Abstract: A gas turbine engine comprises a fan mounted to rotate about a main longitudinal axis; an engine core, comprising in axial flow series a compressor, a combustor, and a turbine coupled to the compressor through a shaft; a reduction gearbox that receives an input from the shaft and outputs drive to the fan so as to drive the fan at a lower rotational speed than the shaft; wherein the compressor comprises a first stage at an inlet and a second stage, downstream of the first stage, comprising respectively a first rotor with a row of first blades and a second rotor with a row of second blades, the first and second blades comprising respective leading edges, trailing edges and tips, and wherein the ratio of a maximum leading edge radius of the first blades to a maximum leading edge radius of the second blades is greater than 2.8.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 7, 2020
    Assignee: ROLLS-ROYCE plc
    Inventors: Ian J Bousfield, Duncan A MacDougall
  • Patent number: 10598024
    Abstract: A gas turbine engine includes a compressor section and a compressor case with a low pressure compressor (LPC) and a high pressure compressor (HPC). The HPC is aft of the LPC. The compressor case defines a centerline axis. The compressor section also includes a rotor disk defined between the compressor case and the centerline axis. A plurality of stages are defined radially inward relative to the compressor case. The plurality of stages include at least one tandem blade stage. The tandem blade stage includes a plurality of blade pairs. Each blade pair is circumferentially spaced apart from the other blade pairs, and is operatively connected to the rotor disk. Each blade pair includes a forward blade and an aft blade. The aft blade is configured to further condition air flow with respect to the forward blade without an intervening stator vane stage shrouded cavity therebetween.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: March 24, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Matthew P. Forcier, Brian J. Schuler
  • Patent number: 10557477
    Abstract: A compressor airfoil of a turbine engine having a geared architecture includes pressure and suction sides that extend in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a tangential stacking offset and span position that defines a curve that is non-linear.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: February 11, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Lisa I. Brilliant, Joseph C. Straccia, Stanley J. Balamucki, Mark A. Stephens, Kate Hudon
  • Patent number: 10508549
    Abstract: An airfoil for a gas turbine engine includes an airfoil with pressure and suction sides that are joined at leading and trailing edges. The airfoil extends a span from a support to an end in a radial direction. 0% span and 100% span positions respectively correspond to the airfoil at the support and at the end. The leading and trailing edges are spaced apart from one another an axial chord in an axial direction. A cross-section of the airfoil at a span location has a diameter tangent to the pressure and suction sides. The diameter corresponds to the largest circle fitting within the cross-section. A ratio of the diameter to the axial chord is at least 0.4 between 50% and 95% span location.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: December 17, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Wolfgang Balzer, Thomas J. Praisner, Atul Kohil, Mark F. Zelesky, Dominic J. Mongillo, Jr.
  • Patent number: 10474787
    Abstract: A method for designing a centrifugal pump and a mixed flow pump having a specific speed of 150-1200 comprises a design specification determination step for a turbo pump including an impeller, a specific speed determination step for the impeller, a design variable determination step for the impeller, and a three dimensional shape deriving step for the impeller. According to the present invention, the three dimensional shape of the impeller can be simply designed by converting the design variables related to the specific speed into a function and by putting optimized design variables into a database.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: November 12, 2019
    Assignee: Korea Institute of Industrial Technology
    Inventors: Young Seok Choi, Kyoung Yong Lee, Sung Kim
  • Patent number: 10465702
    Abstract: A compressor airfoil of a turbine engine having a geared architecture includes pressure and suction sides extending in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between leading edge sweep angle and span position defined by a curve in which the leading edge sweep angle is positive at 0% span and crosses to a negative leading edge sweep angle at a span position less than 80% span. A negative sweep angle is in the forward direction, and a positive sweep angle is in the rearward direction.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: November 5, 2019
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Lisa I. Brilliant, Joseph C. Straccia, Stanley J. Balamucki, Mark A. Stephens, Kate Hudon
  • Patent number: 10443390
    Abstract: A rotary airfoil in a gas turbine engine is provided. The airfoil includes opposed pressure and suction sides joined together at chordally opposite leading and trailing edges. The pressure and suction sides extend in a span direction from a root to a tip. An axial component of a center of gravity of a cross-section taken chordally toward the tip of the airfoil being upstream relative to an axial component of a center of gravity of a cross-section taken chordally toward the root of the airfoil. A method for forming such blade is also presented.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: October 15, 2019
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Hien Duong, Krishna Prasad Balike, Thomas Veitch, Raman Warikoo, Keegan Lobo
  • Patent number: 10408072
    Abstract: The present application provides a turbine nozzle including an airfoil shape. The airfoil shape may have a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I. The Cartesian coordinate values of X, Y and Z are non-dimensional values from 0% to 100% convertible to dimensional distances in inches by multiplying the Cartesian coordinate values of X, Y and Z by a height of the airfoil in inches. The X and Y values, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The airfoil profile sections at Z distances may be joined smoothly with one another to form a complete airfoil shape.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: September 10, 2019
    Assignee: General Electric Company
    Inventors: Craig Allen Bielek, Niraj Kumar Mishra
  • Patent number: 10358925
    Abstract: An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a stacking offset and a span position that includes at least one positive and negative slope. The positive slope leans aftward and the negative slope leans forward relative to an engine axis. The positive slope crosses an initial axial stacking offset corresponding to the 0% span position at a zero-crossing position. A first axial stacking offset X1 is provided from the zero-crossing position to a negative-most value on the curve. A second axial stacking offset X2 is provided from the zero-crossing position to a positive-most value on the curve. A ratio of the second to first axial stacking offset X2/X1 is less than 2.0.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: July 23, 2019
    Assignee: United Technologies Corporation
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 10337524
    Abstract: The present invention relates to a blade row group arrangeable in a main flow path of a fluid-flow machine and including N adjacent member blade rows firmly arranged relative to one another in both the meridional direction (m) and the circumferential direction (u), with the number N of the member blade rows being greater than/equal to 2 and (i) designating the running index with values between 1 and N. Here, a front member blade row with front blades (i) having a leading edge and a trailing edge as well as a rear member blade row with rear blades (i+1) having a leading edge and a trailing edge are provided.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: July 2, 2019
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventor: Volker Guemmer
  • Patent number: 10030521
    Abstract: The present invention relates to a blade row group arrangeable in a main flow path of a fluid-flow machine and including N adjacent member blade rows firmly arranged relative to one another in both the meridional direction (m) and the circumferential direction (u), with the number N of the member blade rows being greater than/equal to 2 and (i) designating the running index with values between 1 and N. Here, a front member blade row with front blades (i) having a leading edge VK(i) and a trailing edge HK(i) as well as a rear member blade row with rear blades (i+1) having a leading edge VK(i+1) and a trailing edge HK(i+1) are provided.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: July 24, 2018
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventor: Volker Guemmer
  • Patent number: 10006297
    Abstract: In a turbine rotor blade of a radial turbine, especially in a variable-geometry turbine with variable nozzles, an object is to restrict high-order resonance of the turbine rotor blade without increasing the size of a device with a simplified structure. A plurality of turbine rotor blades for a radial turbine is disposed on a hub surface. Each turbine rotor blade includes blade-thickness changing portions, at which at least a blade thickness of a cross-sectional shape at a middle portion of a blade height increases rapidly with respect to a blade thickness of a leading-edge side, at a predetermined position from a leading edge along a blade length which follows a gas flow from the leading edge to a trailing edge. The blade thickness increases to a blade thickness via the blade-thickness changing portions.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 26, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toyotaka Yoshida, Takao Yokoyama, Hirotaka Higashimori
  • Patent number: 9970456
    Abstract: Flow control devices and structures designed and configured to improve the performance of a turbomachine. Exemplary flow control devices may include various flow guiding channels, ribs, diffuser passage-width reductions, and other treatments and may be located on one or both of a shroud and hub side of a machine to redirect, guide, or otherwise influence portions of a turbomachine flow field to thereby improve the performance of the machine.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 15, 2018
    Assignee: Concepts NREC, LLC
    Inventor: David Japikse
  • Patent number: 9957805
    Abstract: A blade has an airfoil, and the blade is configured for use with a turbomachine. The airfoil has a throat distribution measured at a narrowest region in a pathway between adjacent blades, at which adjacent blades extend across the pathway between opposing walls to aerodynamically interact with fluid flow. The airfoil defines the throat distribution, and the throat distribution reduces aerodynamic loss and improves aerodynamic loading on the airfoil. The airfoil has a linear trailing edge profile.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Sumeet Soni, Ross James Gustafson, Rohit Chouhan, Jason Adam Neville
  • Patent number: 9951635
    Abstract: A blade row group arrangeable in a main flow path of a fluid-flow machine and including N adjacent member blade rows firmly arranged relative to one another both in the meridional direction and in the circumferential direction is provided. Here, a front member blade row with front blades having a leading edge and a trailing edge as well as a rear member blade row with rear blades having a leading edge and a trailing edge are provided, and the blade row group has two main flow path boundaries. It is provided that the profile of the blades of the member blade rows is firmly connected at at least one of the two main flow path boundaries to a base.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: April 24, 2018
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventor: Volker Guemmer
  • Patent number: 9951787
    Abstract: In an impeller for a fluid energy machine with a hub and a plurality of rotor blades which are mounted on the hub and around which a medium may flow through the fluid energy machine and which form a blade duct between two neighboring rotor blades with a blade duct length which extends in the axial direction of the impeller, wherein each rotor blade is connected to the hub via a first transition region with a first curvature and via a second transition region with a second curvature and with a straight conical blade duct bottom of the blade duct formed between the first transition region and the second transition region.
    Type: Grant
    Filed: January 1, 2015
    Date of Patent: April 24, 2018
    Assignee: iHi CHARGING SYSTEMS INTERNATIONAL GMBH
    Inventors: Roberto De Santis, Daniel Just
  • Patent number: 9938984
    Abstract: A compressor apparatus includes: a rotor including: a disk mounted for rotation about a centerline axis, an outer periphery of the disk defining a flowpath surface having an non-axisymmetric surface profile; an array of airfoil-shaped axial-flow compressor blades extending radially outward from the flowpath surface, wherein the compressor blades each have a root, a tip, a leading edge, and a trailing edge; and an array of airfoil-shaped splitter blades alternating with the compressor blades, wherein the splitter blades each have a root, a tip, a leading edge, and a trailing edge; and wherein at least one of a chord dimension of the splitter blades at the roots thereof and a span dimension of the splitter blades is less than the corresponding dimension of the compressor blades.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: April 10, 2018
    Assignee: General Electric Company
    Inventors: Anthony Louis DiPietro, Jr., Gregory John Kajfasz
  • Patent number: 9920640
    Abstract: An extruded profile for manufacturing a blade of an outlet guide vane of a turbine engine. A cross-sectional area has an axial length LAX and a thickness D/LAX relative to the axial length LAX. A cross-sectional area has an at least nearly axisymmetric leading edge region, a first transition region having a varying relative thickness D/LAX. A first constant region has a relative thickness D/LAX at least substantially constant and, relative to a leading edge of the extruded profile, begins at the closest at 10% LAX and ends at the furthest at 50% LAX. A second transition region has a varying relative thickness D/LAX and, relative to the leading edge of the extruded profile, begins at the closest at 30% LAX and ends at the furthest at 90% LAX. A second constant region has a relative thickness D/LAX at least substantially constant and an axial length X of 40% LAX at most; and an at least nearly axisymmetric trailing edge region.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: March 20, 2018
    Assignee: MTU Aero Engines AG
    Inventor: Martin Hoeger
  • Patent number: 9915270
    Abstract: A turbocharger (10) having a compressor housing (15) and a bearing housing (17). The compressor housing (15) including an elliptical shaped wall (16) extending between an air inlet (11) and a volute (13) formed by the compressor housing (15). The bearing housing (17) forms a flat bearing housing wall (14) opposing the compressor wall (16) wherein the compressor wall (16) and bearing housing wall (14) form an elliptical diffuser (12) between the air inlet (11) and the volute (13).
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 13, 2018
    Assignee: BorgWarner Inc.
    Inventors: Brock Fraser, Kurt Henderson
  • Patent number: 9885371
    Abstract: A row of aerofoil members for an axial compressor, the row comprises a circumferentially extending endwall and a plurality of aerofoils extending radially from the endwall. The endwall is profiled to include an acceleration region and a deceleration region in a location that corresponds to a position of peak fluid pressure. The acceleration region is provided upstream of the deceleration region such that fluid flow through the compressor and adjacent the endwall is accelerated and then decelerated so as to reduce the peak fluid pressure.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 6, 2018
    Assignee: ROLLS-ROYCE plc
    Inventor: James Vincent Taylor
  • Patent number: 9822796
    Abstract: A stator vane assembly for a compressor of a gas turbine, in particular of an aircraft engine, including a plurality of stator vanes whose airfoil sections form a stagger angle with an axis of rotation of the compressor, which stagger angle varies along a duct height of the stator vane assembly. Along the duct height from the inside to the outside, the stagger angle increases to a local maximum in a second section adjoining a first, radially innermost section, and decreases to an outer local minimum in a third section adjoining this second section and, along the duct height from the inside to the outside, the stagger angle decreases from the initial value to an inner local minimum in the first, radially innermost section and/or increases from the outer local minimum to a final value in a fourth, radially outermost section adjoining the third section.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: November 21, 2017
    Assignee: MTU Aero Engines AG
    Inventor: Sergio Elorza Gomez
  • Patent number: 9810082
    Abstract: A gas turbine stator for aircraft engines has a blade array with a plurality of blades constituted by a series of first blades and a series of second blades with different geometries; the array is formed by a plurality of sectors, each having an inner portion, an outer portion, at least one first blade and a least one second blade, and each defined by a body made in one piece; a single first blade is alternated with a single second blade for the entire circumference of the stator.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 7, 2017
    Assignee: GE AVIO S.R.L.
    Inventor: Paolo Calza
  • Patent number: 9797254
    Abstract: A blade row group arrangeable in a main flow path of a fluid-flow machine includes N adjacent member blade rows firmly arranged relative to each other in both a meridional direction (m) and a circumferential direction (u). A relative secondary passage length (v?) and a relative secondary passage width (w?) each increase at least in one part of the area between the mean meridional flow line (SLM) and at least one of the main flow path boundaries (HB) towards the main flow path boundary (HB).
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 24, 2017
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventor: Volker Guemmer
  • Patent number: 9765795
    Abstract: A compressor rotor airfoil in a gas turbine engine is presented. Opposed pressure and suction sides are joined together at chordally opposite leading and trailing edges. The pressure and suction sides extend in a span direction from a root to a tip. A leading edge dihedral angle is defined at a point on the leading edge between a tangent to the airfoil and a vertical. The leading edge dihedral angle has a span-wise distribution. The distribution has at least one inflection point. A method of reducing a rub angle between a compressor rotor blade and a casing surrounding the blade is also presented.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: September 19, 2017
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Hien Duong, Krishna Prasad Balike, Thomas Veitch, Raman Warikoo, Keegan Lobo
  • Patent number: 9739154
    Abstract: The present application relates to the compressor stator of an axial turbomachine. The stator comprises an annular row of main stator blades and auxiliary blades each of which are associated with a main blade. The auxiliary blades are located at the trailing edges of the main blades and are in the vicinity of the pressure faces of the main blades. The auxiliary blades are aligned to generate a low-pressure area at the trailing edges of the main blades. Thus, a flow bypassing a main blade by its suction face is sucked in by the low-pressure area when it approaches the trailing edge of the main blade. Stalling is thus avoided and the efficiency of the machine is improved.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: August 22, 2017
    Assignee: Safran Aero Boosters SA
    Inventors: Alain Derclaye, David Depaepe
  • Patent number: 9512727
    Abstract: The present invention relates to a rotor of an axial compressor stage of a turbomachine featuring a rotor assembly with a rotary axis, forming on its circumference a blade ring with a radially outer ring surface, and several rotor blades arranged on the blade ring. It is provided that the ring surface between two adjacent rotor blades has at least in a partial area a changing radius relative to the rotary axis of the rotor assembly both in the axial direction and in the circumferential direction.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: December 6, 2016
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventors: Erik Johann, Frank Heinichen
  • Patent number: 9482097
    Abstract: An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a stacking offset and a span position that is at least a third order polynomial curve that includes at least one positive and negative slope. The positive slope leans aftward and the negative slope leans forward relative to an engine axis. The positive slope crosses an initial axial stacking offset corresponding to the 0% span position at a zero-crossing position. A first axial stacking offset X1 is provided from the zero-crossing position to a negative-most value on the curve. A second axial stacking offset X2 is provided from the zero-crossing position to a positive-most value on the curve. A ratio of the second to first axial stacking offset X2/X1 is less than 2.0.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: November 1, 2016
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 9465530
    Abstract: Methods, systems, and devices for designing and manufacturing flank millable components. In one embodiment, devices, systems, and methods for designing a flank millable component are provided, in which a user is notified when a component geometry option is selected that will result in the component not being flank millable. In another embodiment, the user is prevented from selecting a geometry option that would result in the component not being flank millable. In yet another embodiment, devices, systems, and methods are provided for manufacturing a component with a flank milling process, in which optimized machine instructions are determined that minimize milling machine motion.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: October 11, 2016
    Assignee: Concepts NREC, LLC
    Inventors: Derek J. Cooper, Alexander Plomp, David Japikse
  • Patent number: 9334878
    Abstract: A blade assembly for a turbomachine compressor includes a plurality of individual devices acting on the flow. The individual devices are provided upstream of the blade assembly and are formed at least so as to generate vortices. Each of the individual devices is arranged on an upstream face of a shroud around which a recirculating flow passes, circulating in a cavity. The recirculating flow is reinjected into the principal flow such that the individual devices act simultaneously on the principal flow and on the recirculating flow.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: May 10, 2016
    Assignee: SNECMA
    Inventors: Olivier Stephane Domercq, Vincent Paul Gabriel Perrot, Agnes Pesteil
  • Patent number: 9316103
    Abstract: A blading for a turbomachine, particularly for a gas turbine, wherein thickened areas and depressions formed and disposed on a lateral wall having a plurality of blades such that at least one depression is disposed on a blade pressure side and at least one thickened area is disposed on a blade suction side for each blade of the plurality of blades.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: April 19, 2016
    Assignee: MTU AERO ENGINES GmbH
    Inventors: Harald Passrucker, Roland Wunderer
  • Patent number: 9316107
    Abstract: An axial flow turbine is described having a casing defining a flow path for a working fluid therein, a rotor co-axial to the casing, a plurality of stages, each including a stationary row of vanes circumferentially mounted on the casing a rotating row blades, circumferentially mounted on the rotor, with within a stage n vanes have an extension such that at least a part of the trailing edge of each of the n vanes reaches into the annular space defined by the trailing edges of the remaining N-n vanes and the leading edges of rotating blades of the same stage.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: April 19, 2016
    Assignee: ALSTOM Technology Ltd
    Inventors: Benjamin Megerle, Ivan William McBean, Timothy Stephen Rice, Said Havakechian
  • Patent number: 9166510
    Abstract: A rocket propelled vehicle includes a controllable voltage AC generator configured to be connected to a power generation turbine shaft and configured to convert rotational energy to electrical energy, wherein the controllable voltage AC generator is configured to output a desired voltage irrespective of a change in a rotational speed of the power generation turbine shaft, an AC electric motor pump configured to pump at least one of fuel or oxidizer to a combustion chamber of the rocket propelled vehicle, and an AC bus connecting the controllable voltage AC generator to each of the AC electric motor pump.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: October 20, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Richard A. Himmelmann
  • Patent number: 9102397
    Abstract: An airfoil, a fan assembly and an unducted contra-rotating fan engine include fabricating at least one airfoil including a suction and a pressure side coupled together at a leading and a trailing edge and extending therebetween. The airfoil includes a plurality of chord sections having a chord length. The airfoil including a tip profile defining a reducing slope extending from the leading edge at the tip portion along at least a portion of the chord length. The tip profile is configured to reduce the high unsteady pressure near the tip portion of the airfoil.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 11, 2015
    Assignee: General Electric Company
    Inventor: Trevor Howard Wood
  • Patent number: 9074483
    Abstract: A stator vane for a compressor is described. The stator vane has an airfoil root, an airfoil tip, a leading edge, a trailing edge, an inner span region, a midspan region and an outer span region, wherein the stator vane has a normalized camber profile that increases in the outer span region in a spanwise direction towards the tip and is more than 1.4 in the outer span region.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: July 7, 2015
    Assignee: General Electric Company
    Inventors: Andrew Breeze-Stringfellow, David Scott Clark, Brent F. Beacher