Natural Fluid Current Patents (Class 416/41)
  • Patent number: 9644608
    Abstract: A method and system for shutting down a wind turbine is presented. The method includes determining one or more pitch positions for one or more rotor blades of the wind turbine such that a sum of potential energy and kinetic energy in the wind turbine is minimized. The method further includes pitching the one or more rotor blades from an operating position to the determined pitch positions.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: May 9, 2017
    Assignee: General Electric Company
    Inventors: Rogier Sebastiaan Blom, Rosa Castañé Selga, Matthijs Leonardus Gerardus Boerlage
  • Patent number: 9644604
    Abstract: A vertical axis wind turbine including a turbine rotor having an axis of rotation and at least one blade spaced from and mounted for rotation about the rotation axis of the turbine. The blade has at least one longitudinal surface substantially parallel to the rotation axis and for engagement, in use, with wind incident on the turbine rotor. The blade is a two part blade with a first leading blade portion pivotably connected to a second trailing blade portion. The turbine includes pitch control means and camber control means for controlling the pitch and camber of the blade.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 9, 2017
    Assignee: SUPERVAWT LIMITED
    Inventor: James Frederick Carnac Whinney
  • Patent number: 9279412
    Abstract: A control system is presented for controlling operation of a vertical axis wind turbine (VAWT) for generating energy from an incoming fluid flow. The control system comprises at least one flow affecting arrangement associated with at least one blade of the VAWT and a control unit connected to said flow affecting arrangement, the flow affecting arrangement comprising two flow affecting units located in two opposite sides of the blade respectively at a leading edge thereof, each flow affecting unit being operable for creating a blowing jet at the respective side of the blade thereby inducing an increase in a fluid flow momentum, the control unit being configured and operable for selectively activating the flow affecting units in alternating fashion according to a predetermined time pattern to oscillate the blowing jet at the opposite sides of the blade.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: March 8, 2016
    Assignee: Technion Research and Development Foundation Ltd.
    Inventors: David Greenblatt, Benyamin Sasson, Magen Schulman
  • Patent number: 9197116
    Abstract: The invention relates to an annular rotor having a hollow shaft for an electric machine. In order to allow transport of such a machine, particularly for a very large model, the rotor is divided in the circumferential direction into a plurality of partial annular rotor segments (1). The rotor further comprises a hollow shaft, wherein the closed ring shape of the rotor can be broken by separating the rotor segments (1) from each other.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: November 24, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Martin Junge, Andreas Jöckel
  • Patent number: 9188106
    Abstract: Disclosed is a wind turbine with a nacelle and a rotor. The rotor includes a number of blades and a hub, the nacelle and the hub being connected with each other in an interface region so that a drive train extends from the hub into the nacelle. The wind turbine further includes a transport system for transporting hydraulic and/or pneumatic fluid from the nacelle into the hub. The transport system includes a rotary unit as a connection through which the fluid passes a part of which rotary unit rotates in operation together with the hub which rotary unit is positioned in the interface region. Further disclosed is a transport system and methods of operating, maintenance and construction of such wind turbine.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: November 17, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Uffe Eriksen
  • Patent number: 9140237
    Abstract: A windmill can include a first blade assembly including a plurality of blades, a sprocket and chain assembly configured to turn the first blade assembly in and out of an incoming wind, a wheel assembly, such that the wheel assembly supports the first blade assembly, and a fan assembly configured to move the sprocket and chain assembly to turn the first blade assembly a quarter turn for avoidance of damage to the windmill from a damaging wind. An ice-catcher may also move the blades out of damaging wind. The invention may include multiple blade assemblies attached to each other.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: September 22, 2015
    Inventor: Eldon Leonard Stroburg
  • Patent number: 9133823
    Abstract: A vertical axis wind turbine includes a support axis and a wind wheel. The wind wheel includes a rotation base, plural rotation stand sets, plural deflection structures, plural blades, and plural deflection-limiting structures corresponding to the plural blades. The rotation base is rotatably disposed on the support axis. The plural rotation stand sets may define a rotation plane. A first end of each rotation stand set is fixedly disposed on the rotation base. Each blade is pivotally coupled to a second end of the corresponding rotation stand set through the corresponding deflection structure. Consequently, an angle of attack of the blade in an airflow is correspondingly adjusted. When one of the plural blades is deflected, the corresponding deflection-limiting structure generates a first rotational torque in a first rotating direction or a second rotational torque in a second rotating direction so as to rotate the rotation base.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: September 15, 2015
    Assignee: NATIONAL TIAWAN OCEAN UNIVERSITY
    Inventors: Shenq-Yuh Jaw, Jiahn-Horng Chen, Ching-Yeh Hsin
  • Patent number: 9115697
    Abstract: A rotary turbine including at least one blade is disclosed. The rotary turbine includes a blade arrangement in which the orientation of the at least one blade movably changes relative to the fluid flow and also changes relative to an orbital path taken by the rotary turbine thereby increasing flow area usage and minimizing friction. Certain embodiments of the present disclosure include a rotary turbine with blade orientations that are linearly coupled to the orbital orientation of the turbine. Other embodiments of the present disclosure include a rotary turbine with blade orientations that are non-linearly coupled to the orbital orientation of the turbine.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 25, 2015
    Inventor: Jeffrey M. Lucas
  • Publication number: 20150147176
    Abstract: A fluidic rotor rotary machine has a rotor comprising at least one blade (4) mounted on an arm (2) rotating about a main axis (1) of the rotor, the rotor being held by a support structure (5) in an orientation such that said axis (1) is essentially perpendicular to the fluid flow direction, the blade (4) being pivotally mounted about a rotational axis (3) parallel to the main axis (1), the machine being characterized in that it comprises means for generating a relative rotational movement of the blade (4) relative to the arm (2) at the rotational axis (3), thereby varying the blade angle, said means comprising an eccentric mechanism rotating on said blade rotational axis. Application in particular to propellers and generators operating according to Lipp-type or Voith-Schneider-type kinematics, with possible mode switching.
    Type: Application
    Filed: July 5, 2013
    Publication date: May 28, 2015
    Applicant: ADV TECH
    Inventors: Arnaud Curutchet, Stephane Grismangin, Renaud Fourton, Gabriel Corde
  • Publication number: 20150139796
    Abstract: The invention regards a method for controlling the pitch angle of at least one wind turbine blade in a rotor connected to a main shaft on a wind turbine, the method comprises the steps of determining; a first component of the wind vector which is upwind, horizontal and aligned with the main shaft direction and, a second component of the wind vector which is upwind, perpendicular to the first component of the wind vector, wherein the first component of the wind vector and the second component of the wind vector are determined by use of at least one ultrasonic sensor mounted on the rotor, whereby the pitch angle is controlled based on the first component of the wind vector and the second component of the wind vector.
    Type: Application
    Filed: May 13, 2013
    Publication date: May 21, 2015
    Inventors: Jesper Kjær Hansen, Jørgen Højstrup
  • Publication number: 20150132128
    Abstract: The invention provides a wind turbine, a control system for a wind turbine and a method for controlling a wind turbine where asymmetry in load on the rotor is compensated by individual pitching by comparing a load distribution over the rotor plane with a threshold value. To avoid unnecessary compensation, the threshold value is adjusted based on a loading of the wind turbine or based on climate conditions under which the turbine operates.
    Type: Application
    Filed: June 6, 2013
    Publication date: May 14, 2015
    Inventors: Ali Zaib, Kenneth Tougaard Simonsen
  • Patent number: 8979492
    Abstract: A method for determining and applying a pitch angle offset signal for controlling a rotor frequency of a rotor of a wind turbine is disclosed. The method includes obtaining a motion quantity indicative of a motion of the rotor and determining the pitch angle offset signal based on the motion quantity such that the pitch angle offset signal is adapted to be used for adjusting a blade pitch angle of a rotor blade mounted at the rotor for controlling the rotor frequency in order to reduce a time span during which the rotor is in a critical motion region. A corresponding system and a method for controlling a rotor frequency are also disclosed.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: March 17, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Esbensen, Gustav Hoegh
  • Publication number: 20150037151
    Abstract: Disclosed is a power generation device (1), comprising a shaft column (11) and at least two blade units (12-17), wherein the blade units (12-17) are sheathed onto the shaft column (11) and capable of rotating around the shaft column (11), the adjacent s blade units rotate in opposite rotational directions, each blade unit (12-17) has a plurality of arm portions (121-171) and a plurality of movable blades (122-172), the arm portions (121-171) extend radially outwardly from the shaft column (11), each of the movable blades is connected to one side of the corresponding arm portion and, after passing through a first radial centre line (19) of the shaft column (11), expands gradually, and after being expanded, does not interfere with the adjacent blade unit, the first radial centre line (19) is parallel to a fluid flow direction, and each of the movable blades is gradually closed after it rotates through a rotation angle.
    Type: Application
    Filed: November 23, 2012
    Publication date: February 5, 2015
    Inventor: Sheng-Chu Tai
  • Patent number: 8946916
    Abstract: A variable speed wind turbine is configured to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller is configured to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without changing the operation of the wind turbine to a more efficient working point. When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical grid by outputting at least a predetermined minimum electrical power.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 3, 2015
    Assignee: Vestas Wind Systems A/S
    Inventor: Germán Claudio Tarnowski
  • Patent number: 8939726
    Abstract: A partial pitch wind turbine blade in which the pitch system of the blade functions as a lightning receptor. As the pitch system is of a relatively large dimension, it is able to dissipate the effects of a lightning strike without damage, and removes the needs for additional blade features normally used to conduct lightning around or away from the pitch system.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 27, 2015
    Assignee: Envision Energy (Denmark) ApS
    Inventor: Peter Grabau
  • Patent number: 8899921
    Abstract: A wind turbine blade is configured such that the lift force from the blade airfoil is always normal, or nearly normal, to the shaft torque. This condition maximizes energy conversion. This objective may be achieved by a) having the airfoil chord always aligned to the actual wind direction (subject only to small angle of attack variations), and b) slowing the turbine rotation rate so that no blade twist is needed. As a result, blade tip speed due to shaft rotation is less than the wind speed, and preferably much less. This low tip speed eliminates any hazard to birds. The lift force from the blade airfoil directly drives the torque on the shaft, so the control problem simplifies to adjusting the blade angle of attack to keep the lift constant across varying wind speeds.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: December 2, 2014
    Inventor: Earl McCune
  • Publication number: 20140308125
    Abstract: A wind turbine for power generation is provided. The wind turbine includes a power generating unit and a rotor having a plurality of blades. To control power output of the wind turbine, the blades are capable of being pitched by a blade pitch adjusting device. The wind turbine also includes a pitch control unit for controlling the blade pitch adjusting device. Furthermore, the wind turbine includes a load determining device for determining the blade load from the pitch activity of the blades.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventor: Henrik Stiesdal
  • Patent number: 8851838
    Abstract: The present invention relates to a displayable wind turbine. The displayable wind turbine includes a central shaft arranged vertically to a flow direction of fluid. Radially extending upper spokes are coupled to an upper hub. Radially extending lower spokes are coupled to a lower hub. Blades have first ends connected to an end of the upper hub and second ends connected to an end of the lower hub. A pitch control unit adjusts a blade pitch angle. A detection unit includes a fluid direction detection unit, a fluid velocity detection unit, a central shaft speed detection unit, and a central shaft position detection unit. A light emitting unit includes a printed circuit board and light emitting devices. A control unit controls operations of the pitch control unit and the light emitting unit.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: October 7, 2014
    Assignee: Snu R&DB Foundation
    Inventor: Seung Jo Kim
  • Patent number: 8790068
    Abstract: The present disclosure describes a low-wind, dual-stage, vertical-axis, wind-generated power turbine comprising a structural support tower, at least four turbine assemblies stacked on top of one another within individual turbine bays, a central drive shaft connecting the turbine assemblies, a draft induction channel surrounding the drive shaft, a spiral blade running through the induction channel, a paddle turbine assembly at the base of the tower which propels the spiral blade, a blower source which powers the paddle turbine, a built-in solar system which feeds the blower, external, natural wind directional slats, and a high pressure, fluid-drive, Hydrabine turbine mechanically coupled to a transmission or CTV, coupled to a one Mega Watt output generator.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: July 29, 2014
    Inventor: Larry Cantwell
  • Patent number: 8764393
    Abstract: A method for operating a wind power plant (WEA) before or during the performance of maintenance work on the wind power plant (WEA). At least one physical condition of the surroundings outside the wind power plant (WEA) induced by wind movement outside the wind power plant (WEA) is detected as an external physical condition. At least one physical condition of a component of the wind power plant (WEA) influenced by wind movement outside the wind power plant (WEA) is detected as an internal physical condition. The at least one external physical condition and/or at least one internal physical condition are evaluated. The at least one external physical condition is compared with a predetermined reference value for the external physical condition. The at least one internal physical condition is compared with a predetermined reference value for the internal physical condition. Depending on the comparison, at least one warning message is generated.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: July 1, 2014
    Assignee: Senvion SE
    Inventors: Martin Von Mutius, Jens Altemark, Alf Trede
  • Publication number: 20140178195
    Abstract: A method and system for shutting down a wind turbine is presented. The method includes determining one or more pitch positions for one or more rotor blades of the wind turbine such that a sum of potential energy and kinetic energy in the wind turbine is minimized. The method further includes pitching the one or more rotor blades from an operating position to the determined pitch positions.
    Type: Application
    Filed: December 24, 2012
    Publication date: June 26, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rogier Sebastiaan Blom, Rosa Castañé Selga, Matthijs Leonardus Gerardus Boerlage
  • Patent number: 8753080
    Abstract: An upwind wind turbine includes a tilting coupling mechanism configured to couple base end portions of blades to a hub such that the blades can tilt between a normal position and a retracted position in which the blades are tilted in a downwind direction relative to the normal position. The upwind wind turbine also includes a tilting drive operating in association with the tilting coupling mechanism to switch the positions of the blades and a rotation stop to stop the rotation of the rotor. When the blades are switched to the retracted position, the rotation stop is actuated to stop the rotor in a predetermined rotational position in which the blades can tilt without interference with the tower, and the tilting drive is actuated to tilt the blades to the retracted position after stop of the rotation of the rotor.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: June 17, 2014
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventor: Masafumi Morimoto
  • Patent number: 8714925
    Abstract: An aerodynamic brake assembly for use with an airfoil such as the blade of a wind turbine rotor comprises deployable upper and/or lower spoiler plates incorporated in or attached to the airfoil. The spoiler plates can deploy under the influence of centrifugal forces when the rotating airfoil or rotor blade reaches a pre-determined rotational speed. The aerodynamic brake assembly may be integrated within the airfoil or attached to the tip of the airfoil such that, when not deployed, the upper and lower spoiler plates have a profile that approximately conforms to the profile of the part of the airfoil to which it the brake assembly is attached. Thus in a non-deployed state, the spoiler plates have a non-detrimental effect on the performance of the airfoil, and may even contribute to its aerodynamic lift properties.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 6, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Christopher C. Langenfeld, Stanley B. Smith, III, Christopher M. Werner
  • Patent number: 8708654
    Abstract: A horizontal axis wind turbine with a ball-and-socket hub is disclosed. The hub provides for a second vertical axis, the hub axis, intersecting the center of the hub that enables a change in orientation of the rotor axis without changing the orientation of the main shaft axis. The cause for the rotation around the hub axis is an imbalance in torque applied by the blades across a wind shear axis due to a gradient in wind velocity. Rotation around the hub axis will continue until back-and-forth rotation of the blades is such that the torque is balanced across a wind shear axis and the rotor axis is set at an optimal angle. As changes in wind direction occur, the torque will become imbalanced, and the hub will rotate until a new optimal angle is achieved. The present turbine design allows for the hub to freely rotate ±20° around the hub axis and continuously maintain orientation of the rotor axis at an optimal angle.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: April 29, 2014
    Inventor: Arnold Ramsland
  • Patent number: 8702390
    Abstract: A wind turbine includes a hub including at least three spaced projections and a hub cap; at least three blades each including a root plate at one end, with the root plate including a sleeve having a hole on a windward side; at least three shaft members each interconnecting the root plate and a corresponding projection; at least three sets of four abutment plates each secured to either side of the root plate or either side of the projection; U-shaped steel torsion bars each having both ends at an inclined angle of about 15 to 25 degrees fastened in the abutment plate and disposing the root plate at an angle of about 4 to 10 degrees with respect to the corresponding projection; a spring on the rotation shaft on a leeward side of the hub; and pins each installed in a hub cap and sticking into the hole.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 22, 2014
    Assignee: Chang Gung University
    Inventor: Ming-Tsung Sun
  • Patent number: 8649911
    Abstract: A technique is provided for operating a wind farm at increased rated power output. The technique includes sensing a plurality of operating parameters of the wind turbine generator, assessing the plurality of operating parameters with respect to respective design ratings for the operating parameters, and intermittently increasing a rated power output of the wind turbine generator based upon the assessment.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventors: Aaron John Avagliano, Ralph Teichmann, Kirk Gee Pierce, Paul David Hopewell, Ameet Shridhar Deshpande, Sukru Alper Eker
  • Patent number: 8647061
    Abstract: A wind turbine system includes a shaft, a rotor for driving the shaft, and a first fluidic teeter control assembly. The rotor includes a first blade engaged to the shaft by a hub, and has a degree of freedom to pivot relative to the shaft. A first teeter angle is defined between an instantaneous position of the first blade and a time-averaged plane of rotation of the first blade. The first fluidic teeter control assembly is engaged between the rotor and the shaft for providing a first dynamic teeter restraining force as a function of the first teeter angle and a fluidic resistance. The first dynamic restraining force is relatively low when the first teeter angle is within a first teeter operation range, and the first dynamic restraining force is higher when the first teeter angle is outside that range.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: February 11, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Fabio R. Bertolotti
  • Publication number: 20140030090
    Abstract: A wind turbine control system includes a detecting unit for adjusting a reference nodding moment of a wind turbine rotor based on at least one of an aerodynamic thrust on the wind turbine rotor and a speed of wind; a compensating unit for determining a physical nodding moment of the wind turbine rotor, comparing the physical nodding moment with the reference nodding moment, and using the comparison to compute a pitch angle command for at least one wind turbine blade; and a driving unit for changing a pitch of the at least one blade based on the pitch angle command to control the physical nodding moment of the wind turbine rotor.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Leonardo Cesar Kammer, Dhiraj Arora
  • Patent number: 8608439
    Abstract: A system for arranging and operating an array of wind machines to protect crops from damaging weather conditions, such as freezing frost, rain and heat. The method includes a wind machine positioned to force air across the crop. The wind machine is preferably a propeller/tower configuration. The operational method of the wind machine array includes the steps of sensing ambient meteorological and the hardiness of the crop to withstand a particular adverse weather condition and operating the wind machines in response to these factors. Multiples of wind machines are employed in the preferred embodiment of the method, the siting of the wind machines preferably based upon topographic and historical meteorological conditions. The operation of the wind machines can be automatically and remotely operated with the aid of satellite communications including internet links.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: December 17, 2013
    Inventor: Daryl G. Hill
  • Patent number: 8602732
    Abstract: A wind turbine rotor blade includes a root portion and an airfoil portion extending from the root portion and defined by a leading edge and a trailing edge. The airfoil portion further includes a main foil section and a trailing edge section that is pivotally connected to the main foil section along a span-wise extending pivot zone. The trailing edge section is biased to a neutral position wherein the trailing edge section is pivoted chord-wise to a low wind speed position relative to the main foil section.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventor: Megan M. Wilson
  • Patent number: 8602731
    Abstract: A rotor blade is used in combination with a submersible electrical generator for generating electricity to be put into the grid, where the pitch of the rotor blade is controlled by a microprocessor. The microprocessor controls a radio frequency transmitter which emits signals to a receiver which controls a hydraulic value. The hydraulic valve controls a push-pull arrangement which through a right angle gear and pitch adjustment axial adjust the rotor pitch according to pre-programmed conditions stored in the microprocessor.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 10, 2013
    Inventor: Fred K. Carr
  • Patent number: 8602719
    Abstract: A vertical axis wind turbine having a plurality of upright airfoils pivotally engaged. A continuous adjustment of the angle of attack of the airfoils to oncoming wind is provided by rotation of a control plate connected to the vanes which are mounted upon a rotating drive plate. A vane can be employed to rotate the control plate to affect the continuous adjustment of the airfoils.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: December 10, 2013
    Assignee: AF Energy Corporation
    Inventor: Samuel Thomas Kelly
  • Patent number: 8562282
    Abstract: A large capacity wind power generator is provided, which includes an outer rotor including an upper partitioning plate having a plurality of spokes formed along a circular circumference of the upper partitioning plate at equal intervals and a side partitioning plate formed on one side surface of the outer rotor, the outer rotor having a lower surface and the other side surface which are open; and a windmill formed inside the outer rotor to be rotated by wind flowing through the outer rotor. The side partitioning plate is formed to have an area that is smaller than a half of the entire circumferential area of the outer rotor, and spaces between the respective spokes are open so as to facilitate an inflow of the wind through the side surface of the outer rotor.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: October 22, 2013
    Inventor: Boo-Hyeon Bang
  • Publication number: 20130236306
    Abstract: A wind power generating system in which a plurality of stationary modules form a toroidal shaped tower that accelerates wind passing around and between the modules due to the Bernoulli Effect. Between the modules are located a plurality of vertical axis wind turbine rotors with an integrated generator system that in combination forms an integrated rotor and generator assembly connected to a rotatable yaw platform via an improved support arm. The rotor and generator assemblies act independently of each other to accommodate different wind conditions at different altitudes and to provide partial production to significantly enhance overall wind production.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Inventor: Kenneth D. Cory
  • Patent number: 8529206
    Abstract: There is provided a yaw rotation control method for a wind turbine generator that does not require a yaw motor and is advantageous for a reduction in cost and a reduction in size and weight of a nacelle. A control unit performs, according to a deviation between wind direction information (?w) obtained from a wind direction detecting unit and a present state yaw angle (?z) obtained from a yaw rotating position detecting unit, yaw rotation control for outputting pitch angle command values (?1, ?2, and ?3) of yaw rotation to a pitch driving unit and directing front surfaces of rotation surfaces of wind turbine blades at the time of start. This yaw rotation control includes a step of controlling pitch angels of the wind turbine blades at a predetermined azimuth angle.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: September 10, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Tomohiro Numajiri
  • Patent number: 8511989
    Abstract: A wind turbine generator is provided in which the efficiency of heating the interior of a nacelle can be improved at a low outside air temperature in a cold region. The wind turbine generator includes a nacelle that accommodates a driving and generating mechanism connected to a rotor head fitted with turbine blades, wherein the nacelle is equipped with a lubricant-oil cooling fan and a generator cooling fan that ventilate the interior of the nacelle to prevent an increase in the temperature of the interior and a heating device that raises the temperature of the interior of the nacelle at a low outside air temperature, wherein the cooling fans can be operated with the rotating directions and the rotational speeds thereof being controlled, and during the operation of the heating device, the rotating directions and the rotational speeds of the cooling fans are controlled so as to make the wind velocity at the ventilation ports thereof about zero.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: August 20, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Takatoshi Matsushita
  • Patent number: 8506248
    Abstract: A wind turbine rotor blade includes a root portion and an airfoil portion extending from the root portion and defined by a leading edge and a trailing edge. The airfoil portion further includes a main foil section and a trailing edge section that is pivotally connected to the main foil section along a span-wise extending hinge line. A passive torsion element is coupled between the main foil section and the trailing edge section. The torsion element is biased to a neutral position wherein the trailing edge section is pivoted chord-wise to a low wind speed position relative to the main foil section. The trailing edge section is self-actuating from the low wind speed position to an increased wind speed position relative to the main foil section as a function of the biasing force of the torsion element and wind speed over the airfoil section.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventor: Megan M. Wilson
  • Patent number: 8506247
    Abstract: A wind turbine and a method of controlling yawing of a wind turbine are provided. A nacelle is mounted rotatable around a first axis by an adjustable yaw angle and a hub is mounted rotatable around a rotational axis. The hub includes a blade rotating around the rotational axis, the blade defining a rotor plane perpendicular to the rotational axis. A channel of the wind turbine has an opening, the opening being located at a predefined distance to the rotor plane. At least one component of incoming wind is guided through the opening and into the channel as air flow. A measuring device is provided for measuring the air flow, the measuring device being connected to a controller. The controller detects a yaw angle error between a direction of the incoming wind and the rotational axis, the yaw angle error being used to adjust the yaw angle of the nacelle.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: August 13, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Patent number: 8491262
    Abstract: A method for shutdown of a wind turbine having one or more wind turbine blades includes detecting an operational condition of the wind turbine that calls for an expedited or emergency shutdown of the wind turbine by a manner other than normal pitch control shutdown. Upon detection of the operational condition, one or more air brake flaps configured on each of the turbine blades is deployed by removing power to a fail-safe actuator operatively coupled to each of the air brake flaps. The fail-safe actuator is configured to hold the respective air brake flap at a retracted position relative to a suction side of the turbine blade in a powered state of the fail-safe actuator and to release the air brake flap for automatic deployment to an open position upon loss of power to the fail-safe actuator.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: July 23, 2013
    Assignee: General Electric Company
    Inventors: Edward Lee McGrath, Robert William Ridgway
  • Patent number: 8480362
    Abstract: The method consists in determining at least one of wind turbine operating conditions or parameters related to pitch activity 116-119; determining if lubrication is needed depending on at least the operating conditions or the pitch activity parameters 116-119; and causing lubrication of the pitch blade bearing if lubrication is determined to be needed. Lubrication may consist in injecting grease during a period of time and causing the blades of the wind turbine to be rotated if necessary during grease injection. The device includes means for determining wind turbine operating conditions, means for determining parameters related to pitch activity, a wind turbine main control 100 for determining if lubrication is needed depending on operating conditions and pitch activity parameters 116-119, and means for causing lubrication of the pitch blade bearing if lubrication is needed.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: July 9, 2013
    Assignee: Alstom Wind S.L.
    Inventor: Daniel García I Erill
  • Patent number: 8480363
    Abstract: A turbine with vanes and tethers that adjust to the wind includes: an axle, adapted to be positioned perpendicular to the airflow; a radial spar attached to the axle; a vane rotatably attached to the spar; and a positioning element to limit the vane from rotating substantially more than a perpendicular angle away from the spar. The device retains the vane in a position that utilizes the airflow to rotate the axle. The positioning element is a tether attached to the distal point of the vane.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 9, 2013
    Inventor: Thomas Mellus Fenaughty
  • Patent number: 8469665
    Abstract: A vertical axis wind turbine (1) comprises three vertically extending sails (8) where each sail (8) comprises a strip (80) of substantially constant width. The opposite ends of each sail (8) are longitudinally twisted to have a pitch angle of approximately 90 degrees. The turbine (1) further comprises a vertically extending central core (7) and a vertically extending opening (9) between each sail (9) and the core (7). Also disclosed is an improvement in a vertical axis wind turbine (91) having at least one main blade (94) each of which has a longitudinal extent and a longitudinally extending radially outermost edge (924). The improvement comprises a longitudinally extending auxiliary blade (944) spaced from the main blade (94) to define a venturi inducing gap (99) between the main blade (94) and the auxiliary blade (944) whereby the turbine (91) has a zone of influence which extends radially beyond the maximum radial extent of the blades.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: June 25, 2013
    Assignee: Windworks Engineering Limited
    Inventor: Joseph Bertony
  • Patent number: 8459949
    Abstract: A wind power generator with variable windmill wings, which has an installation mount; a vertical rotating shaft; a bearing; inner wing installation units; support rods; outer wing installation units; support rings; vertical support rods; windmill wings; support units installed on the vertical rotating shaft between the groups of the windmill wings made in the up/down multi-stage fashion, and connected to holders through wires; a power generator installed on the bottom surface of the central portion of the installation mount; windmill wing moving units installed on the vertical rotating shaft above the inner wing installation units to be movable in the up/down direction and fixing displacements of the windmill wings; and a driving device with a worm wheel installed on the bottom end side of the vertical rotating shaft.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: June 11, 2013
    Inventor: In-nam Lee
  • Patent number: 8430632
    Abstract: A system and method for pitching a rotor blade in a wind turbine are disclosed. The method includes collecting in an individual pitch controller for the rotor blade a pitch offset angle relative to a collective pitch angle. The method further includes determining a synchronized pitch offset angle. The method further includes, after an emergency condition occurs, pitching the rotor blade towards the synchronized pitch offset angle.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 30, 2013
    Assignee: General Electric Company
    Inventor: Christian Haag
  • Patent number: 8430634
    Abstract: A wind turbine for generating electrical power, the turbine having a rotor assembly comprising a hub, a rim and a plurality of blade members extending between the hub and rim, and at least two anemometers mounted at stationary locations relative to the rotor assembly or on the rotor assembly itself, wherein the pitch of individual blade members is adjustable in response to differences in wind speed detected by the anemometers as the rotor assembly rotates.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: April 30, 2013
    Inventor: Herbert Williams
  • Patent number: 8425190
    Abstract: A pressure relief device includes a main body and at least two air control units. The main body has at least one passage therein and two outlets formed at upper and lower ends of the passage. A lid is pivotally connected to each of the outlets. The two air control units are each disposed in the passage close to the lid. An air control device drives the air control units to open/close the lid which is adapted to open/close the passage.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: April 23, 2013
    Assignee: United Ship Design and Development Center
    Inventors: Chao-Cheng Wu, Jyh-Nan Ho
  • Patent number: 8382435
    Abstract: Improvements in A wind generator, that may also be called and relates to, windmill, turbine or aero generator, on a vertical axis. The vertical axis gives the windmill the ability to be turned by air, or liquid if inverted, from any direction parallel to the earth's surface. Multiple blades rotate through a horizontal axis into the wind to lessen air resistance on one side while turning vertically on the other side to gain energy from the wind. The system is counter-weighted as needed, to reduce energy loss, by different methods including but not limited to gears, levers, pneumatics, cables, hydraulics or added counter-weight. The electrical generating machinery is below the blades or at the bottom of the vertical drive shaft.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: February 26, 2013
    Inventor: Peter G. R. Deeley
  • Patent number: 8366389
    Abstract: A wind turbine and methods for controlling wind turbine thrust are disclosed. In one embodiment, the method includes measuring a tilt angle of a wind turbine in a loaded position using a measuring device. The wind turbine includes a tower, a nacelle mounted on the tower, a rotor coupled to the nacelle, and a plurality of rotor blades coupled to the rotor. The method further includes comparing the tilt angle to a predetermined tilt angle for the wind turbine and, if the tilt angle exceeds the predetermined tilt angle, adjusting a pitch of at least one of the plurality of rotor blades such that the tilt angle is less than or equal to the predetermined tilt angle.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: February 5, 2013
    Assignee: General Electric Company
    Inventors: Till Hoffmann, Hartmut Scholte-Wassink
  • Patent number: 8360724
    Abstract: To provide a horizontal axis wind turbine capable of reducing flutter, and by extension, reducing the load on the wind turbine, without controlling the yaw, regardless of the direction of the wind relative to the nacelle. When the wind speed is above a specific value, the yaw angle of the nacelle is held constant, the blade pitch angle is controlled according to the yaw angle Y of the wind direction relative to the nacelle, and the rotor is allowed to rotate freely. Even when the yaw angle of the nacelle is held constant, allowing the rotor to rotate freely makes it possible to reduce the load by avoiding flutter.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: January 29, 2013
    Assignee: Hitachi, Ltd.
    Inventor: Shigeo Yoshida
  • Patent number: 8353667
    Abstract: A method and an apparatus for adjusting a yaw angle of a wind turbine comprising a rotor having a plurality of rotor blades and a hub are provided. The method is adapted for adjusting the yaw angle from an actual yaw angle to a desired yaw angle and comprises the steps of measuring a wind direction at the location of the wind turbine, measuring the yaw angle of the wind turbine and/or determining a wind direction relative to the nacelle orientation, calculating a pitch angle of at least one rotor blade as a function of the measured wind direction and the measured yaw angle and/or the wind direction relative to the nacelle orientation, and adjusting the pitch angle of the rotor blades according to the calculated pitch angle such that a yaw momentum is generated for changing the yaw angle from the actual yaw angle to the desired yaw angle.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: January 15, 2013
    Assignee: General Electric Company
    Inventor: Till Hoffmann