Magnetostrictive Chamber Patents (Class 417/322)
  • Patent number: 10487821
    Abstract: A miniature fluid control device includes a piezoelectric actuator and a housing. The piezoelectric actuator comprises a suspension plate, an outer frame, at least one bracket and a piezoelectric ceramic plate. The piezoelectric ceramic plate is attached on a first surface of the suspension plate and has a length not larger than that of the suspension plate. The housing includes a gas collecting plate and a base. The gas collecting plate is a frame body with a sidewall and comprises a plurality of perforations. The base seals a bottom of the piezoelectric actuator and has a central aperture corresponding to the middle portion of the suspension plate. When the voltage is applied to the piezoelectric actuator, the suspension plate is permitted to undergo the curvy vibration, the fluid is transferred from the central aperture of the base to the gas-collecting chamber, and exited from the perforations.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 26, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee
  • Patent number: 10480502
    Abstract: A pump (1) includes a vibrating plate (15) that has a central part (21), a frame part (22), and connecting parts (23 to 26), a piezoelectric element (16) that is stacked over the central part (21) and configured to cause flexural vibrations to occur concentrically from the central part (21) to the connecting parts (23 to 26), and an opposed plate (13) that is stacked over the frame part (22) and positioned facing each of the connecting parts (23 to 26) with a spacing therebetween. The vibrating plate (15) has such a resonant mode that an antinode occurs in each of the central part (21) and the connecting parts (23 to 26). The opposed plate (13) has, at positions facing the connecting parts (23 to 26), a plurality of channel holes (39 to 43) through which a fluid flows.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 19, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Atsuhiko Hirata, Yukiharu Kodama
  • Patent number: 10408215
    Abstract: An actuation apparatus may include a magnetic shape memory (MSM) element configured to contract locally at a portion of the MSM element in response to local exposure to a magnetic field distribution component that is substantially perpendicular to a longitudinal axis of the MSM element. The apparatus may further include a plurality of conductive coils laterally offset from the MSM element. Central axes of each conductive coil of the plurality of conductive coils may be substantially parallel to a longitudinal axis of the MSM element.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: September 10, 2019
    Assignee: BOISE STATE UNIVERSITY
    Inventor: Peter Müllner
  • Patent number: 10393101
    Abstract: A microfluidic device (100) comprising at least one passive valve (PV, 120, 130), the passive valve being constituted by a sequence of a first carrier layer (CL 1) with an aperture providing a passage (P 1) for fluid flow, a first binding layer (BLI) with a first opening, a flexible layer (FL) with a through-hole (TH), a second binding layer (BL2) with a second opening, and a second carrier layer (CL2). Moreover, the flexible layer (FL) can move within a valve chamber (VC) constituted by the openings. Depending on the pressure difference across the passive valve (PV), the flexible layer (FL) can bend towards the first carrier layer (CLI) and close the aperture, while it opens the passage (P1) when bending in the opposite direction. Two of such properly oriented passive valves together with an intermediate active valve (AV) can constitute a one-stroke pump. A method for manufacturing such a fluidic device is also disclosed.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: August 27, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Theodorus Wilhelmus Maria Van Eemeren, Irene Johanna Monica Dobbelaer-Bosboom, Pieter Jan Van Der Zaag
  • Patent number: 10364910
    Abstract: A fluid control device includes a piezoelectric actuator and a deformable substrate. The piezoelectric actuator includes a piezoelectric element and a vibration plate. The piezoelectric element is attached on a surface of the vibration plate. The piezoelectric element is subjected to deformation in response to an applied voltage. The vibration plate is subjected to a curvy vibration in response to the deformation of the piezoelectric element. The deformable substrate includes a flexible plate and a communication plate, which are stacked on each other. Consequently, a synchronously-deformed structure is defined by the flexible plate and the communication plate collaboratively. There is a specified depth between the flexible plate and the vibration plate. The flexible plate includes a movable part corresponding to the vibration plate.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: July 30, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Yung-Lung Han, Chi-Feng Huang
  • Patent number: 10359622
    Abstract: A transfer circuitry, e.g. in a display system, electrically generating a transfer-gradient along which an optically-active fluid is transferred via a valve from a first reservoir to a second reservoir and a valve-control circuitry providing a voltage to change the valve's shape from a first shape when it is closed to a second shape when it is open.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: July 23, 2019
    Assignee: Nokia Technologies Oy
    Inventor: Jyrki Kimmel
  • Patent number: 10344753
    Abstract: Discloses is a micro-pump that includes a pump body having a compartmentalized pump chamber, with plural inlet and outlet ports and a plurality of membranes disposed in the pump chamber to provide compartments. The membranes are anchored between opposing walls of the pump body and carry electrodes disposed on opposing surfaces of the membranes and walls of the pump body. Also discloses are applications of the micro-pump including as a heat remover and a self-contained continuous positive airway pressure breathing device.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: July 9, 2019
    Assignee: Encite LLC
    Inventor: Stephen Alan Marsh
  • Patent number: 10294933
    Abstract: A disc pump includes a pump body having a cavity for containing a fluid. The disc pump also includes an actuator adapted to hold an electrostatic charge to cause an oscillatory motion at a drive frequency. The disc pump further includes a conductive plate positioned to face the actuator outside of the cavity and adapted to provide an electric field of reversible polarity, the conductive plate being electrically associated with the actuator to cause the actuator to oscillate at the drive frequency in response to reversing the polarity of the electric field. The disc pump further includes a valve disposed in at least one of a first aperture and a second aperture in the pump body. The oscillation of the actuator at the drive frequency causes fluid flow through the first aperture and the second aperture when in use.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: May 21, 2019
    Assignee: KCI Licensing, Inc.
    Inventors: Christopher Brian Locke, Aidan Marcus Tout
  • Patent number: 10288192
    Abstract: A piezoelectric actuator includes a square suspension plate, an outer frame, plural brackets and a square piezoelectric ceramic plate. The outer frame is arranged around the suspension plate. A second surface of the outer frame and a second surface of the suspension plate are coplanar with each other. The plural brackets are perpendicularly connected between the suspension plate and the outer frame for elastically supporting the suspension plate. Each bracket has a length in a range between 1.11 mm and 1.21 mm and a width in a range between 0.2 mm and 0.6 mm. A length of the piezoelectric ceramic plate is not larger than a length of the suspension plate. The piezoelectric ceramic plate is attached on a first surface of the suspension plate.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: May 14, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Yung-Lung Han, Chi-Feng Huang, Shih-Chang Chen, Jia-Yu Liao, Hung-Hsin Liao, Che-Wei Huang, Shou-Hung Chen
  • Patent number: 10275080
    Abstract: A method and apparatus for applying a current to a shape memory alloy of an actuator; determining a first resistance of the shape memory alloy; determining, after measuring the first resistance, a second resistance of the shape memory alloy; performing a comparison between the first resistance and the second resistance to detect a resistance change; and ceasing, based on detection of the resistance change, application of the current to the shape memory alloy.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 30, 2019
    Assignee: SYNAPTICS INCORPORATED
    Inventor: Felix Schmitt
  • Patent number: 10260657
    Abstract: A piezoelectric actuator includes a square suspension plate, an outer frame, plural brackets and a square piezoelectric ceramic plate. The outer frame is arranged around the suspension plate. A second surface of the outer frame and a second surface of the suspension plate are coplanar with each other. The plural brackets are perpendicularly connected between the suspension plate and the outer frame for elastically supporting the suspension plate. Each bracket has a length in a range between 1.11 mm and 1.21 mm and a width in a range between 0.2 mm and 0.6 mm. A length of the piezoelectric ceramic plate is not larger than a length of the suspension plate. The piezoelectric ceramic plate is attached on a first surface of the suspension plate.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: April 16, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Yung-Lung Han, Chi-Feng Huang, Shih-Chang Chen, Jia-Yu Liao, Hung-Hsin Liao, Che-Wei Huang, Shou-Hung Chen
  • Patent number: 10234950
    Abstract: A fluidic switch (or fluidic device) is provided. The fluidic switch includes: (i) a housing defining a cavity with a first opening and a second opening, the second opening being larger than the first opening, the cavity containing a viscoelastic substance, (ii) a channel to transport a fluid from a source, across the first opening, to a drain, where the first opening opens into the channel, and (iii) an actuator to apply a force through the second opening to the viscoelastic substance in the cavity when actuated, the force to displace a portion of the viscoelastic substance into the channel to impede transport of the fluid through the channel.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 19, 2019
    Assignee: FACEBOOK, INC.
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Serol Turkyilmaz
  • Patent number: 10221843
    Abstract: Disc pump systems and methods relate to a disc pump system that includes a first disc pump having a first actuator and a second disc pump having a second actuator. The systems and methods utilize sensors to measure the displacements of the actuators and a processor to determine the pressure differential across each actuator as a function of the measured displacements of the actuators. The disc pumps are fluidly coupled by a known restriction and the processor determines the flow rate of the disc pump system based on the determined pressure differentials across each actuator and the characteristics of the known restriction.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: March 5, 2019
    Assignee: KCI Licensing, Inc.
    Inventors: Christopher Brian Locke, Aidan Marcus Tout
  • Patent number: 10180133
    Abstract: A channel-less microfluidic pump includes a cartridge including a substrate and an actuatable film layer disposed on the substrate, and a manifold having at least three actuatable void volumes separated by a plurality of wall sections and an actuatable flexible layer disposed on the manifold interfacing the actuatable film layer. In operation, the pump can be in an unactuated state wherein the actuatable film layer is disposed against the surface of the substrate or an actuated state wherein at least a portion of the flexible layer and a corresponding portion of the actuatable film layer are deflected into a corresponding void volume thus forming a fluidic volume between the deflected portion of the actuatable film layer and the surface of the substrate. In the actuated state, there is a fluidic gap between immediately adjacent void volumes formed by a thinned region of the flexible layer at a point of contact with a top surface of a wall section.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: January 15, 2019
    Assignee: RHEONIX, INC.
    Inventors: Lincoln C. Young, Peng Zhou
  • Patent number: 10138916
    Abstract: The invention describes a dosing system (3) for a shear-thinning or thixotropic liquid to viscous dosing material. It comprises a nozzle (1) with a closure channel (55), within which a closure element (21) is controlled during operation by means of an automatic control unit (63) in an ejection direction (E) and/or retraction direction (R). To this end, the closure channel (55) is realized in at least one cross-section perpendicular to the ejection direction (E) and/or retraction direction (R) relative to the cross-section of the closure element (21) in the same plane to give an aperture gap (57) between the outer surface (S1) of the closure element (21) and the inner surface (S2) of the closure channel (55), which aperture gap (57) is shaped and/or dimensioned to form an outlet channel, at least in places, for the dosing material.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: November 27, 2018
    Assignee: VERMES MICRODISPENSING GMBH
    Inventors: Mario Fliess, Juergen Staedtler
  • Patent number: 10130759
    Abstract: A cartridge system of a multi-ported drug delivery device with independently actuated collapsible reservoirs, for delivery of medicaments, which includes membranes placed between disk magnets that are housed within pump body inserts. The pump body inserts having flow channels and fluid openings are between two inlet/outlet members with communication control through active valves and dynamically stressed membranes. The inlet/outlet members of the cartridge system each having a fluid outlet component and fluid openings are securely engaged to two or more reservoirs containing fluid medicaments. The cartridge system driven by the pump driver system delivers an appropriate dosage of medicament for treatment prescribed.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: November 20, 2018
    Assignee: PICOLIFE TECHNOLOGIES, LLC
    Inventors: Farid Amirouche, Matthew L. Cantwell
  • Patent number: 10126181
    Abstract: A temperature sensor including: a resonant structure vibrating to resonate at a resonating frequency that varies depending on temperature of a plate; at least one sound wave transmitter mounted onto the resonant structure to make the resonant structure vibrate at the resonating frequency; a sound wave receiver mounted onto the resonant structure and configured to capture sound waves propagating within the suspended structure; and connection elements configured to connect the at least one transmitter and receiver to an electronic unit outside the temperature sensor. The connection elements include a connector including four contact points including first and second contact points conveying a stereophonic sound signal, a third contact point providing a mass reference, and a fourth contact point conveying a microphone signal. The connection elements are configured to connect the at least one transmitter to the first and second contact points and connect the receiver to the fourth contact point.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: November 13, 2018
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Jean-Pierre Nikolovski
  • Patent number: 10107270
    Abstract: A resistively heated shape memory polymer device is operated using resistive heating to heat the shape memory polymer device. The resistively heated shape memory polymer device is made by providing a wire that includes a resistive medium. The wire is coated with a first shape memory polymer. The wire is exposed and electrical leads are attached to the wire. In one embodiment the shape memory polymer device is in the form of a clot destruction device. In another embodiment the shape memory polymer device is in the form of a microvalve. In another embodiment the shape memory polymer device is in the form of a micropump. In yet another embodiment the shape memory polymer device is in the form of a thermostat or relay switch.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: October 23, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: John E. Marion, III, Jane P. Bearinger, Thomas S. Wilson, Ward Small, IV, Duncan J. Maitland
  • Patent number: 10100822
    Abstract: A pump includes a main chamber and a pair of valves on opposite ends of the main chamber. The respective valves each contain a freely movable member to selectively open and close each respective valve, wherein the freely movable member is formed from at least some of the same material used to form a chamber portion of the respective valves. A force applicator is coupled relative to the main chamber to alternately induce a suction action and an expulsion action.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: October 16, 2018
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kianoush Naeli, David A. Moore
  • Patent number: 10037752
    Abstract: An acoustically resonating medium has one or more nodes and anti-nodes. Insulating a first side of a resonating medium at a node from ambient air and exposing the opposite second side of the resonating medium at the node to ambient air results in thrust in the direction of the first side. Insulating the second side of a resonating medium at an anti-node from ambient air and exposing the first side of the medium at the anti-node to ambient air also results in thrust in the direction of the first side.
    Type: Grant
    Filed: May 3, 2014
    Date of Patent: July 31, 2018
    Inventor: David A Colasante
  • Patent number: 9976547
    Abstract: A piezoelectric blower includes a valve, a housing, a vibrating plate, and a piezoelectric element. The vibrating plate forms, together with the housing, a column-shaped blower chamber such that the blower chamber is interposed therebetween in a thickness direction of the vibrating plate. The vibrating plate and the housing are formed such that the blower chamber has a radius (a). The piezoelectric element causes the vibrating plate to undergo concentric bending vibration at a resonance frequency (f). The radius (a) of the blower chamber and the resonance frequency (f) of the vibrating plate satisfy a relationship of 0.8×(k0c)/(2?)?af?1.2×(k0c)/(2?), where an acoustic velocity of gas that passes through the blower chamber is (c) and a value that satisfies a relationship of a Bessel function of a first kind of J0(k0)=0 is k0.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: May 22, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Nobuhira Tanaka
  • Patent number: 9845796
    Abstract: An apparatus that is capable of propelling a gas includes a first layer and a second layer arranged in a stack, mechanism for heating and/or cooling the first layer and the second layer to form a hot layer and a cold layer, and a through hole in the stack. A surface of both the hot layer and the cold layer is exposed in an interior of the through hole. The mechanism for heating and/or cooling the first and second layers controls the hot layer to be hotter than an ambient temperature of the gas, and the cold layer to be colder than the ambient temperature of the gas.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: December 19, 2017
    Assignee: GAME CHANGERS, LLC
    Inventors: Jason D. Sanchez, Piotr A. Garbuz, Andrew D. Zonenberg
  • Patent number: 9745970
    Abstract: A linear compressor employing a piezoelectric actuator operating in resonance at a frequency substantially below its natural resonant frequency, which is usually of the order of 10 kHz. Low frequency resonance operation of the actuator, of the order of 100 Hz., is achieved by incorporating the actuator and its housing with the moving compression piston, such that the moving mass is substantially increased, and by reduction of the effective piezoelectric stiffness using hydraulic amplification of the actuator displacement. Both these procedures result in a reduction of the actuator resonant frequency. The hydraulic amplification is achieved by using a hydraulic chamber with different sized pistons, linking the actuator motion with motion of the actuator housing, to which the compressor piston is attached. The high efficiency achieved and the lack of moving parts or the need for lubricating oil makes the compressor ideal for use in high reliability and high purity applications.
    Type: Grant
    Filed: July 7, 2013
    Date of Patent: August 29, 2017
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventors: Sergey Sobol, Gershon Grossman
  • Patent number: 9726651
    Abstract: A double-sided diaphragm micro gas-preconcentrator has a micro-gas chamber which is formed by stacking an upper silicon substrate with a lower silicon substrate with a back-on-face configuration. One or more suspended membranes are provided on every silicon substrate. The silicon where the suspended membrane is provided is completely removed for forming a cavity. A thin-film heater is deposited on every suspended membrane. A sorptive film is coated on an inner wall of every suspended membrane. Thus, the upper and lower sides of the preconcentrator in the present invention are suspended membranes, which improve the area of the sorptive film on the diaphragm. As a result, the preconcentrating factor is improved while keeping the small heat capacity, fast heating rate, and low power consumption features of the planar diaphragm preconcentrator.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: August 8, 2017
    Assignee: University of Electronic Science and Technology of China
    Inventors: Xiaosong Du, Luhua Cheng, Penglin Wu, Huan Yuan, Yadong Jiang, Ze Wu, Yi Li, Dong Qiu
  • Patent number: 9493341
    Abstract: A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: November 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony K. Stamper, John G. Twombly
  • Patent number: 9445710
    Abstract: A pump unit which can be made to be small-sized, and which enables to achieve a sufficient flow and an endoscope apparatus using such pump are provided. The pump unit which transports a fluid in a channel upon generating a progressive wave which is propagated in a longitudinal direction of the channel, in a first flexible thin film which constitutes at least a part of a channel-wall surface, includes a vibration exciter unit.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 20, 2016
    Assignees: OLYMPUS CORPORATION, KEIO UNIVERSITY
    Inventors: Norihisa Miki, Yoshiyuki Okayama, Keijiro Nakahara, Kaori Yoshimura, Shinji Yasunaga
  • Patent number: 9445661
    Abstract: An oral care implement (1) includes a head (12), a handle (10), a neck portion (11) connecting the head and the handle, and a reservoir (15) which contains at least one active agent. The implement has an activator (22) for activating a delivery device which delivers the active agent to one or more outlets (50). A powered delivery device (18) disposed in the head to deliver a liquid from the reservoir via the outlet. A wide variety of types of active agents may be administered at appropriate and accurate doses for therapeutic, hygienic, and/or other benefit.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 20, 2016
    Assignee: COLGATE-PALMOLIVE COMPANY
    Inventors: Donghui Wu, John P. Rouse, John Gatzemeyer, Sharon Kennedy
  • Patent number: 9408991
    Abstract: A pump unit can achieve significant size reduction while maintaining the performance thereof. Micropumps are arranged in a lattice pattern with rows and columns, and a discharge port of at least a micropump arranged in the most downstream row is directly connected to an integrated discharge port. The pump unit further includes: a discharge direct-connection mechanism for connecting respective discharge ports of a plurality of micropumps in a middle row directly to the integrated discharge port; an intake direct-connection mechanism for connecting respective intake ports of the micropumps directly to a fluid to be supplied first; a series-connection mechanism for connecting a discharge port of a micropump in an upstream row directly to an intake port of a micropump in a downstream row; and a controller for controlling the discharge direct-connection mechanism, the intake direct-connection mechanism, and the series-connection mechanism.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: August 9, 2016
    Assignee: Metran Co. Ltd.
    Inventors: Kazufuku Nitta, Jun Nitta
  • Patent number: 9394929
    Abstract: In order to avoid cavitation in a boom cylinder head end at the beginning of a dig cycle, fluid from an alternate source is supplied to the head end before or in addition to fluid supplied by the main boom-up hydraulic circuit. In one embodiment, an electronic hydraulic valve, related sensors, and control system determines the beginning of a dig operation and uses fluid at an intermediate pressure to rapidly provide fluid to a boom head end cylinder to prevent voiding or cavitation before fluid under high pressure from the main pump can be brought to the cylinder. An on/off fluid switch is activated early in a dig operation to address low pressure at the boom cylinder head end and provide an alternate path for fluid into the cylinder in reaction to the boom being lifted by a motion of the stick and bucket in contact with the work surface.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: July 19, 2016
    Assignee: Caterpillar Inc.
    Inventors: Keith Edward Lawrence, John James Krone, Nick William Biggs, Karl Arthur Kirsch, Yuya Kanenawa, Tetsuya Yoshino, Magomed Gabibulayev
  • Patent number: 9352565
    Abstract: A liquid jet head includes an actuator substrate having an alternating array of ejection grooves and non-ejection grooves which penetrate from an upper surface to a lower surface of the actuator substrate and are longer in a substrate surface direction than in a depth direction. A cover plate attached to the actuator substrate covers upper surface openings of the grooves, and a nozzle plate attached to the actuator substrate covers lower surface openings of the grooves. The grooves are formed in such a manner that configurations of the lower surface openings of the ejection grooves and the non-ejection grooves are different.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: May 31, 2016
    Assignee: SII PRINTEK INC.
    Inventors: Yoshinori Domae, Yuzuru Kubota, Satoshi Horiguchi
  • Patent number: 9288892
    Abstract: A transversely actuated piezoelectric bellows heatsink (TAPBH) has a linkage that includes multiple rigid sections coupled by flexible joints. A first fixed support is affixed to a first end of the linkage, and a piezoelectric element is mechanically coupled to a second end of the linkage. A diaphragm is mechanically affixed to a first side of the linkage, and an air enclosure, having an open area, is affixed to the diaphragm. A second fixed support is mechanically affixed to a second side of the linkage. Cyclic power from the power supply causes the piezoelectric element to expand and contract to force the linkage to expand and contract in an analogous manner, thus causing the diaphragm to move in an amplified motion to cause air to enter and be expelled from the air enclosure via air valves.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: March 15, 2016
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Zachary B. Durham, William M. Megarity, Matthew L. Nickerson, Brian C. Totten
  • Patent number: 9233837
    Abstract: A micro-electromechanical (MEM) synthetic jet actuator includes a semiconductor substrate having a cavity extending therethrough, such that a first opening is formed in a first surface of the semiconductor substrate and such that a second opening is formed in a second surface of the semiconductor substrate. A first flexible membrane is formed on at least a portion of the front surface of the semiconductor substrate and extends over the first opening. The first flexible membrane also includes an orifice formed therein aligned with the first opening. The MEM synthetic jet actuator also includes a second flexible membrane that is formed on at least a portion of the second surface of the semiconductor substrate and that extends over the second opening, and a pair of actuator elements coupled to the flexible membranes and aligned with the cavity to selectively cause displacement of the first and second flexible membranes.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: January 12, 2016
    Assignee: General Electric Company
    Inventors: Mehmet Arik, Stanton Earl Weaver
  • Patent number: 9233838
    Abstract: A micro-electromechanical (MEM) synthetic jet actuator includes a semiconductor substrate having a cavity extending therethrough, such that a first opening is formed in a first surface of the semiconductor substrate and such that a second opening is formed in a second surface of the semiconductor substrate. A first flexible membrane is formed on at least a portion of the front surface of the semiconductor substrate and extends over the first opening. The first flexible membrane also includes an orifice formed therein aligned with the first opening. The MEM synthetic jet actuator also includes a second flexible membrane that is formed on at least a portion of the second surface of the semiconductor substrate and that extends over the second opening, and a pair of actuator elements coupled to the flexible membranes and aligned with the cavity to selectively cause displacement of the first and second flexible membranes.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: January 12, 2016
    Assignee: General Electric Company
    Inventors: Mehmet Arik, Stanton Earl Weaver
  • Patent number: 9216899
    Abstract: A micro-electromechanical (MEM) synthetic jet actuator includes a semiconductor substrate having a cavity extending therethrough, such that a first opening is formed in a first surface of the semiconductor substrate and such that a second opening is formed in a second surface of the semiconductor substrate. A first flexible membrane is formed on at least a portion of the front surface of the semiconductor substrate and extends over the first opening. The first flexible membrane also includes an orifice formed therein aligned with the first opening. The MEM synthetic jet actuator also includes a second flexible membrane that is formed on at least a portion of the second surface of the semiconductor substrate and that extends over the second opening, and a pair of actuator elements coupled to the flexible membranes and aligned with the cavity to selectively cause displacement of the first and second flexible membranes.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: December 22, 2015
    Assignee: General Electric Company
    Inventors: Mehmet Arik, Stanton Earl Weaver
  • Patent number: 9214622
    Abstract: A support structure includes an internal cavity. An elastic membrane extends to divide the internal cavity into a first chamber and a second chamber. The elastic membrane includes a nanometric-sized pin hole extending there through to interconnect the first chamber to the second chamber. The elastic membrane is formed of a first electrode film and a second electrode film separated by a piezo insulating film. Electrical connection leads are provided to support application of a bias current to the first and second electrode films of the elastic membrane. In response to an applied bias current, the elastic membrane deforms by bending in a direction towards one of the first and second chambers so as to produce an increase in a diameter of the pin hole.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: December 15, 2015
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Patent number: 9127665
    Abstract: A two-cavity pump having a single valve in one cavity and a bidirectional valve in another cavity is disclosed. The pump has a side wall closed by two end walls for containing a fluid. An actuator is disposed between the two end walls and functions as a portion of a common end wall of the two cavities. The actuator causes an oscillatory motion of the common end walls to generate radial pressure oscillations of the fluid within both cavities. An isolator flexibly supports the actuator. The first cavity includes the single valve disposed in one of a first and second aperture in the end wall to enable fluid flow in one direction. The second cavity includes the bidirectional valve disposed in one of a third and fourth aperture in the end wall to enable fluid flow in both directions.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: September 8, 2015
    Assignee: KCI Licensing, Inc.
    Inventors: Christopher Brian Locke, Aidan Marcus Tout
  • Patent number: 9039389
    Abstract: A pump system containing no external parts or valves is provided. The pump system is characterized by a common type of actuating mechanism and incorporates reversibly expanding actuators, preferably electroactive actuators. Fluid is caused to move at a selected flow rate and direction by sequentially activating contiguous actuators located inside the pump. The pump may be used to pump a variety of fluids and may be used in various industrial, commercial, medical, aeronautical, or military applications.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: May 26, 2015
    Assignee: MEDIPACS, INC.
    Inventor: Mark Banister
  • Publication number: 20150118077
    Abstract: A pump, especially for delivering liquid fuel for a vehicle heater, includes a pump body (12) providing a pump chamber (14). The pump body (12) is made with magnetic shape memory material at least in some areas. The pump further includes a field-generating arrangement (44) for generating a magnetic field (M). The magnetic shape memory material of the pump body (12) can be brought from an initial state into a deformed state by generating a magnetic field (M) by the field-generating arrangement (44). A pump chamber volume in the deformed state differs from the pump chamber volume present in the initial state.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Inventor: Michael HUMBURG
  • Patent number: 8979511
    Abstract: A fluid delivery system includes a first chamber, a second chamber, and a third chamber, a pair of electrodes, a porous dielectric material, an electrokinetic fluid, and a flexible member including a gel between two diaphragms. The pair of electrodes is between the first chamber and the second chamber. The porous dielectric material is between the electrodes. The electrokinetic fluid is configured to flow through the porous dielectric material between the first and second chambers when a voltage is applied across the pair of electrodes. The flexible member fluidically separates the second chamber from the third chamber and is configured to deform into the third chamber when the electrokinetic fluid flows form the first chamber into the second chamber.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: March 17, 2015
    Assignee: Eksigent Technologies, LLC
    Inventors: Deon S. Anex, Kenneth Kei-ho Nip
  • Patent number: 8974193
    Abstract: A synthetic jet equipment is provided, including a base, a frame fixed to the base, a first member, a pump diaphragm, a second member, and a valve diaphragm. The pump diaphragm connects the first member to the frame, and the valve diaphragm connects the second member to the frame. The base, the frame, the first member, the pump diaphragm, the second member, and the valve diaphragm define a chamber forming an intake and an outlet. When the first member moves in a first direction, the second member moves in a second direction opposite to the first direction and the external air flows into the chamber through the inlet. When the first member moves in the second direction, the second member moves in the first direction, such that the air is exhausted from the chamber through the outlet.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: March 10, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Chien Li, Chung-De Chen, Pin Chang
  • Publication number: 20140377091
    Abstract: A pump devoid of mobile mechanical parts and including a tank with a sleeve for dispensing fluid that remains fully open, but of which an inside capillary is too thin to allow for dispensing of fluid when idle. Recourse is therefore made to a resonator device with a piezoelectric exciter, that produces vibrations, in particular bending, of the sleeve to oblige the fluid to flow through it at a determined flow rate that depends on characteristics of the pump and of excitation. The assembly can be miniaturized and used as an implantable device, for example for treatment of hearing pathologies, to deliver a drug, or, in certain embodiments, also take samples of ambient fluid. A remote energy supply is possible.
    Type: Application
    Filed: September 21, 2012
    Publication date: December 25, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Elisabeth Delevoye, Jean-Pierre Nikolovski
  • Patent number: 8681496
    Abstract: Cooling apparatuses, electronic device assemblies, and cooling assemblies having a magnetic shape memory member are disclosed. In one embodiment, a cooling apparatus includes a first compliant member, a magnetic shape memory member, a magnetic field generating device, a second compliant member and a fan member. A first end of the magnetic shape memory member is coupled to the first compliant member. The magnetic field generating device is positioned proximate the magnetic shape memory member, and generates a magnetic field toward the magnetic shape memory member to cause the magnetic shape memory member to expand along a linear translation axis. Expansion of the magnetic shape memory member causes an actuated portion of the second compliant member to translate about an axis. The fan member is coupled to the actuated portion of the compliant member such that translation of the actuated portion translates the fan member.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: March 25, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Ercan Mehmet Dede
  • Publication number: 20130188313
    Abstract: Cooling apparatuses, electronic device assemblies, and cooling assemblies having a magnetic shape memory member are disclosed. In one embodiment, a cooling apparatus includes a first compliant member, a magnetic shape memory member, a magnetic field generating device, a second compliant member and a fan member. A first end of the magnetic shape memory member is coupled to the first compliant member. The magnetic field generating device is positioned proximate the magnetic shape memory member, and generates a magnetic field toward the magnetic shape memory member to cause the magnetic shape memory member to expand along a linear translation axis. Expansion of the magnetic shape memory member causes an actuated portion of the second compliant member to translate about an axis. The fan member is coupled to the actuated portion of the compliant member such that translation of the actuated portion translates the fan member.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 25, 2013
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Ercan Mehmet Dede
  • Publication number: 20130150790
    Abstract: Disclosed herein is a microfluidic pumping device having a piezoelectric member positioned above a displaceable membrane. A voltage is applied across the piezoelectric member causing the piezoelectric member to displace the membrane. Displacement of the membrane increases and decreases pressure in a cavity that is below the membrane. The increases and decreases in pressure actuate cantilevered check valve members to facilitate unidirectional liquid flow through the pumping device.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: STMICROELECTRONICS, INC.
    Inventor: Michele Palmieri
  • Patent number: 8449273
    Abstract: A fluid transporting device is provided with a pump chamber that has a pump function for sucking and discharging a fluid, and is filled therein with the fluid, a casing unit which forms one portion of a wall surface of the pump chamber, a diaphragm which is formed by a conductive polymer film that is subjected to electrochemomechanical expansion and contraction, and forms one portion of the wall surface of the pump chamber, an electrolyte chamber that contains an electrolyte therein, with one portion of the electrolyte being made in contact with the diaphragm, a power supply that applies a voltage to the diaphragm, and a pressure maintaining unit that maintains a pressure of the diaphragm within a predetermined range by moving or deforming the one portion of the wall surface of the electrolyte chamber.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: May 28, 2013
    Assignee: Panasonic Corporation
    Inventors: Kimiya Ikushima, Kazuo Yokoyama
  • Patent number: 8353682
    Abstract: A microfluidic device is described. The microfluidic device comprises at least one transport channel and at least one working chamber, wherein the at least one transport channel and the at least one working chamber are separated from each other by a common deformable wall. The at least one transport channel is for containing a transport fluid and the at least one working chamber is for containing a working fluid. The microfluidic device comprises at least one pair of electrodes for changing the pressure on the working fluid such that when the pressure on the working fluid is changed, the deformable wall deforms, resulting in a change of the cross-section of the at least one transport channel. The working chamber comprises a flexible wall different from the common deformable wall and at least one electrode of the at least one pair of electrodes is provided on the flexible wall.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: January 15, 2013
    Assignee: Stichting IMEC Nederland
    Inventors: Mihai Patrascu, Mercedes Crego Calama, Martijn Goedbloed, Koray Karakaya
  • Publication number: 20120275929
    Abstract: A fluid conveyance system includes a flow passage and a cavity adjacent a side of the flow passage. A wall of the passage includes a flexible section that separates the cavity from the flow passage. The cavity contains a ferrofluidic material. The system further includes at least one magnetic field source positioned adjacent the flow channel. The magnetic field source is operable to move the ferrofluidic material in the cavity to exert a pressure on the flexible section and displace the flexible section into the flow passage to alter the flow of material through the passage. A method of collecting components from a sample volume includes the steps of distributing magnetic particles into the sample volume, capturing the components from the sample volume, and applying a magnetic field to the sample volume to control directional flow of the sample volume.
    Type: Application
    Filed: June 29, 2011
    Publication date: November 1, 2012
    Applicant: APTINA IMAGING CORPORATION
    Inventor: Kenneth Salsman
  • Patent number: 8226380
    Abstract: The invention relates to a chamber, in particular a pump chamber, comprising a plate-shaped first half (10) and a plate-shaped second half (12). The first and second halves are connected to one another by a closed connecting seam (20) in a surface-to-surface relation, and at least one half has at least one aperture (14) lying within the connecting seam. Furthermore, at least the second half is thermally deformed within the closed connecting seam in such a manner that it is formed to bulge relative to the connecting surface with the first half such that a hollow space (30) is formed between the first and second halves. In a second aspect, the invention relates to a pump having a configuration as described above. In a third aspect, the invention relates to a method for producing a chamber as described above.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: July 24, 2012
    Assignee: PARItec GmbH
    Inventor: Joseph Lass
  • Patent number: 8197234
    Abstract: An electromagnetic actuator for a microfluidic pump of the type that causes periodic pinching and releasing against the walls of a fluidic channel, e.g., a tube. At least one permanent magnet is placed against the walls of the fluidic channel, and located in an area with magnetic fields, produced by coils that are radially symmetric to the channel. The permanent magnet is cause to press and release against the wall of the fluid channel to cause a fluid flow through the channel.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: June 12, 2012
    Assignee: California Institute of Technology
    Inventors: Morteza Gharib, Derek Rinderknecht, Mladen Barbic
  • Patent number: 8191732
    Abstract: In a waveguide pump and method of pumping liquid, at least a portion of an elongate ultrasonic waveguide is immersed in a liquid reservoir. The waveguide has first and second ends, a nodal region located longitudinally therebetween, and an internal passage extending longitudinally within the waveguide from the first end to a location beyond the nodal region toward the second end of the waveguide. The waveguide also has an inlet at the first end in fluid communication with the internal passage and an outlet in fluid communication with the internal passage and spaced longitudinally from the inlet beyond the nodal region of the waveguide. The immersed portion of the waveguide extends from the inlet to a location that is one of generally longitudinally adjacent, at and beyond the nodal region of the waveguide. The waveguide is ultrasonically excited to cause the waveguide to vibrate at an ultrasonic frequency.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: June 5, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Thomas David Ehlert, Patrick Sean McNichols