Means, Disposition Or Arrangement For Causing Supersonic Working Fluid Velocity Patents (Class 415/181)
  • Patent number: 10030521
    Abstract: The present invention relates to a blade row group arrangeable in a main flow path of a fluid-flow machine and including N adjacent member blade rows firmly arranged relative to one another in both the meridional direction (m) and the circumferential direction (u), with the number N of the member blade rows being greater than/equal to 2 and (i) designating the running index with values between 1 and N. Here, a front member blade row with front blades (i) having a leading edge VK(i) and a trailing edge HK(i) as well as a rear member blade row with rear blades (i+1) having a leading edge VK(i+1) and a trailing edge HK(i+1) are provided.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: July 24, 2018
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventor: Volker Guemmer
  • Patent number: 10006297
    Abstract: In a turbine rotor blade of a radial turbine, especially in a variable-geometry turbine with variable nozzles, an object is to restrict high-order resonance of the turbine rotor blade without increasing the size of a device with a simplified structure. A plurality of turbine rotor blades for a radial turbine is disposed on a hub surface. Each turbine rotor blade includes blade-thickness changing portions, at which at least a blade thickness of a cross-sectional shape at a middle portion of a blade height increases rapidly with respect to a blade thickness of a leading-edge side, at a predetermined position from a leading edge along a blade length which follows a gas flow from the leading edge to a trailing edge. The blade thickness increases to a blade thickness via the blade-thickness changing portions.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 26, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toyotaka Yoshida, Takao Yokoyama, Hirotaka Higashimori
  • Patent number: 9970456
    Abstract: Flow control devices and structures designed and configured to improve the performance of a turbomachine. Exemplary flow control devices may include various flow guiding channels, ribs, diffuser passage-width reductions, and other treatments and may be located on one or both of a shroud and hub side of a machine to redirect, guide, or otherwise influence portions of a turbomachine flow field to thereby improve the performance of the machine.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 15, 2018
    Assignee: Concepts NREC, LLC
    Inventor: David Japikse
  • Patent number: 9957805
    Abstract: A blade has an airfoil, and the blade is configured for use with a turbomachine. The airfoil has a throat distribution measured at a narrowest region in a pathway between adjacent blades, at which adjacent blades extend across the pathway between opposing walls to aerodynamically interact with fluid flow. The airfoil defines the throat distribution, and the throat distribution reduces aerodynamic loss and improves aerodynamic loading on the airfoil. The airfoil has a linear trailing edge profile.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Sumeet Soni, Ross James Gustafson, Rohit Chouhan, Jason Adam Neville
  • Patent number: 9951635
    Abstract: A blade row group arrangeable in a main flow path of a fluid-flow machine and including N adjacent member blade rows firmly arranged relative to one another both in the meridional direction and in the circumferential direction is provided. Here, a front member blade row with front blades having a leading edge and a trailing edge as well as a rear member blade row with rear blades having a leading edge and a trailing edge are provided, and the blade row group has two main flow path boundaries. It is provided that the profile of the blades of the member blade rows is firmly connected at at least one of the two main flow path boundaries to a base.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: April 24, 2018
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventor: Volker Guemmer
  • Patent number: 9951787
    Abstract: In an impeller for a fluid energy machine with a hub and a plurality of rotor blades which are mounted on the hub and around which a medium may flow through the fluid energy machine and which form a blade duct between two neighboring rotor blades with a blade duct length which extends in the axial direction of the impeller, wherein each rotor blade is connected to the hub via a first transition region with a first curvature and via a second transition region with a second curvature and with a straight conical blade duct bottom of the blade duct formed between the first transition region and the second transition region.
    Type: Grant
    Filed: January 1, 2015
    Date of Patent: April 24, 2018
    Assignee: iHi CHARGING SYSTEMS INTERNATIONAL GMBH
    Inventors: Roberto De Santis, Daniel Just
  • Patent number: 9938984
    Abstract: A compressor apparatus includes: a rotor including: a disk mounted for rotation about a centerline axis, an outer periphery of the disk defining a flowpath surface having an non-axisymmetric surface profile; an array of airfoil-shaped axial-flow compressor blades extending radially outward from the flowpath surface, wherein the compressor blades each have a root, a tip, a leading edge, and a trailing edge; and an array of airfoil-shaped splitter blades alternating with the compressor blades, wherein the splitter blades each have a root, a tip, a leading edge, and a trailing edge; and wherein at least one of a chord dimension of the splitter blades at the roots thereof and a span dimension of the splitter blades is less than the corresponding dimension of the compressor blades.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: April 10, 2018
    Assignee: General Electric Company
    Inventors: Anthony Louis DiPietro, Jr., Gregory John Kajfasz
  • Patent number: 9920640
    Abstract: An extruded profile for manufacturing a blade of an outlet guide vane of a turbine engine. A cross-sectional area has an axial length LAX and a thickness D/LAX relative to the axial length LAX. A cross-sectional area has an at least nearly axisymmetric leading edge region, a first transition region having a varying relative thickness D/LAX. A first constant region has a relative thickness D/LAX at least substantially constant and, relative to a leading edge of the extruded profile, begins at the closest at 10% LAX and ends at the furthest at 50% LAX. A second transition region has a varying relative thickness D/LAX and, relative to the leading edge of the extruded profile, begins at the closest at 30% LAX and ends at the furthest at 90% LAX. A second constant region has a relative thickness D/LAX at least substantially constant and an axial length X of 40% LAX at most; and an at least nearly axisymmetric trailing edge region.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: March 20, 2018
    Assignee: MTU Aero Engines AG
    Inventor: Martin Hoeger
  • Patent number: 9915270
    Abstract: A turbocharger (10) having a compressor housing (15) and a bearing housing (17). The compressor housing (15) including an elliptical shaped wall (16) extending between an air inlet (11) and a volute (13) formed by the compressor housing (15). The bearing housing (17) forms a flat bearing housing wall (14) opposing the compressor wall (16) wherein the compressor wall (16) and bearing housing wall (14) form an elliptical diffuser (12) between the air inlet (11) and the volute (13).
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 13, 2018
    Assignee: BorgWarner Inc.
    Inventors: Brock Fraser, Kurt Henderson
  • Patent number: 9885371
    Abstract: A row of aerofoil members for an axial compressor, the row comprises a circumferentially extending endwall and a plurality of aerofoils extending radially from the endwall. The endwall is profiled to include an acceleration region and a deceleration region in a location that corresponds to a position of peak fluid pressure. The acceleration region is provided upstream of the deceleration region such that fluid flow through the compressor and adjacent the endwall is accelerated and then decelerated so as to reduce the peak fluid pressure.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 6, 2018
    Assignee: ROLLS-ROYCE plc
    Inventor: James Vincent Taylor
  • Patent number: 9822796
    Abstract: A stator vane assembly for a compressor of a gas turbine, in particular of an aircraft engine, including a plurality of stator vanes whose airfoil sections form a stagger angle with an axis of rotation of the compressor, which stagger angle varies along a duct height of the stator vane assembly. Along the duct height from the inside to the outside, the stagger angle increases to a local maximum in a second section adjoining a first, radially innermost section, and decreases to an outer local minimum in a third section adjoining this second section and, along the duct height from the inside to the outside, the stagger angle decreases from the initial value to an inner local minimum in the first, radially innermost section and/or increases from the outer local minimum to a final value in a fourth, radially outermost section adjoining the third section.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: November 21, 2017
    Assignee: MTU Aero Engines AG
    Inventor: Sergio Elorza Gomez
  • Patent number: 9810082
    Abstract: A gas turbine stator for aircraft engines has a blade array with a plurality of blades constituted by a series of first blades and a series of second blades with different geometries; the array is formed by a plurality of sectors, each having an inner portion, an outer portion, at least one first blade and a least one second blade, and each defined by a body made in one piece; a single first blade is alternated with a single second blade for the entire circumference of the stator.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 7, 2017
    Assignee: GE AVIO S.R.L.
    Inventor: Paolo Calza
  • Patent number: 9797254
    Abstract: A blade row group arrangeable in a main flow path of a fluid-flow machine includes N adjacent member blade rows firmly arranged relative to each other in both a meridional direction (m) and a circumferential direction (u). A relative secondary passage length (v?) and a relative secondary passage width (w?) each increase at least in one part of the area between the mean meridional flow line (SLM) and at least one of the main flow path boundaries (HB) towards the main flow path boundary (HB).
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 24, 2017
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventor: Volker Guemmer
  • Patent number: 9765795
    Abstract: A compressor rotor airfoil in a gas turbine engine is presented. Opposed pressure and suction sides are joined together at chordally opposite leading and trailing edges. The pressure and suction sides extend in a span direction from a root to a tip. A leading edge dihedral angle is defined at a point on the leading edge between a tangent to the airfoil and a vertical. The leading edge dihedral angle has a span-wise distribution. The distribution has at least one inflection point. A method of reducing a rub angle between a compressor rotor blade and a casing surrounding the blade is also presented.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: September 19, 2017
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Hien Duong, Krishna Prasad Balike, Thomas Veitch, Raman Warikoo, Keegan Lobo
  • Patent number: 9739154
    Abstract: The present application relates to the compressor stator of an axial turbomachine. The stator comprises an annular row of main stator blades and auxiliary blades each of which are associated with a main blade. The auxiliary blades are located at the trailing edges of the main blades and are in the vicinity of the pressure faces of the main blades. The auxiliary blades are aligned to generate a low-pressure area at the trailing edges of the main blades. Thus, a flow bypassing a main blade by its suction face is sucked in by the low-pressure area when it approaches the trailing edge of the main blade. Stalling is thus avoided and the efficiency of the machine is improved.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: August 22, 2017
    Assignee: Safran Aero Boosters SA
    Inventors: Alain Derclaye, David Depaepe
  • Patent number: 9512727
    Abstract: The present invention relates to a rotor of an axial compressor stage of a turbomachine featuring a rotor assembly with a rotary axis, forming on its circumference a blade ring with a radially outer ring surface, and several rotor blades arranged on the blade ring. It is provided that the ring surface between two adjacent rotor blades has at least in a partial area a changing radius relative to the rotary axis of the rotor assembly both in the axial direction and in the circumferential direction.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: December 6, 2016
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventors: Erik Johann, Frank Heinichen
  • Patent number: 9482097
    Abstract: An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a stacking offset and a span position that is at least a third order polynomial curve that includes at least one positive and negative slope. The positive slope leans aftward and the negative slope leans forward relative to an engine axis. The positive slope crosses an initial axial stacking offset corresponding to the 0% span position at a zero-crossing position. A first axial stacking offset X1 is provided from the zero-crossing position to a negative-most value on the curve. A second axial stacking offset X2 is provided from the zero-crossing position to a positive-most value on the curve. A ratio of the second to first axial stacking offset X2/X1 is less than 2.0.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: November 1, 2016
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward J. Gallagher, Byron R. Monzon, Ling Liu, Linda S. Li, Darryl Whitlow, Barry M. Ford
  • Patent number: 9465530
    Abstract: Methods, systems, and devices for designing and manufacturing flank millable components. In one embodiment, devices, systems, and methods for designing a flank millable component are provided, in which a user is notified when a component geometry option is selected that will result in the component not being flank millable. In another embodiment, the user is prevented from selecting a geometry option that would result in the component not being flank millable. In yet another embodiment, devices, systems, and methods are provided for manufacturing a component with a flank milling process, in which optimized machine instructions are determined that minimize milling machine motion.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: October 11, 2016
    Assignee: Concepts NREC, LLC
    Inventors: Derek J. Cooper, Alexander Plomp, David Japikse
  • Patent number: 9334878
    Abstract: A blade assembly for a turbomachine compressor includes a plurality of individual devices acting on the flow. The individual devices are provided upstream of the blade assembly and are formed at least so as to generate vortices. Each of the individual devices is arranged on an upstream face of a shroud around which a recirculating flow passes, circulating in a cavity. The recirculating flow is reinjected into the principal flow such that the individual devices act simultaneously on the principal flow and on the recirculating flow.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: May 10, 2016
    Assignee: SNECMA
    Inventors: Olivier Stephane Domercq, Vincent Paul Gabriel Perrot, Agnes Pesteil
  • Patent number: 9316107
    Abstract: An axial flow turbine is described having a casing defining a flow path for a working fluid therein, a rotor co-axial to the casing, a plurality of stages, each including a stationary row of vanes circumferentially mounted on the casing a rotating row blades, circumferentially mounted on the rotor, with within a stage n vanes have an extension such that at least a part of the trailing edge of each of the n vanes reaches into the annular space defined by the trailing edges of the remaining N-n vanes and the leading edges of rotating blades of the same stage.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: April 19, 2016
    Assignee: ALSTOM Technology Ltd
    Inventors: Benjamin Megerle, Ivan William McBean, Timothy Stephen Rice, Said Havakechian
  • Patent number: 9316103
    Abstract: A blading for a turbomachine, particularly for a gas turbine, wherein thickened areas and depressions formed and disposed on a lateral wall having a plurality of blades such that at least one depression is disposed on a blade pressure side and at least one thickened area is disposed on a blade suction side for each blade of the plurality of blades.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: April 19, 2016
    Assignee: MTU AERO ENGINES GmbH
    Inventors: Harald Passrucker, Roland Wunderer
  • Patent number: 9166510
    Abstract: A rocket propelled vehicle includes a controllable voltage AC generator configured to be connected to a power generation turbine shaft and configured to convert rotational energy to electrical energy, wherein the controllable voltage AC generator is configured to output a desired voltage irrespective of a change in a rotational speed of the power generation turbine shaft, an AC electric motor pump configured to pump at least one of fuel or oxidizer to a combustion chamber of the rocket propelled vehicle, and an AC bus connecting the controllable voltage AC generator to each of the AC electric motor pump.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: October 20, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Richard A. Himmelmann
  • Patent number: 9102397
    Abstract: An airfoil, a fan assembly and an unducted contra-rotating fan engine include fabricating at least one airfoil including a suction and a pressure side coupled together at a leading and a trailing edge and extending therebetween. The airfoil includes a plurality of chord sections having a chord length. The airfoil including a tip profile defining a reducing slope extending from the leading edge at the tip portion along at least a portion of the chord length. The tip profile is configured to reduce the high unsteady pressure near the tip portion of the airfoil.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 11, 2015
    Assignee: General Electric Company
    Inventor: Trevor Howard Wood
  • Patent number: 9074483
    Abstract: A stator vane for a compressor is described. The stator vane has an airfoil root, an airfoil tip, a leading edge, a trailing edge, an inner span region, a midspan region and an outer span region, wherein the stator vane has a normalized camber profile that increases in the outer span region in a spanwise direction towards the tip and is more than 1.4 in the outer span region.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: July 7, 2015
    Assignee: General Electric Company
    Inventors: Andrew Breeze-Stringfellow, David Scott Clark, Brent F. Beacher
  • Patent number: 9051839
    Abstract: A supersonic turbine moving blade in which increased circumferential speed due to increased blade length and average diameter reduces shock wave loss in its inflow area. It has at least one of the following features: pressure surface curvature is nonnegative from the leading to trailing edge end; negative pressure surface curvature is positive upstream and negative downstream; dimensionless pressure surface curvature (inter-blade pitch divided by curvature radius) is larger than 0.0 and smaller than 0.1 in the 30%-to-60% portion of the length along the pressure surface; the leading edge part is formed by continuous curvature curves and the distance between ½ point of the blade maximum thickness and leading edge end exceeds ½ of the maximum thickness; the exit angle is larger than a theoretical outflow angle; and the maximum thickness point is nearer to the trailing edge than to the leading edge.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: June 9, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventor: Shigeki Senoo
  • Patent number: 9046111
    Abstract: An aerofoil for a compressor comprising a suction surface and a pressure surface with a thickness distribution defined therebetween, the aerofoil further comprising a first local maximum in the thickness distribution and a second local maximum in the thickness distribution, the second local maximum being downstream of the first local maximum and the second local maxima being formed by a first region of concave curvature in the suction surface between the first and second local maxima, wherein the second local maximum is disposed such that in use a boundary layer upstream of the second local maximum on the suction surface is thinned by the second local maximum, and in addition the boundary layer may be sufficiently thinned so that an interaction of an upstream flow feature with the thinned boundary layer is capable of generating a turbulent spot with a calmed region downstream of the turbulent spot.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: June 2, 2015
    Assignee: ROLLS-ROYCE PLC
    Inventors: Neil W. Harvey, John J. Bolger
  • Patent number: 9022730
    Abstract: A supersonic compressor includes a fluid inlet, a fluid outlet, a fluid conduit extending therebetween, and at least one supersonic compressor rotor disposed within the fluid conduit and including a fluid flow channel that includes a throat portion. The supersonic compressor also includes a fluid control device coupled in fluid communication with at least one fluid source and an inlet of the fluid flow channel. The fluid control device channels a first fluid to the fluid flow channel inlet. The first fluid has a first plurality of fluid properties that facilitate attainment of supersonic flow of the first fluid in the throat portion during a first operational mode. The fluid control device further channels a second fluid to the fluid flow channel inlet. The second fluid has a second plurality of fluid properties that permit maintenance of supersonic flow of the second fluid in the throat portion.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: May 5, 2015
    Assignee: General Electric Company
    Inventors: Martin Vysohlid, Douglas Carl Hofer
  • Patent number: 9011084
    Abstract: Suppressing profile loss of a moving blade due to radial flow without an increase in the length of a shaft of a turbine is disclosed. The degree of reaction on an inner circumferential side is set to an appropriate degree, reducing profile loss due to supersonic inflow, and improving turbine efficiency. A steam turbine stator vane has a trailing edge with a curved line when the stator vane is viewed from a downstream side in the axial direction. The curved line has an inflection point located on an outer circumferential side with respect to the center of the stator vane in the height direction of the stator vane. An inner circumferential portion of the curved line is located on the inner circumferential side with respect to the inflection point. An outer circumferential portion of the curved line is located on the outer circumferential side with respect to the inflection point.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 21, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Hideki Ono, Kenichi Murata, Shigeki Senoo, Goingwon Lee
  • Publication number: 20150093232
    Abstract: A supersonic compressor rotor and method of compressing a fluid is disclosed. The rotor includes a first and a second rotor disk, a first set and a second set of rotor vanes. The first set and second set of rotor vanes are coupled to and disposed between the first and second rotor disks. Further, the first set of rotor vanes are offset from the second set of rotor vanes. The rotor includes a first set of flow channels defined by the first set of rotor vanes disposed between the first and second rotor disks. Similarly, the rotor includes a second set of flow channels defined by the second set of rotor vanes disposed between the first and second rotor disks. Further, the rotor includes a compression ramp disposed on a rotor vane surface opposite to an adjacent rotor vane surface.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: General Electric Company
    Inventors: Rajesh Kumar Venkata Gadamsetty, Chaitanya Venkata Rama Krishna Ongole, Douglas Carl Hofer, Vittorio Michelassi
  • Patent number: 8864454
    Abstract: A supersonic compressor system. The supersonic compressor system includes a casing that defines a cavity that extends between a fluid inlet and a fluid outlet, and a first drive shaft that is positioned within the cavity. A centerline axis extends along a centerline of the first drive shaft. A supersonic compressor rotor is coupled to the first drive shaft and is positioned in flow communication between the fluid inlet and the fluid outlet. The supersonic compressor rotor includes at least one supersonic compression ramp that is configured to form at least one compression wave for compressing a fluid. A centrifugal compressor assembly is positioned in flow communication between the supersonic compressor rotor and the fluid outlet. The centrifugal compressor assembly is configured to compress fluid received from the supersonic compressor rotor.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 21, 2014
    Assignee: General Electric Company
    Inventors: Douglas Carl Hofer, Vittorio Michelassi
  • Patent number: 8834099
    Abstract: A gas turbine engine comprises a fan and a turbine section having a first turbine rotor. The first turbine rotor drives a compressor rotor. A gear reduction effects a reduction in the speed of the fan relative to an input speed from a fan drive turbine rotor. The compressor rotor has a number of compressor blades in at least one of a plurality of rows of the compressor rotor. The blades operate at least some of the time at a rotational speed. The number of compressor blades in at least one row and the rotational speed are such that the following formula holds true for at least one row of the compressor rotor: (the number of blades×the rotational speed)/(60 seconds/minute)?5500 Hz; and the rotational speed being in revolutions per minute. A compressor module and a method of designing a gas turbine engine are also disclosed.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: September 16, 2014
    Assignee: United Technoloiies Corporation
    Inventors: David A. Topol, Bruce L. Morin
  • Patent number: 8827640
    Abstract: A supersonic compressor rotor that includes a rotor disk that includes a substantially cylindrical endwall, a radially inner surface, and a radially outer surface. The endwall extends between the radially inner surface and the radially outer surface. A plurality of vanes are coupled to the endwall. The vanes extend outwardly from the endwall. Adjacent vanes form a pair and are spaced a circumferential distance apart such that a flow channel is defined between each pair of circumferentially-adjacent vanes. The flow channel extends generally radially between an inlet opening and an outlet opening. A first supersonic compression ramp is coupled to the endwall. The first supersonic compression ramp is positioned within the flow channel to facilitate forming at least one compression wave within the flow channel.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Douglas Carl Hofer, Dhananjayarao Gottapu
  • Patent number: 8770929
    Abstract: A supersonic compressor rotor. The supersonic compressor rotor includes a substantially cylindrical disk body that includes an upstream surface, a downstream surface, and a radially outer surface that extends generally axially between the upstream surface and the downstream surface. The disk body defines a centerline axis. A plurality of vanes are coupled to the radially outer surface. Adjacent vanes form a pair and are oriented such that a flow channel is defined between each pair of adjacent vanes. The flow channel extends generally axially between an inlet opening and an outlet opening. At least one supersonic compression ramp is positioned within the flow channel. The supersonic compression ramp is selectively positionable at a first position, at a second position, and at any position therebetween.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: July 8, 2014
    Assignee: General Electric Company
    Inventors: Douglas Carl Hofer, Dhananjayarao Gottapu
  • Patent number: 8714913
    Abstract: A gas turbine engine has a fan and a turbine having a fan drive turbine rotor. The fan drive turbine rotor drives a compressor rotor. A gear reduction effects a reduction in the speed of the fan relative to an input speed from the fan drive turbine rotor that drives the compressor rotor. The compressor rotor has a number of compressor blades in at least one of a plurality of rows of the compressor rotor. The blades operate at least some of the time at a rotational speed. The number of compressor blades in at least one row and the rotational speed are such that the following formula holds true for at least one row of the compressor rotor turbine: (number of blades×rotational speed)/60 s?5500 Hz, and the rotational speed is in revolutions per minute. A method of designing a gas turbine engine and a compressor module are also disclosed.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: May 6, 2014
    Assignee: United Technologies Corporation
    Inventors: David A. Topol, Bruce L. Morin
  • Patent number: 8668446
    Abstract: A supersonic compressor rotor. The supersonic compressor rotor includes a rotor disk that includes an upstream surface, a downstream surface, and a radially outer surface that extends generally axially between the upstream surface and the downstream surface. The radially outer surface includes an inlet surface, an outlet surface, and a transition surface that extends between the inlet surface and the outlet surface. A plurality of vanes are coupled to the radially outer surface. Adjacent vanes form a pair and are oriented such that a flow channel is defined between each pair of adjacent vanes. The flow channel extends between an inlet opening and an outlet opening. The inlet surface defines an inlet plane that extends between the inlet opening and the transition surface. The outlet surface defines an outlet plane that extends between the outlet opening and the transition surface that is not parallel to the inlet plane.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 11, 2014
    Assignee: General Electric Company
    Inventors: Douglas Carl Hofer, Zachary William Nagel, David Graham Holmes
  • Patent number: 8657571
    Abstract: A supersonic compressor rotor that includes a rotor disk that includes a body that extends between a radially inner surface and a radially outer surface. A plurality of vanes are coupled to the body. The vanes extend outwardly from the rotor disk. Adjacent vanes form a pair and are oriented such that a flow channel is defined between each pair of adjacent vanes. The flow channel extends between an inlet opening and an outlet opening. At least one supersonic compression ramp is positioned within the flow channel. The supersonic compression ramp is configured to condition a fluid being channeled through the flow channel such that the fluid includes a first velocity at the inlet opening and a second velocity at the outlet opening. Each of the first velocity and the second velocity being supersonic with respect to said rotor disk surfaces.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Douglas Carl Hofer, Zachary William Nagel, D{acute over (h)}ananjayarao Gottapu
  • Patent number: 8647054
    Abstract: An axial turbomachine including a rotor blade cascade is provided. The rotor blade cascade includes rotor blades each including front edge, a radially outer free blade tip and an annular enclosure enclosing the rotor blade cascade with an annulus inner side by means of which the annular enclosure is arranged directly adjacent to the blade tips to give a radial gap between the enveloping ends of the blade tips and the annulus inner side. The rotor blades include a radial projection in the region of the front edge on the blade tip and the annular enclosure has an annular radial recess in the annulus inner side, arranged at a radial distance from the ends of the blade tips, such that in the main flow direction of the axial turbomachine the line of the radial projections on the side facing the radial gap matches the line of the radial recess.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: February 11, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marcel Aulich, Christian Cornelius, Georg Kröger
  • Patent number: 8632301
    Abstract: A gas turbine engine has a fan, a compressor section having a low pressure portion and a high pressure portion, a combustor section, and a turbine having a low pressure portion. The low pressure turbine portion drives the low pressure compressor portion and the fan. A gear reduction effects a reduction in the speed of the fan relative to a speed of the low pressure turbine and the low pressure compressor portion. At least one of the low pressure turbine portion and low pressure compressor portion has a number of blades in each of a plurality of rows. The blades operate at least some of the time at a rotational speed. The number of blades and the rotational speed are such that the following formula holds true for at least one of the blade rows of the at least one of the low pressure turbine portion and/or the low pressure compressor sections: (number of blades×rotational speed)/60?5500. The rotational speed is an approach speed in revolutions per minute.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 21, 2014
    Assignee: United Technologies Corporation
    Inventors: David A. Topol, Burce L. Morin
  • Patent number: 8573941
    Abstract: A tandem blade design for an axial turbomachine, comprising a front blade and a rear blade disposed with an offset thereto in the circumferential direction and in the axial direction. The rear blade is profiled and positioned with respect to the front blade such that it raises the speed level at the trailing edge of the front blade in a predetermined working range in interaction with the front blade.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: November 5, 2013
    Assignee: MTU Aero Engines GmbH
    Inventor: Martin Hoeger
  • Patent number: 8534997
    Abstract: A main flow path of a fluid flow machine includes N adjacent member blade rows firmly arranged relative to each other in both a meridional direction m and a circumferential direction u. A number of the member blade rows, N, is greater than/equal to 2 and (i) designates a running index with values between 1 and N. A trailing edge HK (i) of a blade of the member blade row (i) is spaced from a leading edge VK(i+1) of a blade of the adjacent, downstream member blade row (i+1) by a meridional edge distance D in a meridional plane established by axial direction x and radial direction r. A value of D along a height of the main flow path increases towards the main flow path confinement at least along a part of the area between the main flow path center and the main flow path confinement.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: September 17, 2013
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventor: Volker Guemmer
  • Publication number: 20130223975
    Abstract: A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is effectively eliminated.
    Type: Application
    Filed: April 6, 2012
    Publication date: August 29, 2013
    Inventor: Shawn P. Lawlor
  • Patent number: 8517668
    Abstract: A gas turbine engine is utilized in combination with a gear reduction to reduce the speed of a fan relative to a low pressure turbine speed. The gas turbine engine is designed such that a blade count in the low pressure turbine multiplied by the speed of the low pressure turbine will result in operational noise that is above a sensitive range for human hearing. A method and turbine module are also disclosed.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: August 27, 2013
    Assignees: United Technologies Corporation, MTU Aero Engines GmbH
    Inventors: Bruce L. Morin, Detlef Korte
  • Patent number: 8500391
    Abstract: A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is effectively eliminated.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: August 6, 2013
    Assignee: Ramgen Power Systems, LLC
    Inventor: Shawn P. Lawlor
  • Publication number: 20130164121
    Abstract: A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct. In an embodiment, the number of leading edges are minimized, and may be less than half, compared to the number of blades in the accompanying rotor.
    Type: Application
    Filed: July 6, 2012
    Publication date: June 27, 2013
    Applicant: RAMGEN POWER SYSTEMS, LLC
    Inventors: WILLIAM BYRON ROBERTS II, SHAWN P. LAWLOR
  • Publication number: 20130164120
    Abstract: A supersonic compressor including a rotor having reaction blades that deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct. In an embodiment, the number of leading edges are minimized, and may be less than half, or far less than half, compared to the number of blades in the accompanying rotor.
    Type: Application
    Filed: July 6, 2012
    Publication date: June 27, 2013
    Applicant: RAMGEN POWER SYSTEMS, LLC
    Inventors: SILVANO R. SARETTO, SHAWN P. LAWLOR, PAUL MORRISON BROWN
  • Publication number: 20130142632
    Abstract: A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.
    Type: Application
    Filed: July 6, 2012
    Publication date: June 6, 2013
    Applicant: RAMGEN POWER SYSTEMS, LLC
    Inventors: WILLIAM BYRON ROBERTS II, SHAWN P. LAWLOR, ROBERT E. BREIDENTHAL
  • Publication number: 20130039748
    Abstract: A stator. The stator may be used in a supersonic compressor that utilizes a rotor to deliver a gas at supersonic conditions to the stator. The stator includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control.
    Type: Application
    Filed: July 6, 2012
    Publication date: February 14, 2013
    Applicant: RAMGEN POWER SYSTEMS, LLC
    Inventor: SHAWN P. LAWLOR
  • Publication number: 20130004302
    Abstract: A supersonic turbine moving blade in which increased circumferential speed due to increased blade length and average diameter reduces shock wave loss in its inflow area. It has at least one of the following features: pressure surface curvature is nonnegative from the leading to trailing edge end; negative pressure surface curvature is positive upstream and negative downstream; dimensionless pressure surface curvature (inter-blade pitch divided by curvature radius) is larger than 0.0 and smaller than 0.1 in the 30%-to-60% portion of the length along the pressure surface; the leading edge part is formed by continuous curvature curves and the distance between ½ point of the blade maximum thickness and leading edge end exceeds ½ of the maximum thickness; the exit angle is larger than a theoretical outflow angle; and the maximum thickness point is nearer to the trailing edge than to the leading edge.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 3, 2013
    Applicant: Hitachi, Ltd.
    Inventor: Shigeki SENOO
  • Publication number: 20120301271
    Abstract: A supersonic compressor rotor. The supersonic compressor rotor includes a substantially cylindrical disk body that includes an upstream surface, a downstream surface, and a radially outer surface that extends generally axially between the upstream surface and the downstream surface. The disk body defines a centerline axis. A plurality of vanes are coupled to the radially outer surface. Adjacent vanes form a pair and are oriented such that a flow channel is defined between each pair of adjacent vanes. The flow channel extends generally axially between an inlet opening and an outlet opening. At least one supersonic compression ramp is positioned within the flow channel. The supersonic compression ramp is selectively positionable at a first position, at a second position, and at any position therebetween.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Inventors: Douglas Carl Hofer, Dhananjayarao Gottapu
  • Patent number: RE43710
    Abstract: A swept turbomachinery blade for use in a cascade of such blades is disclosed. The blade (12) has an airfoil (22) uniquely swept so that an endwall shock (64) of limited radial extent and a passage shock (66) are coincident and a working medium (48) flowing through interblade passages (50) is subjected to a single coincident shock rather than the individual shocks. In one embodiment of the invention the forwardmost extremity of the airfoil defines an inner transition point (40) located at an inner transition radius rt-inner. The sweep angle of the airfoil is nondecreasing with increasing radius from the inner transition radius to an outer transition radius rt-outer, radially inward of the airfoil tip (26), and is nonincreasing with increasing radius between the outer transition radius and the airfoil tip.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: October 2, 2012
    Assignee: United Technologies Corp.
    Inventors: David A. Spear, Dennis N. Kantor, legal representative, Bruce P. Biederman, John A. Orosa