Having Brace Means Bridging Cavity Patents (Class 416/233)
  • Patent number: 10907618
    Abstract: A wind turbine blade includes a protective cover attached along the blade by a layer of adhesive. The adhesive is a general purpose adhesive, and the adhesive forms a joint or sealing between an outer edge of the cover section of the blade and the surface of the blade so that the outer edge is covered by the adhesive and so that the joint forms an oblique surface from the outer edge to the surface of the blade. The joint has a first height at the outer edge and a second height at the position where it ends at the surface of the blade. The second height is smaller than the first height and smaller than 0.2 millimetres, and the joint is integrally formed with the layer of adhesive.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: February 2, 2021
    Assignee: POLYTECH A/S
    Inventors: Mads Kirkegaard, Thomas Gliese
  • Patent number: 10830249
    Abstract: A method for manufacturing closed impellers with internal cavities. Impellers that are manufactured according to the method have a smaller mass and enable a higher operating efficiency to be attained.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 10, 2020
    Assignee: ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP
    Inventor: Aleksandr Pulnikov
  • Patent number: 10830060
    Abstract: An apparatus for cooling an engine component such as a turbine engine airfoil, including a wall bounding an interior extending axially between a leading edge and a trailing edge and radially between a root and a tip. A cooling circuit it located within the interior of the airfoil can include a flow enhancer permitting a volume of fluid, such as air, to pass around the flow enhancer.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: Emily Rosette Clark, Julienne LaChance, William Robb Stewart, Todd Garrett Wetzel
  • Patent number: 10808541
    Abstract: An airfoil includes an airfoil body portion that has a pressure side and a suction side. A recessed area in the airfoil body portion is located on one of the pressure side or the suction side. At least one rib divides the recessed area into at least one geometric shape. A cover encloses the recessed area and includes at least one pedestal that engages a distal end of at least one rib. A weld extends through the cover and a portion of at least one rib. The weld spans a width of the distal end of at least one rib.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 20, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Daniel A. Bales, Eric W. Malmborg
  • Patent number: 10724376
    Abstract: A blade and a turbomachine engine having the blade are disclosed. The blade includes an airfoil having a root portion, a tip portion, and a plurality of fins integrally coupled to the root portion. The plurality of fins is disposed along a thickness of the airfoil.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 28, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Nicholas Joseph Kray, Nitesh Jain, Nagashiresha Gontla, Narendra Digamber Joshi, Paul Gerard Marsland, Wayne Allen Spence
  • Patent number: 10641098
    Abstract: A fan blade includes first and second portions that are secured to one another and provide a cavity. The first and second portions form an exterior airfoil surface that extends in a radial direction from a root to a tip and in a chord-wise direction from a leading edge to a trailing edge. Radial ribs extend in a radial direction from the root toward the tip and are spaced apart from one another in the chord-wise direction. First and second angled ribs intersect one another at a first apex. The radial ribs intersect at least one of the first and second angled ribs. The first and second angled ribs are at an angle relative to one of the radial ribs. The angle is in a range of 45°+/?30°.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 5, 2020
    Assignee: United Technologies Corporation
    Inventors: Eric W. Malmborg, Michael A. Weisse
  • Patent number: 10633990
    Abstract: A vane strut assembly is disclosed, The vane strut assembly may include a first panel, a second panel, and a coupling mechanism that couples the first panel and the second panel to one another. The coupling mechanism may include a first fitting that is attached to the first panel, a second fitting that is attached to the second panel, and a cable disposed between the first fitting and the second fitting.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: April 28, 2020
    Assignee: United Technologies Corporation
    Inventors: Anders C. Olson, Nicholas W. Kantany
  • Patent number: 10612395
    Abstract: An air cooled component for a gas turbine engine including a first wall and a second wall having opposing inner surfaces to define a gap therebetween, and a lattice of intersecting elongate ribs extending longitudinally along the first and second walls and transversely between the inner surfaces of the first and second walls to provide a plurality of cells. One or more portions of the ribs include an aperture to provide a flow path between adjacent cells so that the cells are in fluid communication.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: April 7, 2020
    Assignee: ROLLS-ROYCE PLC
    Inventors: Matthew D Tucker, Simon L Jones
  • Patent number: 10465555
    Abstract: An airfoil for an axial flow machine includes: an airfoil body extending in a radial direction; a platform (an end wall) provided at an end portion of the airfoil body in the radial direction, the end wall being formed into a plate shape as a wall of a channel in which the airfoil body is installed and which supports the airfoil body; and at least one convex portion formed so as to protrude from a back surface of the platform in a direction away from the airfoil body. The convex portion is formed integrally with a portion for generating a node of a primary vibration mode when an edge portion of the platform vibrates as a free end of the primary vibration mode.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: November 5, 2019
    Assignee: IHI Corporation
    Inventors: Kazuto Ogawara, Takahiro Shimada
  • Patent number: 10458333
    Abstract: A case for a gas turbine engine includes a case wall and a boss that extends from the case wall. The boss includes a perimeter step.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 29, 2019
    Assignee: United Technologies Corporation
    Inventors: Chris J. Niggemeier, Lifang Yuan
  • Patent number: 10400625
    Abstract: The invention relates to a blade of a low-pressure compressor of an axial turbine engine. The blade comprises a vane in which a cavity is formed. The vane has a leading edge and a trailing edge, an intrados surface and an extrados surface which extend from the leading edge to the trailing edge, an outer casing which forms the intrados surface and the extrados surface and which delimits the cavity. The blade further comprises closed foam, such as a polymethacrylic foam, which blocks the cavity in order to isolate it from the environment of the blade. The blade further has a three-dimensional lattice which is formed in the cavity and which is integral with the vane of the blade. This barrier protects from chemical attacks and the introduction of impurities. The invention also relates to a production method for a hollow turbine engine blade which is filled with foam.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: September 3, 2019
    Assignee: Safran Aero Boosters SA
    Inventor: Jean-Francois Cortequisse
  • Patent number: 10399275
    Abstract: A system and method for manufacturing at least a portion of a wind turbine blade is described. The invention relates to a method for ensuring a minimum bond line height between wind turbine blade components, through the use of adhesive spacer elements. The adhesive spacer elements are positioned between the blade components prior to bonding, and act to define a buffer or space between the bonding surfaces of the respective blade components, such that the adhesive bond line height between components can be effectively guaranteed without the need for accurate alignment and positioning techniques.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: September 3, 2019
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Lars Nielsen, Jesper Hasselbalch Garm
  • Patent number: 10260372
    Abstract: A vibration damping assembly and a method of damping vibration in a gas turbine engine are disclosed. The vibration damping assembly includes a strut configured to couple a fan case and turbine engine case of a turbine engine, a strut cavity disposed within the strut, and vibration damping media disposed in the strut cavity.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: April 16, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Carl Brian Klinetob, William Richard Ganoe, Jr., Thomas B. Hyatt, Jason Leroux, Douglas J. Morgan
  • Patent number: 10184447
    Abstract: The invention is related to a rotor blade for the generation of electrical power. The rotor blade transforms the kinetic energy of a fluid, into rotational movement of a mechanical shaft. The shape of the rotor blade is characterized in that, along an axis, it is longitudinally bound by a root (a) and a tip (b), which are connected through multiples curved segments, called neutral sectional axes [Eni]. All [Eni] generate a continuous or discontinuous curvature called Primary Neutral Axis [En]. The point corresponding to a leading edge and a trailing edge, configure an airfoil [PAij]. The curvature of the blade (e) has an arch of length L, and is defined by the neutral sectional axes [Eni]. The blade (e) is defined by at least one continuous curved section called primary neutral axis [En] having a length [Ln]. The blade's shape has a variable cross section along the Primary Neutral Axis [En].
    Type: Grant
    Filed: July 13, 2013
    Date of Patent: January 22, 2019
    Assignee: Universidad Pontificia Bolivariana
    Inventors: César Nieto Londoño, Juan Guillermo García Navarro, Julián Sierra Pérez
  • Patent number: 10060266
    Abstract: Hollow fan blades for gas turbine engines are disclosed. The hollow fan blades include a body having a convex side and a concave side wherein the convex side has a cavity formed therein. The cavity is covered by two covers including an inner cover that may be adhered to the body of the fan blade assembly and an outer cover that may be adhered to the inner cover and/or the body of the fan blade assembly. The covers may be made of titanium, more than two covers may be employed and more than one cavity may be employed.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: August 28, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: James Cosby, Michael A. Weisse, Kwan Hui
  • Patent number: 10001014
    Abstract: Various embodiments of the invention include turbine buckets and systems employing such buckets. Various particular embodiments include a turbine bucket having: an airfoil having: a suction side; a pressure side opposing the suction side; a leading edge spanning between the pressure side and the suction side; and a trailing edge opposing the leading edge and spanning between the pressure side and the suction side; and a base connected with a first end of the airfoil along the suction side, pressure side, trailing edge and the leading edge, the base including a non-axisymmetric contour proximate a junction between the base and the airfoil.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: June 19, 2018
    Assignee: General Electric Company
    Inventors: Mark Steven Honkomp, Xiaoyong Fu, Paul Kendall Smith, Jalindar Appa Walunj
  • Patent number: 9932960
    Abstract: A rotor blade (5) of a wind turbine, which has a profile (1-4) having an upper side (suction side) (7) and an underside (pressure side) (8). The profile (1-4) includes a camber line (21, 25) and a chord (18) between a leading edge (10) and a trailing edge (11) of the profile (1-4). The profile (1-4) has a relative profile thickness of more than 45%. At least one vortex generator (50, 50?, 50?, 50??) is disposed, in the region of the profile (1-4), on the suction side (7) of the rotor blade (5). The profile (1-4) is provided with a blunt trailing edge. And, The thickness of the trailing edge is between 15% and 70% of the chord length.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: April 3, 2018
    Assignee: Senvion GmbH
    Inventors: Marc Petsche, Christoph Matthias Korjahn
  • Patent number: 9926789
    Abstract: A flow splitting baffle for separating a main cooling flow through an inner channel of a component includes a tubular structure defining a tubular cavity and having a longitudinal axis. The flow splitting baffle also includes an inner ring coupled to the tubular structure and extending away from the tubular structure along a plane that is perpendicular to the longitudinal axis. The flow splitting baffle also includes an outer ring parallel to the plane, positioned a first distance from the tubular structure, extending away from the tubular structure and positioned a second distance from the inner ring. The flow splitting baffle also includes a strut perpendicular to the plane, extending from the inner ring to the outer ring and coupled to the inner ring and the outer ring.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: March 27, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Benjamin F. Hagan, Ryan Alan Waite, Dominic J. Mongillo
  • Patent number: 9850763
    Abstract: An article is disclosed including a manifold, an article wall, a post-impingement cavity and a plurality of post-impingement partitions. The manifold includes an impingement wall defining a plenum and a plurality of impingement apertures. The article wall includes a plurality of external apertures. The post-impingement cavity is disposed between the manifold and the article wall, and is arranged to receive a fluid from the plenum through the plurality of impingement apertures and exhaust the fluid through the plurality of external apertures. The plurality of post-impingement partitions divide the post-impingement cavity into a plurality of sub-cavities, and hermetically separate the plurality of sub-cavities from one another. The impingement wall, article wall and plurality of post-impingement partitions are integrally formed as a single, continuous article. The article may be an airfoil component.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: December 26, 2017
    Assignee: General Electric Company
    Inventors: Gary Michael Itzel, Jeffrey Clarence Jones
  • Patent number: 9523283
    Abstract: In a turbine vane and a gas turbine, an outer shroud is fixed to one end of a vane body formed in a hollow shape, an inner shroud is fixed to the other end thereof, and a partition plate is fixed to the inner portions of the vane body, the outer shroud, and the inner shroud, so that a cavity is formed so as to be continuous between the partition plate and the group of the vane body, the outer shroud, and the inner shroud. Then, the vane body, the outer shroud, and the inner shroud are provided with a plurality of cooling holes, and the partition plate is provided with a plurality of penetration holes. Accordingly, since the vane structure or the end wall structure is evenly cooled, a deformation or damage may be suppressed.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: December 20, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideyuki Uechi, Tomoko Morikawa, Satoshi Hada
  • Patent number: 9453418
    Abstract: A hollow article includes a metallic hollow article formed from a having a first major surface, an internal cavity with an opening in the first major surface, and a socket around the opening; a cover of composite material received in the socket and covering the opening; and a filler material of foam in the internal cavity.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 27, 2016
    Assignee: United Technologies Corporation
    Inventors: Kwan Hui, Michael A. Weisse, Darin S. Lussier, Hillary Anne Huttenhower
  • Patent number: 9404369
    Abstract: An airfoil includes an airfoil body that defines a longitudinal axis. The airfoil body includes a leading edge and a trailing edge and a first side wall and a second side wall that is spaced apart from the first side wall to define a camber line there between. The first side wall and the second side wall join the leading edge and the trailing edge and at least partially define a cavity in the airfoil body. Multiple ribs extend longitudinally in the cavity and are laterally spaced apart from each other relative to the longitudinal axis. In at least one plane that is perpendicular to the longitudinal axis, each of the ribs connects the first side wall and the second side wall along respective minimum distance directions that are perpendicular to the camber line. At least two of the respective minimum distance directions are non-parallel.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: August 2, 2016
    Assignee: United Technologies Corporation
    Inventors: Tracy A. Propheter-Hinckley, Benjamin T. Fisk, Steven Taffet, Gregory M. Dolansky, Anita L. Tracy
  • Patent number: 9394793
    Abstract: A turbomachine airfoil element has an airfoil. The airfoil has an inboard end, an outboard end, a leading edge, a trailing edge, a pressure side, and a suction side. A span between the inboard and an outboard end is 1.4-1.6 inch. A chord length at 50% span is 0.9-1.4 inch. At least three of the following resonance frequencies are present. A first mode resonance frequency is 2591.5±10% Hz. A second mode resonance frequency is 4675.2±10% Hz. A third mode resonance frequency is 7892.9±10% Hz. A fourth mode resonance frequency is 10098.2±10% Hz. A fifth mode resonance frequency is 14808.2±10% Hz.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: July 19, 2016
    Assignee: United Technologies Corporation
    Inventors: Bryan C. Atkins, Robert J. Esteve, Richard A. Lomenzo, Jr., David P. Houston
  • Patent number: 9359902
    Abstract: A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 7, 2016
    Assignee: Siemens Energy, Inc.
    Inventors: Christian X. Campbell, Jr., John J. Marra, Jan H. Marsh
  • Patent number: 9188102
    Abstract: A wind blade with a self-supporting structural framework, having multiple chord-wise members and one or more span-wise members is provided. Each of the multiple chord-wise members and the one or more span-wise members have an aerodynamic contour. The wind blade also comprises a fabric skin located over the self-supporting structural framework in a tensioned state to generate an aerodynamic surface, wherein the fabric skin is attached via multiple tensioning members to both the chord wise members and span wise members.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: November 17, 2015
    Assignee: General Electric Company
    Inventors: Sriram Krishnamurthy, Wendy Wen-Ling Lin, Suresh Subramanian, Subbareddy Daggumati, Udit Kulmi, Prakash Kashiram Jadhav, Vasan Churchill Srinivasan Chandrasekaran
  • Patent number: 9057276
    Abstract: A gas turbine engine blade (20), including: an airfoil (24) including a pressure side exterior surface (34), a suction side exterior surface (36), and a first rib (130) spanning between the pressure side exterior surface and the suction side exterior surface. The airfoil (24) is twisted from a base end (30) of the airfoil to a tip end (32) of the airfoil. The first rib is twisted from a base end of the first rib to a tip end of the first rib. The pressure side exterior surface, the suction side exterior surface, and the first rib are cast as a monolith.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: June 16, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Ching-Pang Lee
  • Fan
    Patent number: 8961109
    Abstract: A fan includes a frame, rotor supported by this frame and having a central hub and a number of blades and a drive mechanism for rotatably driving the rotor, in addition to a ring to which the end zones of the blades are connected. The ring is assembled from two part-rings of the same form which each include a circular strip of sheet material, the free ends of which are mutually connected to form the outer surface of a truncated cone, and a third part-ring which mutually connects the inner edges of the first two part-rings. The end zones of the blades are connected to the third part-ring. The ring has a diameter of more than about 1.50 m. The number of blades amounts to at least eight. The blades are hollow and include a framework structure which is provided with a skin connected thereto.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: February 24, 2015
    Assignee: Bronswerk Heat Transfer B.V.
    Inventor: Augustinus Wilhelmus Maria Bertels
  • Patent number: 8956105
    Abstract: A turbine vane for a gas turbine engine may include a composite airfoil structure. The composite airfoil structure may have an opening. The turbine vane may include a spar. The spar may have a body, which may be disposed within the opening. A standoff structure may be disposed within the opening. In some non-limiting embodiments, a cooling air gap may be defined between the body and an internal surface of the composite airfoil structure.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 17, 2015
    Assignee: Rolls-Royce North American Technologies, Inc.
    Inventors: Richard C. Uskert, Ted Joseph Freeman, David J. Thomas
  • Patent number: 8944773
    Abstract: An airfoil comprises an airfoil body with an internal cavity and inner and outer covers. The airfoil body defines a first major surface of the airfoil, and a rib extends along the internal cavity. The inner cover is bonded to the airfoil body over the internal cavity, and includes a coupling element extending along the internal cavity in cooperative engagement with the rib. The outer cover is bonded to the airfoil body over the inner cover, and defines a second major surface of the airfoil.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 3, 2015
    Assignee: United Technologies Corporation
    Inventor: Michael A. Weisse
  • Patent number: 8926289
    Abstract: An airfoil includes a blade having a pocket recess therein and one or more features disposed within the pocket recess. The one or more features are configured to disrupt pressure oscillations within the pocket recess. In another embodiment, a blade is disclosed having a first wall and a second wall. The first wall is disposed on a suction side of the blade and the second wall is disposed on a pressure side of the blade. The second wall is connected to the first wall at a leading edge of the blade. Together the first wall and the second wall form a portion of a pocket recess and the pocket recess is disposed asymmetrically with respect to a camber line of the blade.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: January 6, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Loc Quang Duong, Xiaolan Hu, Nagamany Thayalakhandan, Gao Yang
  • Publication number: 20150003991
    Abstract: Rotor blades include an inner portion and a modular extension attached to the inner portion that form a new span length for the rotor blade. The modular extension includes one or more spanwise support elements connecting to the inner portion and extending in a spanwise direction, a plurality of cross-sectional ribs disposed along a length of the one or more spanwise support elements, and, a modular extension shell surrounding the modular extension supported by the plurality of cross-sectional ribs.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Applicant: General Electric Company
    Inventors: Bharat Sampathkumaran Bagepalli, Bradley Graham Moore, Mohamad Babar Sultan, Jessica Elizabeth Cohn, Jessica Leigh Kadlec, William Arthur Flodder
  • Patent number: 8906181
    Abstract: A method of finishing a fan blade includes bonding a sheath and a cover to an aluminum fan blade with an airfoil, a root, a leading edge and a tip; imparting residual stresses onto the blade; coating the blade to protect exposed areas of the blade; and curing the blade in low-temperature cure cycles to preserve residual stresses imparted.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 9, 2014
    Assignee: United Technologies Corporation
    Inventors: James O. Hansen, Sr., Jesse Meyer, Christopher J. Hertel
  • Publication number: 20140356182
    Abstract: A wind turbine blade (162) and a method of forming a wind turbine blade. The method includes: forming an inner segment (10) of an airfoil, leaving a portion (16) of an inner weave (12) extending from the inner segment; forming an outer segment (18) of the airfoil, leaving a portion (24) of an outer weave (20) extending from the outer segment; overlapping the extending portion of the inner weave with the extending portion of the outer weave; infusing the overlapped extending portions with additional resin; and curing the additional resin to form a monolithic airfoil (160).
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Inventor: JOHN M. OBRECHT
  • Patent number: 8876484
    Abstract: A turbine blade comprises an airfoil having a pressure side and a suction side, and extending from a leading edge to a trailing edge. The airfoil has a tip remote from a mounting root, and a pocket extending inwardly of the tip. The pocket has spaced walls with one wall associated with the pressure side of the airfoil, and an opposed wall associated with the suction side. A pin extends across the pocket and connects the opposed walls. A slot is formed in the pin at a location intermediate ends of the pin which connect to the opposed walls. A method for identifying a location for the pin along a distance between a leading edge and a trailing edge of the pocket utilizes a modal analysis, and seeks to find a location where both a reaction force and a moment are lower than they might be at other locations.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 4, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Loc Quang Duong, Xiaolan Hu, Anthony C. Jones
  • Patent number: 8870546
    Abstract: Edgewise stiffness of a wind turbine blade is enhanced by arranging a tension element between anchor points at the ends of a load bearing member in the turbine blade such as a spar or a beam. The tension element is spaced away from the load bearing member on the trailing edge side of the load bearing member by struts and acts as a suspension cable. Several tension elements may be used and a similar tension element may be arranged on the leading edge side of the load bearing member.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: October 28, 2014
    Inventor: Carsten Hein Westergaard
  • Patent number: 8851856
    Abstract: A rotor blade has a chord and a span length perpendicular to the chord. The rotor blade includes a first skin having an inner surface and a first plurality of elements extending from the inner surface. The first plurality of elements are distributed along at least a portion of the span length and inclined with respect to the chord of the rotor blade. A second skin is attached to the first skin so as to form an outer surface of the rotor blade. The second skin has a second plurality of elements extending towards the inner surface of the first skin and engaging with the first plurality of elements to form a plurality of ribs within the rotor blade.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: October 7, 2014
    Assignee: Rohr, Inc.
    Inventor: John Frederick Vertel
  • Patent number: 8851851
    Abstract: Large diameter axial Super Low Noise flow fans and commercial air cooled apparatuses incorporating such fans are provided. The large diameter axial flow fan is mounted on the air cooled apparatus for generating an axial air flow in the air cooled apparatus for accomplishing the cooling. The fan has a diameter of at least four feet. The fan has plurality of blades. Each blade includes a leading edge opposite a trailing edge. The entire of the leading edge of each of the blades is linear and forward swept, and each blade includes a metallic outer surface.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: October 7, 2014
    Assignee: Moore Fans LLC
    Inventor: John D. Moore
  • Publication number: 20140286785
    Abstract: A method of producing an airfoil is provided. The method includes forming a steel airfoil preform with a pocket on at least one of the pressure and suction surfaces, forming a cover plate for the pocket and welding the cover plate over the pocket.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 25, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: General Electric Company
  • Publication number: 20140241897
    Abstract: A fan blade includes first and second titanium portions that are secured to one another with an aluminum alloy braze. A method of manufacturing a fan blade includes providing first and second titanium portions, applying an aluminum alloy braze to at least one of the first and second titanium portions, and heating the fan blade to melt the aluminum alloy braze and join the first and second portions to one another to provide a fan blade with an airfoil exterior contour.
    Type: Application
    Filed: September 25, 2012
    Publication date: August 28, 2014
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: UNITED TECHNOLOGIES CORPORATION
  • Patent number: 8807924
    Abstract: A fan blade has a main body extending between a leading edge and a trailing edge. Channels are formed into the main body from at least one open side. A plurality of ribs extend across the main body intermediate the channels. The fan blade has a dovetail, and an airfoil extending radially outwardly from the dovetail. The channels have a termination end adjacent a radially inner end of the ribs. The termination end is formed along a complex fillet with a first radius of curvature formed at the termination end, and a second radius of curvature merging into sides of the ribs. The second radius of curvature is greater than the first radius of curvature.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 19, 2014
    Assignee: United Technologies Corporation
    Inventors: Christopher S. McKaveney, James R. Murdock
  • Patent number: 8807925
    Abstract: A fan blade has a main body extending between a leading edge and a trailing edge. Channels are formed into the main body from at least one open side. A plurality of ribs extend across the main body intermediate the channels. The fan blade has a dovetail, and an airfoil extends radially outwardly from the dovetail. The ribs having a thickness defined as measured from said leading edge toward said trailing edge. The ribs have break-edges at ends of the thickness that extend away from an outer face of the rib.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 19, 2014
    Assignee: United Technologies Corporation
    Inventors: Christopher S. McKaveney, James R. Murdock
  • Patent number: 8807953
    Abstract: The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having at least one elongated reinforcing member connected inside the shell for increasing the strength of the blade, each of the at least one elongated reinforcing member having a first end and a second end and extending in a longitudinal direction between the first end and the second end and wherein the first end is connected to the upper part of the shell and the second end is connected to the lower part of the shell thereby decreasing peeling and shear stresses in the trailing edge of the blade.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: August 19, 2014
    Assignee: Bladena ApS
    Inventor: Find Mølholt Jensen
  • Patent number: 8801367
    Abstract: A fan blade has a main body extending between a leading edge and a trailing edge. Channels are formed into the main body from an open side extending toward an opposed closed side. A plurality of ribs extending across the main body intermediate the channels, the fan blade has a dovetail, and an airfoil extending radially outwardly from said dovetail. A bottom surface of the channels is defined at the closed side of the channels. Sides of the channel merge into sides of the ribs, with a compound fillet at the bottom surface. A first radius of curvature is used along the bottom, and merging into at least a second radius of curvature at the sides. The first radius of curvature is larger than the second radius of curvature.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 12, 2014
    Assignee: United Technologies Corporation
    Inventors: Michael A. Weisse, Christopher S. McKaveney
  • Patent number: 8777579
    Abstract: The invention provides a method of manufacturing a spar (1) for a wind turbine blade. The method comprises steps of providing at least two caps (2a, 2b), each cap forming an intermediate portion (4) between two end portions (5), where the end portions each forms a cap joint surface portion (6) along a longitudinal extending edge of the end portion and the intermediate portion forms an outer surface portion (7) of the spar, providing at least two webs (3a, 3b), each web being provided with web joint surface portions (8) along opposite and longitudinally extending edges, and connecting the joint surface portions of the caps with the joint surface portions of the webs to form a tubular configuration of the spar. The intermediate portions and the end portions are provided so that they comprise different materials.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: July 15, 2014
    Assignee: Vestas Wind Systems A/S
    Inventors: Mark Hancock, Andrew Hedges, Tomas Vronsky
  • Publication number: 20140140855
    Abstract: Segmented wind turbine blades with truss connection regions, and associated systems and methods are disclosed. A wind turbine system in accordance with a particular embodiment includes a wind turbine with a first segment having a first position along the longitudinal axis and having a first internal load-bearing structure for which non-truss structure elements carry at least 90% of the shear loads in the first segment. The blade further includes a second segment having a second position along the longitudinal axis and having a second internal load-bearing structure for which non-truss structure elements carry at least 90% of the shear loads in the first segment. A connection region between the first and second segments includes an internal load-bearing truss structure connected between the first internal load-bearing structure and the second internal load-bearing structure.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 22, 2014
    Inventor: Modular Wind Energy, Inc.
  • Publication number: 20140119937
    Abstract: A rotor blade for a wind turbine includes an internal support structure extending span-wise from a blade root to a blade tip. A plurality of ribs are fixed to and spaced along the internal support structure, with each rib extending in a generally chord-wise direction and having a generally aerodynamic blade contour. A plurality of chord-wise oriented fabric strips are affixed to the ribs in a tensioned state, wherein the fabric strips define an aerodynamic outer skin of the rotor blade.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Biao Fang, Steven Haines Olson, Wendy Wen-Ling Lin, Sriram Krishnamurthy, Balaji Haridasu, Prakash Kashiram Jadhav, Subbareddy Daggumati, Suresh Subramanian, Scott Roger Finn, Udit Kulmi, Vasan Churchill Srinivasan Chandrasekaran
  • Patent number: 8672631
    Abstract: A blade assembly for a wind turbine has a hub, a plurality of inboard and outboard blades, and a plurality of cables. The inboard blades are spaced apart from one another and are mounted on the hub. Each outboard blade is pivotally connected to one of the inboard blades such that it is capable of rotation to a desired swept angle relative to the inboard blade to which it is connected. The cables extend between the outboard blades and the inboard blades to actuate rotation of the outboard blades to the desired swept angle.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 18, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Jun Shi
  • Publication number: 20140072427
    Abstract: A fan blade has an airfoil main body extending between a leading edge and a trailing edge. The airfoil also has suction and pressure sides. A cavity is formed into said main body, and receives a filler material. A cover closes off the cavity, and is attached to the main body, with the cover having a thickness defined in a direction perpendicular to the suction side. The main body has a spar which extends along the cavity, with a thickness of the spar at a central location between ends of the cavity which has a second thickness. A ratio of the first thickness to the second thickness is between 0.5 and 2. A fan rotor and a gas turbine engine are also disclosed.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Inventors: Michael A. Weisse, Kwan Hui
  • Patent number: 8662853
    Abstract: A wind turbine blade including a number of segments attached together end-to-end in a predetermined arrangement so that the respective covering subassemblies of the segments cooperate to form a substantially smooth surface of the wind turbine blade. Each segment includes a number of fiber tubes extending along preselected lengths of the segment respectively, the fiber tubes being laterally spaced apart from each other respectively to define gaps therebetween. The segment also includes a covering subassembly at least partially supported by the fiber tubes and at least partially defining an internal cavity.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: March 4, 2014
    Assignee: Maxiflow Manufacturing Inc.
    Inventors: Kailash Vasudeva, Sanjeev Bedi
  • Patent number: 8657581
    Abstract: A blade comprises a lightweight core, a composite material disposed on the core, and a skin located on the composite material. The composite material comprises fibers incorporated into a thermoplastic resin matrix in the form of a prepreg sheet or wet layup. The rotor blade may also comprise a front edge member attached along at least a portion of a leading edge of the core, a rear edge member attached along at least a portion of a trailing edge of the core, and a skin located over the core, the front edge member, and the rear edge member. The rotor blade may also comprise a spar extending through the core along a longitudinal axis of the rotor blade, and a skin located over the core and the spar. The edge members and the spars may be fabricated from thermoplastic material.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: February 25, 2014
    Assignee: Gordon Holdings, Inc.
    Inventors: Edward Pilpel, Benjamin Pilpel