With Control Means Responsive To Non-cyclic Condition Sensing, Centrifugal Actuation, Torque Or Thrust Patents (Class 416/31)
  • Patent number: 9677545
    Abstract: A locking arrangement includes at least a rotatable part, a stationary part with respect to the first part, and a locking member having locking protrusions. At least one working plane passing through the locking protrusions is defined in a locking position where compression forces are concentrated which are reaction forces to external forces tending to rotate the parts relative to each other. The parts have locking protrusions defining gaps for receiving the locking protrusions in the locking position for preventing the parts from being rotated to each other.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: June 13, 2017
    Assignee: ALSTOM Renewable Technologies
    Inventor: Santiago Claramunt Estecha
  • Patent number: 9652839
    Abstract: A ground based wind turbine blade inspection system and method consists of a thermal imaging camera configured to detect propagating defects by acquiring thermal imaging data from a wind turbine blade when it is substantially at thermal equilibrium with respect to surrounding air and analyzing the thermal imaging data with a processor to identify thermal effects associated with latent defects caused by internal friction due to cyclic gravitational stresses and wind loads during normal turbine operation. The system permits latent defects to be identified using a ground-based in situ inspection before they become visually apparent, which allows repairs to be made economically while the blade is in place.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: May 16, 2017
    Assignee: DIGITAL WIND SYSTEMS, INC.
    Inventor: John W. Newman
  • Patent number: 9644614
    Abstract: A lightning protection system for a wind turbine with a tower, a nacelle, a blade hub and a blade attached to the blade hub is provided. The lightning protection system includes an inner conductor inside the blade, an outer conductor arranged outside the blade and in electrical communication with the inner conductor, a collecting conductor arranged at the front end of the nacelle and in electrical communication with the outer conductor and a down-conductor connected to ground and in electrical communication with the collecting conductor. The outer conductor and the collecting conductor have substantially a same distance to the rotational axis. Further, a wind turbine with such a lightning protection system is provided.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: May 9, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Kaj Olsen
  • Patent number: 9476312
    Abstract: An apparatus comprising a hub configured to couple to a mast, a grip configured to couple to the hub and a rotor blade, a pitch actuator coupled to the grip and configured to change a pitch of the rotor blade relative to the mast, and a delta-3 restraint coupled to the pitch actuator, wherein the delta-3 restraint is fixed relative to the mast. An apparatus comprising a hub configured to couple to a mast, a grip configured to couple to the hub and a rotor blade, a pitch actuator coupled to the grip and configured to change a pitch of the rotor blade relative to the mast, and a delta-3 restraint coupled to the pitch actuator, wherein the delta-3 restraint is configured to control the pitch of the blade relative to the mast when the pitch actuator fails, and wherein the delta-3 restraint provides an instantaneous blade pitch-flap coupling response.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 25, 2016
    Assignee: BELL HELICOPTER TEXTRON INC.
    Inventors: Christopher E. Foskey, Frank B. Stamps
  • Patent number: 9334852
    Abstract: A lightning protection system for a wind turbine with a tower, a nacelle, a blade hub and a blade attached to the blade hub is provided. The lightning protection system includes an inner conductor inside the blade, an outer conductor arranged outside the blade and in electrical communication with the inner conductor, a collecting conductor arranged at the front end of the nacelle and in electrical communication with the outer conductor and a down-conductor connected to ground and in electrical communication with the collecting conductor. The outer conductor and the collecting conductor have substantially a same distance to the rotational axis. Further, a wind turbine with such a lightning protection system is provided.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: May 10, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Kaj Olsen
  • Patent number: 9147013
    Abstract: A wireless sensor module for use in a wireless sensor network. The sensor module collects sensor data in a periodic manner with a first time period. The sensor data is logged in a non-volatile ferroelectric random access memory (FRAM) within the sensor module. The sensor module is placed in a reduced power idle mode between sensor data collection periods, wherein the logged sensor data is preserved by the FRAM during the idle mode. A representation of the logged sensor data is transmitted over a radio channel to a remote receiver in a periodic manner with a second time period, wherein the second time period is longer than the first time period.
    Type: Grant
    Filed: September 1, 2012
    Date of Patent: September 29, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rafael A. Mena, Arun Vellore Chandramouli Kumar
  • Patent number: 9051921
    Abstract: A lightning rod system for wind turbine blades formed by various connections set up on carbon fiber laminates on the blade, equipotentializing the surface of the flanges of the beam through the deviations of a primary cable with the respective auxiliary cables, carried out with the use of a device having terminals that are connected between the ends of the cited auxiliary cable on the connection between the carbon laminates and the conductor cable or primary cable and which has elevated inductance so that it reduces the passage of current across the carbon laminate and favors the conduction through the metal cable.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: June 9, 2015
    Assignee: GAMESA INNOVATION & TECHNOLOGY, S.L.
    Inventors: Ion Arocena De La Rua, Eneko Sanz Pascual
  • Publication number: 20150147174
    Abstract: The present invention relates to methods, apparatus and computer program products for coordinating the control of a floating wind turbine (101) between a wind turbine controller (111) and a platform controller (110). One or more wind turbine control systems and/or one or more platform control systems may be altered based on 102 said coordinated control of said floating wind turbine (101).
    Type: Application
    Filed: January 9, 2013
    Publication date: May 28, 2015
    Applicant: MHI VESTAS OFFSHORE WIND A/S
    Inventors: Ian Couchman, Robert Bowyer
  • Publication number: 20150139797
    Abstract: The present invention relates to methods, apparatus and computer program products for controlling a wind turbine that comprises a nacelle and one or more turbine blades to reduce or prevent edgewise vibrations building up on the one or more turbine blades. It is identified 202 whether the nacelle is unable to yaw to an upwind position and initiating a corrective action 203 to prevent edgewise vibrations building up on the one or more turbine blades if the nacelle is unable to yaw to an upwind position.
    Type: Application
    Filed: June 6, 2013
    Publication date: May 21, 2015
    Inventors: Kenneth Tougaard Simonsen, Paw Rosenvard, David Steele
  • Patent number: 9033662
    Abstract: A control apparatus C of a horizontal axis wind turbine apparatus WTG calculates the value en of a pitch angle command for each blade based on the rate of change ?D of the azimuth angle ? of a Nacelle N and the rotor azimuth angle of the blades B1, B2 and B3, causes the rotor R to generated torque around the yaw axis by periodically controlling the angle change of the pitch angle of the blades B1, B2 and B3, and using that torque, controls the rate of change of the azimuth angle of the nacelle N. The value of that angle change is calculated as a value that increases as the inputted value of the rate of the change ?D increases.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 19, 2015
    Assignee: Hitachi, Ltd.
    Inventor: Shigeo Yoshida
  • Patent number: 9014863
    Abstract: A control system may be used for rotor blade control. The control system comprises a number of turbulence sensors provided across the surface of a wind turbine blade. The control system monitors the turbulence sensors and when turbulent airflow is detected controls an aerodynamic parameter of the blades. In one embodiment, the parameter is the pitch of the rotor blades. This means that stall-like blade conditions can be avoided, and power generation from the wind turbine can be optimized. The control system may also use measurements of output power to be considered in combination with the turbulence based measurements to add a higher level of responsiveness and precise control.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: April 21, 2015
    Assignee: Vestas Wind Systems A/S
    Inventor: Ib Olesen
  • Publication number: 20150104307
    Abstract: One example of an actuation system for an active blade element of a rotor blade includes an actuator system coupled to a linear transmission system. The actuator system attaches to a structure within a rotor blade and provides a linear motion in a direction that is spanwise to the rotor blade. The linear transmission system is coupled with the actuator system and to an active blade element attached to the rotor blade. The linear transmission system receives the linear motion provided by the actuator system, and responsively provides at least a partial rotation of the active blade element about an axis of the linear transmission system which is in the direction that is substantially parallel to the spanwise axis of the rotor blade.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Inventors: Christopher Foskey, Frank B. Stamps
  • Patent number: 9004862
    Abstract: A control system for calibrating a wind turbine sensor placed on a component of a wind turbine and related methods are disclosed. The wind turbine includes a rotor having at least one wind turbine blade. The method comprises pitching one or more of the at least one of the wind turbine blades according to a predetermined pitch movement which induces a vibratory motion in the at least one turbine blade. A wind turbine sensor measures a vibratory response signal at least partly caused by the vibratory motion. A characteristic sensor response value is determined from the vibratory response signal. The characteristic sensor response value may be compared to a predetermined sensor calibration parameter to determine whether a difference is greater than a predefined tolerance parameter. In this manner, the wind turbine sensor may be calibrated.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: April 14, 2015
    Assignee: Vestas Wind Systems A/S
    Inventor: Erik Carl Lehnskov Miranda
  • Publication number: 20150093243
    Abstract: A wind turbine including a rotor, a nacelle, a support structure for the nacelle and at least one wind sensing apparatus mounted on the support structure.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 2, 2015
    Inventors: Marc CANAL VILA, Jordi ARMET UNZETA
  • Patent number: 8951011
    Abstract: According to the inventive concept, there is provided a wind turbine with at least one blade. The wind turbine comprises a first accelerometer mounted at a first radial position of the blade and being adapted to determine a first acceleration value, and a second accelerometer mounted at a second radial position of the blade different from the first radial position, and the accelerometer being adapted to determine a second acceleration value. The wind turbine further comprises a controller adapted to generate a signal based on said first and second acceleration values. There is also provided a method for monitoring a blade of a wind turbine.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: February 10, 2015
    Assignee: Vestas Wind Systems A/S
    Inventors: Xiao Qian Li, Ingemann Hvas Sandvad, Srikanth Narasimalu
  • Publication number: 20150030448
    Abstract: The rotor blades of a wind turbine each have a plurality of fibre-optic pressure variation sensors which can detect the onset of a stall condition. The output of the stall condition sensors is input to a stall count circuit which increases a stall count signal each time a stall indication is received. The stall count signal is decayed exponentially over time and the current signal is summed with the decayed signal from a previous sampling period to form a value from which a stall margin is determined. An ?:? curve of tip speed to wind speed ratio ? against pitch angle reference ? is then determined from the stall margin.
    Type: Application
    Filed: December 13, 2012
    Publication date: January 29, 2015
    Inventors: Asger Svenning Andersen, Jesper Sandberg Thomsen, Jacob Krogh Kristoffersen, Ib Svend Olesen, Jonas Romblad
  • Publication number: 20140377065
    Abstract: Method for controlling a wind turbine, comprising the steps of determining a boundary layer profile of the wind coming towards the wind turbine, determining the wind velocity at a predetermined height based on the boundary layer profile, and operating the wind turbine to maintain the emitted noise below a predetermined noise level when the wind velocity at the predetermined height is below a predetermined value.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 25, 2014
    Inventor: Alvaro Matesanz
  • Publication number: 20140377066
    Abstract: A portable airborne wind-energy power conversion system, alone or in a modular array, wherein each portable airborne system comprises tethered airship, hydrogen generation system, hydrogen recovery system, and control system, wherein the tethered airship comprises a self-inflating horizontal-axis wind turbine rotor, an electrical generator, a self-inflating aerodynamic shroud surrounding the wind turbine rotor, and stabilizing fins, wherein the aerodynamic shroud has the geometry of a wind concentrator and diffuser in fluid communication with the wind turbine rotor that is located in the narrowest section of the shroud between the concentrator and diffuser sections of said shroud, wherein the airship is additionally self-deflating and the entire system is collapsible into a volume less than one tenth of its original size, so that the portable airborne system can be easily transported, stored, or relocated, wherein the system can continue to produce usable power, even during the process of self-deflation.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventor: Alexander Anatoliy Anderson
  • Publication number: 20140363292
    Abstract: A method of estimating an amount of undesired loading experienced by at least a portion of a structure (100) is provided. The structure (100) may be, for example, a wind turbine generator (WTG) and the portion for which undesired loading is estimated may be, for example, a rotor (130) of the WTG. The method includes receiving a first signal characterizing instantaneous stress experienced by a component (140) of the structure (100) and filtering out at least a portion of the received first signal that corresponds to the desired loading experienced by the component to produce a first filtered signal. The amount of undesired loading experienced by the at least a portion of the structure (100) is estimated based at least partially on the first filtered signal.
    Type: Application
    Filed: December 20, 2012
    Publication date: December 11, 2014
    Inventors: Jesper Sandberg Thomsen, Soren Dalsgaard, Asger Svenning Andersen, Lars Risager
  • Publication number: 20140219797
    Abstract: The present invention relates a wind turbine comprising a wind turbine tower with a nacelle provided on the top to which a rotor hub with one or more wind turbine blades is rotatably mounted so that they form a rotor plane. A floating foundation having a upper section is mounted to the bottom of the wind turbine tower, wherein the foundation has a buoyant body configured to be installed at an offshore position having a water depth of about 40 m or more. The wind turbine blade comprises an inner blade section coupled to an outer blade section by a pitch junction in which a pitch mechanism is coupled to a pitch control system configured to regulate the pitch of the outer blade section relative to the inner blade section at wind speeds above a first wind speed. This allows the pitching to be used to counteract the tilting of the wind turbine caused by the different thrusts acting on the structure.
    Type: Application
    Filed: January 7, 2014
    Publication date: August 7, 2014
    Applicant: ENVISION ENERGY (DENMARK) APS
    Inventors: Michael FRIEDRICH, Anders Varming REBSDORF
  • Publication number: 20140193257
    Abstract: The present invention relates to an acoustic noise monitoring system for a wind turbine, comprising: a microphone for monitoring acoustic noise, the microphone adapted to be mounted to the exterior of a wind turbine nacelle; an input, the input adapted to receive operating conditions data from a wind turbine; a processor, the processor adapted to receive data from the microphone and the input; and storage memory, adapted to store the acoustic noise data and the operating conditions data. The processor is adapted to apply a transfer function to said acoustic noise data to correlate said data with a set of acoustic noise data measured at a remote location from the wind turbine. The system may comprise a controller adapted to generate a control signal, for outputting to a wind turbine controller, for adjusting the operating parameters of the wind analyser turbine in dependence on said correlated data.
    Type: Application
    Filed: August 8, 2012
    Publication date: July 10, 2014
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Frank Ormel, Bryan Edwards
  • Patent number: 8764393
    Abstract: A method for operating a wind power plant (WEA) before or during the performance of maintenance work on the wind power plant (WEA). At least one physical condition of the surroundings outside the wind power plant (WEA) induced by wind movement outside the wind power plant (WEA) is detected as an external physical condition. At least one physical condition of a component of the wind power plant (WEA) influenced by wind movement outside the wind power plant (WEA) is detected as an internal physical condition. The at least one external physical condition and/or at least one internal physical condition are evaluated. The at least one external physical condition is compared with a predetermined reference value for the external physical condition. The at least one internal physical condition is compared with a predetermined reference value for the internal physical condition. Depending on the comparison, at least one warning message is generated.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: July 1, 2014
    Assignee: Senvion SE
    Inventors: Martin Von Mutius, Jens Altemark, Alf Trede
  • Publication number: 20140178197
    Abstract: A method of controlling a wind turbine comprising blades attached to a rotor hub for rotation in a rotor plane and a control system for individually pitching the blades relative to the hub. The method comprises dividing the rotor plane into a number of sectors, determining the individual sectors for each blade during the rotation by means of an azimuth angle sensor, and obtaining blade sensor data from a blade sensor on an individual blade relating to a sector, and comparing the obtained data with data relating to the same sector and representing blade sensor data on other blades. When an event is detected in a given sector, an individual pitch contribution is determined in the sector, and the blades are then pitched according to this individual pitch contribution for that given sector at least partly during passage of the sector.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 26, 2014
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Lars Risager, Søren Dalsgaard, Jacob Krogh Kristoffersen, Jesper Sandberg Thomsen, Søren Sørensen, Asger Svenning Andersen
  • Publication number: 20140169967
    Abstract: Methods and devices are described for reducing the torque and the level of vibration on a helicopter rotor blade by maintaining a constant lift and constant (low) drag on each section of the blade throughout the entire revolution. A rotor system includes a trackway defining a continuous travel circuit, truck members operatively coupled with the trackway wherein the truck members are selectively translatable along the travel circuit, prime movers operatively coupled with the truck member for selectively moving the truck members along the travel circuit, elongate rotor blades having proximal ends operatively coupled with the truck members and opposite free distal ends wherein the rotor blades are carried with the truck members along the travel circuit thereby generating an upward force for lifting associated load-carrying vehicles. The methods and apparatus allow the rotor blades and the transmission to be significantly lighter and easier to manufacture.
    Type: Application
    Filed: June 11, 2012
    Publication date: June 19, 2014
    Applicant: Bluebirds Technology LLC
    Inventor: John Anthony Wilkins
  • Publication number: 20140154075
    Abstract: Embodiments of the invention generally relate to wind turbine generators, and more specifically to improving power production in wind turbine generators. A rotor plane of the wind turbine may be divided into a plurality of sections. A characteristic of wind associated with each section may be determined. An optimal pitch angle may be determined for each section based on the associated wind characteristic. A pitch controller may adjust the pitch angle of a blade to the optimal pitch angle as the blade sweeps through the section.
    Type: Application
    Filed: June 29, 2012
    Publication date: June 5, 2014
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Jacob Krogh Kristoffersen, Jesper Sandberg Thomsen
  • Publication number: 20140140842
    Abstract: Described embodiments include a wind turbine system. In this embodiment, the system includes a wind turbine including a rotor blade having a controllable feature and attached to a rotor hub drivingly coupled to an electric generator. The controllable feature is configured if activated to decrease a noise generated by the rotor blade and correspondingly to decrease electric power generated by the electric generator. The wind turbine system includes a sensor configured to detect a parameter indicative of present or possible future noise generation state of the rotor blade. The wind turbine system includes a noise manager circuit configured to select a noise mitigation measure responsive to the detected parameter and in compliance with a minimum electric power generation requirement assigned to the wind turbine. The wind turbine system includes a control circuit configured to activate the controllable feature in response to the selected noise mitigation measure.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: ELWHA LLC
    Inventors: William David Duncan, Roderick A. Hyde, David B. Tuckerman, Lowell L. Wood, JR.
  • Publication number: 20140140844
    Abstract: The present invention relates to a method for controlling a wind turbine comprising a pitch of one or more blades and collecting first data indicative of a dynamic condition of the first wind turbine blade and a rotor, the first data comprising rotor data and first deflection data, the rotor data indicative of the azimuth position and rotational velocity of the rotor in a rotor plane perpendicular to the rotor axis, and the first deflection data indicative of the position, speed and acceleration of one or more parts of the first wind turbine blade. The method comprises calculating an expected tower clearance distance at a later time of tower passage for the first blade based on the first data including acceleration of one or more parts of the first blade, and performing measures to prevent tower collision, if the expected tower clearance distance fulfills a collision risk criterion.
    Type: Application
    Filed: June 21, 2012
    Publication date: May 22, 2014
    Applicant: LM WP PATENT HOLDING A/S
    Inventor: Mark Olaf Slot
  • Patent number: 8727722
    Abstract: A system and methods for reducing vibration in a rotatable member are provided. The system includes a blade tracking sensor, a rotatable member comprising an adjustable aspect, and a control computer. The control computer is configured to determine an axial position of each blade, determine a first blade that is displaced by a greatest distance along the axis in a first direction, modify an aspect of the first blade to facilitate reducing a vibration in the rotary blade system, determine if the vibration level in the rotary blade system is reduced, and select another rotatable member to modify such that a vibration in the rotary blade system is facilitated being further reduced.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: May 20, 2014
    Assignee: General Electric Company
    Inventors: Peter B. Houser, John Henry Studer, Gerald L. Vossler, John Hafer
  • Publication number: 20140119914
    Abstract: Load control systems and methods for shafts are provided. The load control system includes a sensor assembly. The sensor assembly includes a plurality of ultrasonic probes mounted to the shaft, each of the plurality of ultrasonic sensors configured to produce an ultrasonic wave on the shaft. The sensor assembly further includes a plurality of receivers mounted to the shaft, each of the plurality of receivers configured to sense the ultrasonic wave produced by one of the plurality of ultrasonic probes. The load control system further includes a controller communicatively coupled to the sensor assembly and configured to measure a travel time of the ultrasonic wave produced by each of the plurality of ultrasonic probes.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sascha Schieke, Bharat Bagepalli, Nilesh Tralshawala, Aditi Koppikar, Pekka Sipilae
  • Publication number: 20140099202
    Abstract: The main subject matter of the invention is a device (1) for setting a turbomachine propeller blade (2), characterised in that it comprises a first disc (3) and a second disc (4) respectively provided with first (5) and second (6) coupling means, the first (3) and second (4) discs being coaxial, means of tilting (9, 10, 11, 12) at least one of the first (3) and second (4) discs with respect to the other, the device (1) being configured so that, during a tilting of at least one of the first (3) and second (4) discs with respect to the other, the coupling distance (D) of said at least one blade (2) on the first (3) and second (4) discs remains constant, bringing about the rotation of said at least one blade (2).
    Type: Application
    Filed: October 2, 2013
    Publication date: April 10, 2014
    Applicant: SNECMA
    Inventors: Norman JODET, Adrien Dubois, Rasika Fernando, Mathieu Gruber
  • Publication number: 20140037448
    Abstract: A wind turbine includes multiple blades, multiple Micro Inertial Measurement Units (MIMUs) for sensing parameter signals of the blades, and a control system. The control system includes a blade bending moment calculation unit, a blade bending moment error signal calculation unit, and a pitch angle compensation command calculation unit. The blade bending moment calculation unit is used for calculating blade bending moment values of the blades based at least on the sensed parameters. The blade bending moment error signal calculation unit is used for calculating blade bending moment error signals of the blades based on the calculated blade bending moment values of the blades and multiple blade bending moment commands. The pitch angle compensation command calculation unit is used for calculating pitch angle compensation commands of the blades based on the calculated blade bending moment error signals to adjust pitch angles of the blades respectively.
    Type: Application
    Filed: July 1, 2013
    Publication date: February 6, 2014
    Inventors: Xu FU, NA NI, Qiang LI, Zhilin WU, Lihan HE, Hai QIU, Yong YANG, Gerald Addison CURTIN, JR., Myungkeun YOON
  • Publication number: 20140030089
    Abstract: A method of operating at least one wind turbine is described, comprising: determining a plurality of stress events of at least one component of the at least one wind turbine; determining at least one accumulated stress from at least two of the plurality of stress events; determining at least one residual lifetime based at least partially on the at least one accumulated stress.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Inventor: Anders WICKSTRÖM
  • Publication number: 20140023499
    Abstract: A method of and apparatus for operating a propeller, the propeller moving through a fluid, the method including: measuring a value of a property of the fluid (e.g. a parameter related to the density of the fluid); measuring a value of a parameter, the parameter related to one or more forces applied to the propeller (e.g. a torque applied to the propeller) or derived at least in part from the action of the propeller (e.g. a thrust produced by the action of the propeller, a drag produced by the action of the propeller, or a velocity produced by the action of the propeller); and controlling the propeller depending on a function of the measured value of the property of the fluid and the measured value of parameter. The propeller may be a propeller on an aircraft.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 23, 2014
    Applicant: BAE SYSTEMS plc
    Inventor: Peter Wayne Collingbourne
  • Publication number: 20140017079
    Abstract: The present invention relates to a method of controlling an idling wind turbine in which wind condition data and wind turbine position data are collected by a sensor system, a control system computes an optimal pitch angle for a rotor blade of the wind turbine, and a pitching system continuously turns the rotor blades in the same direction in multiples of 360 degrees. The present invention further relates to a wind turbine with a sensor system including a wind sensor that measures wind condition data in the vicinity of the wind turbine, and a control system including a computer that executes a control algorithm and processes sensor input from the sensor system to compute an optimal pitch angle value for a rotor blade on the hub. This allows pitching the rotor blade into angle in which the mechanical loads of that rotor blade are reduced to a minimum when idling.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 16, 2014
    Applicant: Envision Energy (Denmark) ApS
    Inventor: Peter Grabau
  • Publication number: 20140003938
    Abstract: A stall sensor for a wind turbine is provided. A wind turbine including such a stall sensor and a method of operating such a wind turbine are also provided. The stall sensor includes detector means adapted to measure vibration of a rotor blade of the wind turbine and to output a vibration signal representative of the vibration of the rotor blade, conversion means connected to the detector means and adapted to determine a noise figure representative of a spectral signal content within a frequency band of the vibration signal received from the detector means and arbiter means connected to the conversion means and adapted to signal a presence or an absence of stall based on the noise figure received from the conversion means.
    Type: Application
    Filed: June 14, 2013
    Publication date: January 2, 2014
    Inventors: Thomas Esbensen, Gustav Hoegh
  • Publication number: 20130343888
    Abstract: The invention provides a wind turbine comprising a rotatable drive train including at least one bearing (3) and a pump (4) for supply of a lubricant to the bearing (3). The wind turbine further comprises a controller for performing closed loop control of the pump (4) to provide an amount of lubricant which varies depending on an actual state of operation.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 26, 2013
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Thomas Korsgaard Nielsen, Poul Spærhage Frøkjær
  • Patent number: 8608439
    Abstract: A system for arranging and operating an array of wind machines to protect crops from damaging weather conditions, such as freezing frost, rain and heat. The method includes a wind machine positioned to force air across the crop. The wind machine is preferably a propeller/tower configuration. The operational method of the wind machine array includes the steps of sensing ambient meteorological and the hardiness of the crop to withstand a particular adverse weather condition and operating the wind machines in response to these factors. Multiples of wind machines are employed in the preferred embodiment of the method, the siting of the wind machines preferably based upon topographic and historical meteorological conditions. The operation of the wind machines can be automatically and remotely operated with the aid of satellite communications including internet links.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: December 17, 2013
    Inventor: Daryl G. Hill
  • Publication number: 20130330188
    Abstract: A horizontal axis wind turbine with a ball-and-socket hub is disclosed. The hub enables horizontal axis turbines with two or more blades to teeter in response to wind shear gradients. The new hub design for a turbine equipped with three blades has been modeled using modified FAST code and has shown significant advantages over present three-bladed turbines with fixed hubs in reducing loads on the blades, tower, main shaft and bearings. The new hub design for a turbine equipped with three blades has also shown significant advantages over present two-bladed teetering turbines in reducing loads on the blades and tower. A likely additional advantage of a ball-and-socket hub equipped with three blades over a teetering hub with two blades is that wider teetering ranges are possible due to the significantly reduced likelihood for resonant teetering.
    Type: Application
    Filed: July 15, 2013
    Publication date: December 12, 2013
    Inventor: Arnold Ramsland
  • Patent number: 8602731
    Abstract: A rotor blade is used in combination with a submersible electrical generator for generating electricity to be put into the grid, where the pitch of the rotor blade is controlled by a microprocessor. The microprocessor controls a radio frequency transmitter which emits signals to a receiver which controls a hydraulic value. The hydraulic valve controls a push-pull arrangement which through a right angle gear and pitch adjustment axial adjust the rotor pitch according to pre-programmed conditions stored in the microprocessor.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 10, 2013
    Inventor: Fred K. Carr
  • Patent number: 8568096
    Abstract: The present invention relates to a control and regulation method for a rotorcraft having at least one variable-pitch propulsive propeller driven by at least one power source, said method consisting in generating at least one mean pitch setpoint ?tcl* for the propeller(s) as a function of a thrust variation control order Tcl, wherein the method consists in defining a plurality of operating modes, including: a direct mode in which the value of the mean pitch value is a direct result of the control order Tcl; a forced mode in which the mean pitch is automatically forced to a calculated pitch value; a regulated mode in which the power of the propulsive propeller(s) is regulated as a function of a power setpoint from a pilot and of servo-controlling the mean pitch of the propeller(s); and a protected mode.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 29, 2013
    Assignee: Eurocopter
    Inventor: Paul Eglin
  • Patent number: 8529206
    Abstract: There is provided a yaw rotation control method for a wind turbine generator that does not require a yaw motor and is advantageous for a reduction in cost and a reduction in size and weight of a nacelle. A control unit performs, according to a deviation between wind direction information (?w) obtained from a wind direction detecting unit and a present state yaw angle (?z) obtained from a yaw rotating position detecting unit, yaw rotation control for outputting pitch angle command values (?1, ?2, and ?3) of yaw rotation to a pitch driving unit and directing front surfaces of rotation surfaces of wind turbine blades at the time of start. This yaw rotation control includes a step of controlling pitch angels of the wind turbine blades at a predetermined azimuth angle.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: September 10, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Tomohiro Numajiri
  • Publication number: 20130230400
    Abstract: A method and a system for operating a wind turbine (10) during a fault. The system includes a pitch motor for rotating each rotor blade (18), second pitch sensors (72) for determining when the rotor blade (18) is rotated to a set point, and a backup pitch controller (80). After a fault is detected, the method determines whether the wind speed in the vicinity of the wind turbine (10) is less than or greater than or equal to a maximum rated velocity of the wind turbine (10). The backup pitch controller (80) then rotates the rotor blades (18) to a specific set point based on the determination.
    Type: Application
    Filed: November 10, 2010
    Publication date: September 5, 2013
    Applicant: General Electric Company
    Inventors: Meng Gao, Cheng Ma
  • Patent number: 8511989
    Abstract: A wind turbine generator is provided in which the efficiency of heating the interior of a nacelle can be improved at a low outside air temperature in a cold region. The wind turbine generator includes a nacelle that accommodates a driving and generating mechanism connected to a rotor head fitted with turbine blades, wherein the nacelle is equipped with a lubricant-oil cooling fan and a generator cooling fan that ventilate the interior of the nacelle to prevent an increase in the temperature of the interior and a heating device that raises the temperature of the interior of the nacelle at a low outside air temperature, wherein the cooling fans can be operated with the rotating directions and the rotational speeds thereof being controlled, and during the operation of the heating device, the rotating directions and the rotational speeds of the cooling fans are controlled so as to make the wind velocity at the ventilation ports thereof about zero.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: August 20, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Takatoshi Matsushita
  • Patent number: 8491262
    Abstract: A method for shutdown of a wind turbine having one or more wind turbine blades includes detecting an operational condition of the wind turbine that calls for an expedited or emergency shutdown of the wind turbine by a manner other than normal pitch control shutdown. Upon detection of the operational condition, one or more air brake flaps configured on each of the turbine blades is deployed by removing power to a fail-safe actuator operatively coupled to each of the air brake flaps. The fail-safe actuator is configured to hold the respective air brake flap at a retracted position relative to a suction side of the turbine blade in a powered state of the fail-safe actuator and to release the air brake flap for automatic deployment to an open position upon loss of power to the fail-safe actuator.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: July 23, 2013
    Assignee: General Electric Company
    Inventors: Edward Lee McGrath, Robert William Ridgway
  • Publication number: 20130183151
    Abstract: A method of calibrating one or more load sensors of a blade of a wind turbine, said wind turbine comprising a main generator, a power electronic converter connected with the main generator, and a rotor operationally connected with the main generator and carrying the blade. The method comprises acting on the power electronic converter to operate the main generator as motor to set the blade in at least one predetermined condition. The method further comprises measuring loads in the predetermined condition using the load sensors of the blade and calibrating the blade load sensors taking into account the measured loads.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 18, 2013
    Applicant: ALSTOM WIND, S.L.U.
    Inventor: Alstom Wind, S.L.U.
  • Publication number: 20130164132
    Abstract: A vibration suppressor system includes an annular electric motor system which independently controls rotation of at least two masses about the axis of rotation to reduce in-plane vibration of the rotating system. A method of reducing vibrations in a rotary-wing aircraft includes independently controlling a relative angular position of a multiple of independently rotatable masses to reduce vibrations of a main rotor system.
    Type: Application
    Filed: February 22, 2013
    Publication date: June 27, 2013
    Applicant: SIKORSKY AIRCRAFT CORPORATION
    Inventor: Sikorsky Aircraft Corporation
  • Publication number: 20130156578
    Abstract: A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: David A. Little, Zhengxiang Pu
  • Publication number: 20130136597
    Abstract: A wind turbine control system is provided. The control system has a wind turbine controller arranged locally at the wind turbine and adapted to adjust operation parameters of the wind turbine, and a central control unit arranged remotely from the wind turbine and adapted to communicate with the controller. The central control unit has a module for virtualizing a first computing device and a second computing device. The first computing device monitors information provided by sensors of the wind turbine and received by the central control unit. The central control unit generates a control signal based on the received information and provides a control signal to the second computing device. The second computing device generates an adjusting signal based on the control signal to the wind turbine controller for controlling the operation of the wind turbine by adjusting operation parameters of the wind turbine.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 30, 2013
    Inventors: ULRICH VESTERGAARD B. HANSEN, JANNIK HOEJGAARD
  • Patent number: 8449253
    Abstract: A method for controlling a pitch angle of blades of a wind turbine rotor during an emergency stop process of the rotor from an operating state, includes the steps of: (i) continuously determining a measure of an angular acceleration of the rotor, (ii) initiating pitching of the rotor blades and continuing pitching until a time (t2) where the determined angular acceleration of the rotor is substantially zero, and (iii) resuming pitching of the rotor blades at the end of a predetermined time period (t3-t2) after the time (t2) where the determined angular acceleration of the rotor was substantially zero. A wind turbine including an emergency stop control system having a mechanism for controlling an emergency stop process of the wind turbine rotor according to such a method is also contemplated.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: May 28, 2013
    Assignee: Vestas Wind Systems A/S
    Inventors: Rasmus Svendsen, Keld Hammerum
  • Patent number: 8439638
    Abstract: A hydraulic cylinder is coupled to blades of a wind turbine generator and actuated to change a pitch angle of the blade. A variable displacement hydraulic pump supplies hydraulic oil to the hydraulic cylinder, and a discharge pressure of the pump does not follow a load pressure. When the discharge pressure of the hydraulic pump becomes a set pressure, a pressure control valve is opened to change a discharge amount of the hydraulic pump, and to make the discharge pressure of the hydraulic pump to be a pressure smaller than a cut off pressure. Further, a setting control unit sets the set pressure based on the hydraulic pressure that the hydraulic cylinder requires such that the set pressure becomes a minimum pressure required to change the pitch angle to a predetermined angle by the hydraulic cylinder.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: May 14, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Seita Seki, Tomohiro Numajiri