Single Carbide Patents (Class 419/17)
-
Patent number: 12220937Abstract: A writing ball capable of suppressing wear of a ball seat of a ballpoint pen tip and obtaining stable ink outflow, a writing ball that is a sphere, the sphere comprising, at least: a first hard component containing a first metal; a second hard component containing a second metal; and a binding component, the writing ball comprising: a first outer surface from which the first hard component is exposed, the first outer surface being an outermost surface of the sphere; and a recess including, as a bottom surface, a second outer surface from which the second hard component is exposed, the second outer surface being recessed inward from the first outer surface, wherein the first outer surface includes a smooth surface.Type: GrantFiled: November 17, 2022Date of Patent: February 11, 2025Assignee: KABUSHIKI KAISHA PILOT CORPORATIONInventor: Kouichi Takayama
-
Patent number: 12065722Abstract: A composite material having a grainy appearance, this composite material including a metal matrix which represents, in terms of volume fraction, between 50 and 95% of the grainy composite material, the ceramic particles having a diameter that lies in the range 0.1 to 2 mm and which represent, in terms of volume fraction, between 50 and 5% of the composite material are dispersed in the metal matrix and form the remainder of this grainy composite material. A method for manufacturing a grainy synthetic material.Type: GrantFiled: October 31, 2019Date of Patent: August 20, 2024Assignee: The Swatch Group Research and Development LtdInventors: Joel Porret, Yves Winkler
-
Patent number: 11858045Abstract: Provided is a Fe-based sintered body which has both of a high hardness and a high thermal conductivity and which can be more stably produced. The Fe-based sintered body includes: a matrix (1) containing Fe as a main component; and a hard phase (4) dispersed in the matrix (1). The matrix (1) is formed in a network shape and contains ?Fe. The hard phase (4) contains TiC.Type: GrantFiled: July 24, 2019Date of Patent: January 2, 2024Assignees: Hiroshima University, Y-tec Corporation, keylex corporation, Mazda Motor CorporationInventors: Kazuhiro Matsugi, Yujiao Ke, Zhefeng Xu, Kenjiro Sugio, Yongbum Choi, Gen Sasaki, Hajime Suetsugu, Hiroki Kondo, Hideki Manabe, Kyotaro Yamane, Kenichi Hatakeyama, Keizo Kawasaki, Tsuyoshi Itaoka, Shinsaku Seno, Yasushi Tamura, Ichirou Ino, Yoshihide Hirao
-
Patent number: 11590573Abstract: Described herein are methods of forming a neutron shielding material. Such material may comprise a powder blend comprising a first component comprising a blend of a first metal particle and a first ceramic particle; and a second component comprising a reinforcing chip, the reinforcing chip comprising a second ceramic particle dispersed within a chip metal matrix.Type: GrantFiled: October 29, 2020Date of Patent: February 28, 2023Inventors: Krishna P. Singh, Thomas G. Haynes, III, Luke Chester Sobus
-
Patent number: 11555404Abstract: A rotary compressor has a combined vane-roller structure that may ensure improved productivity and reliability through control of mechanical properties. The rotary compressor includes a coupling groove which is disposed at one side of an outer circumferential surface of the roller, which has a circular arc shape from an outer diameter of the roller towards an inner diameter of the roller, and which is configured to couple a vane and the roller, and includes a ferrosoferric oxide (Fe3O4) film on a surface of the coupling groove. A manufacturing method of the rotary compressor is also described.Type: GrantFiled: June 24, 2020Date of Patent: January 17, 2023Assignee: LG Electronics Inc.Inventors: Ki Sun Kim, Sangha Lee, Jebyoung Moon, Taeyoung Noh, Jaeyeol Lee
-
Patent number: 11365483Abstract: A coated cutting tool has a substrate of cemented carbide, cermet, ceramics, steel or cubic boron nitride and a multi-layered wear resistant coating deposited thereon has a total thickness from 4 to 25 ?m. The multi-layered wear resistant coating includes a TiAlCN layer (a) represented by the formula Ti1-xAlxCyNz with 0.2?x?0.97, 0?y?0.25 and 0.7?z?1.15 deposited by CVD, and a ?-Al2O3 layer (b) of kappa aluminium oxide deposited by CVD immediately on top of the TiAlCN layer (a). The Ti1-AlxCyNz layer (a) has an overall fiber texture with the {111} plane growing parallel to the substrate surface and a {111} pole figure, measured over an angle range of 0°???80° and the ?-Al2O3 layer (b) has an overall fiber texture with the {002} plane growing parallel to the substrate surface and a {002} pole figure, over an angle range of 0°???80°.Type: GrantFiled: June 20, 2017Date of Patent: June 21, 2022Assignee: WALTER AGInventors: Dirk Stiens, Thorsten Manns
-
Patent number: 11306559Abstract: An anchoring device comprises a degradable substrate; and a ceramic biting member secured to an outer surface of the degradable substrate and configured for engagement with another member, the ceramic biting member comprising a ceramic material which has a density of greater than about 90% of theoretical density and contains one or more of the following: Al2O3; MgO; CaO; SiO2; TiO2; Y2O3; ZrO2; SiC; BN, or Si3N4.Type: GrantFiled: November 12, 2019Date of Patent: April 19, 2022Assignee: BAKER HUGHES OILFIELD OPERATIONS LLCInventors: Zhihui Zhang, YingQing Xu, Zhiyue Xu
-
Patent number: 11183476Abstract: A silicon carbide semiconductor device including a semiconductor substrate containing silicon carbide, a contact electrode, which is a silicide layer containing nickel, provided on a surface of the semiconductor substrate and forming an ohmic contact with the semiconductor substrate, and a metal connection layer provided on a surface of the contact electrode. The metal connection layer has a stacked structure in which on the surface of the contact electrode, a titanium layer, a nickel layer, and a gold layer are sequentially stacked. The titanium layer includes a carbon diffusion layer formed along an interface between the titanium layer and the contact electrode, a concentration of carbon being higher in the carbon diffusion layer than in a portion of the titanium layer other than the carbon diffusion layer. The titanium layer, the nickel layer and the gold layer have thicknesses of 100 nm to 300 nm, 1000 nm to 1500 nm, and 20 nm to 200 nm, respectively.Type: GrantFiled: September 27, 2019Date of Patent: November 23, 2021Assignee: FUJI ELECTRIC CO., LTD.Inventors: Makoto Utsumi, Yoshiyuki Sakai
-
Patent number: 10770705Abstract: Implementations of the present disclosure generally relate to separators, high performance electrochemical devices, such as, batteries and capacitors, including the aforementioned separators, and methods for fabricating the same. In one implementation, a method of forming a separator for a battery is provided. The method comprises exposing a metallic material to be deposited on a surface of an electrode structure positioned in a processing region to an evaporation process. The method further comprises flowing a reactive gas into the processing region. The method further comprises reacting the reactive gas and the evaporated metallic material to deposit a ceramic separator layer on the surface of the electrode structure.Type: GrantFiled: July 17, 2018Date of Patent: September 8, 2020Assignee: APPLIED MATERIALS, INC.Inventor: Subramanya P. Herle
-
Patent number: 10710933Abstract: A cermet body, including a ceramic portion and a plurality of high magnetic permeability magnetic metallic particles distributed throughout the ceramic portion. Each respective high magnetic permeability magnetic metallic particle has a magnetic permeability of at least 0.0001 H/m. The magnetic metallic particles define a contiguous metallic phase, wherein the cermet body enjoys sufficient bulk electrical conductivity to be machined via electrical discharge machining.Type: GrantFiled: October 24, 2017Date of Patent: July 14, 2020Inventor: Thomas Blaszczykiewicz
-
Patent number: 10202310Abstract: A carbon composite comprises: at least two carbon microstructures; and a binding phase disposed between the at least two carbon microstructures; wherein the binding phase includes a binder comprising one or more of the following SiO2; Si; B; B2O3; a metal; or an alloy of the metal, and the metal is at least one of aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.Type: GrantFiled: March 3, 2016Date of Patent: February 12, 2019Assignee: BAKER HUGHES, A GE COMPANY, LLCInventors: Zhiyue Xu, Lei Zhao
-
Patent number: 10184165Abstract: A high strength and high toughness magnesium alloy, characterized in that it is a plastically worked product produced by a method comprising preparing a magnesium alloy cast product containing a atomic % of Zn, b atomic % of Y, a and b satisfying the following formulae (1) to (3), and the balance amount of Mg, subjecting the magnesium alloy cast product to a plastic working to form a preliminary plastically worked product, and subjecting the preliminary plastically worked product to a heat treatment, and it has a hcp structure magnesium phase and a long period stacking structure phase at an ordinary temperature; (1) 0.5?a<5.0 (2) 0.5<b<5.0 (3) ?a???b.Type: GrantFiled: August 1, 2014Date of Patent: January 22, 2019Inventors: Yoshihito Kawamura, Michiaki Yamasaki
-
Patent number: 9861797Abstract: In at least one embodiment of the present invention a balloon catheter is provided. The balloon catheter comprises a shaft having a lumen formed therethrough. Connected to the shaft is an inflatable balloon. The inflatable balloon has a balloon wall defining a balloon interior surface and a balloon exterior surface that is opposite the interior surface. In fluid communication with the balloon wall is the lumen for inflating the balloon to define an inflated state and for collapsing the balloon to define a deflated state. The balloon wall is textured in the deflated state such that the balloon interior surface is spatially registered with the balloon exterior surface. The balloon in the inflated state is tensioned to have a surface roughness substantially less than a surface roughness of the balloon in the deflated state.Type: GrantFiled: May 26, 2015Date of Patent: January 9, 2018Assignee: COOK MEDICAL TECHNOLOGIES LLCInventors: David G. Burton, Thomas Lysgaard, Steen Aggerholm, Scott E. Boatman
-
Patent number: 9676060Abstract: A method for treating a Cu thin sheet is provided. The method comprises the steps of: supplying a slurry in which a diffusion bonding aid (DBA), such as Ni powder, and a reinforcing material (RM), such as a carbide base metal compound, are dispersed in a solvent to a predetermined portion on a Cu or Cu base alloy thin sheet, drying the supplied slurry, and applying a laser to induce melting, solidification, and fixation, so as to form a buildup layer. In the method, the weight ratio of DBA to RM is specified to be 80:20 to 50:50, and the median diameters D50 of both DBA and RM employed fall within 0.1 to 100 ?m, the median diameter D50 of DBA is larger than the median diameter D50 of RM, and both the distribution ratio D90/D10 of DBA and the distribution ratio D90/D10 of RM are 4.0 or less.Type: GrantFiled: September 20, 2013Date of Patent: June 13, 2017Assignee: NGK Insulators, Ltd.Inventors: Naokuni Muramatsu, Shoju Aoshima
-
Publication number: 20150004044Abstract: An alloy and method of forming the alloy are provided. The alloy includes a matrix phase, and a multimodally distributed population of particulate phases dispersed within the matrix. The matrix includes iron and chromium, and the population includes a first subpopulation of particulate phases and a second subpopulation of particulate phases. The first subpopulation of particulate phases include a complex oxide, having a median size less than about 15 nm, and present in the alloy in a concentration from about 0.1 volume percent to about 5 volume percent. The second subpopulation of particulate phases have a median size in a range from about 25 nm to about 10 microns, and present in the alloy in a concentration from about 0.1 volume percent to about 15 volume percent. Further embodiments include articles, such as turbomachinery components and fasteners, for example, that include the above alloy, and methods for making the alloy.Type: ApplicationFiled: November 8, 2013Publication date: January 1, 2015Applicant: GENERAL ELECTRIC COMPANYInventors: Laura Cerully Dial, Matthew Joseph Alinger, Richard DiDomizio
-
Patent number: 8889065Abstract: An improved sintered material and product. A nanometer size reinforcement powder is mixed with a micron size titanium or titanium alloy powder. After the reinforcement powder is generally uniformly dispersed, the powder mixture is compacted and sintered, causing the nano reinforcement to react with the titanium or titanium alloy, producing a composite material containing nano and micron size precipitates that are uniformly distributed throughout the material.Type: GrantFiled: September 14, 2006Date of Patent: November 18, 2014Assignee: IAP Research, Inc.Inventors: Bhanumathi Chelluri, Edward Arlen Knoth, Edward John Schumaker, Ryan D. Evans, James. L. Maloney, III
-
Publication number: 20140271321Abstract: The present invention relates to a method of making a cemented carbide or a cermet body comprising the steps of first forming a powder blend comprising powders forming hard constituents and metal binder. The powder blend is then subjected to a mixing operation using a non-contact mixer wherein acoustic waves achieving resonance conditions to form a mixed powder blend and then subjecting said mixed powder blend to a pressing and sintering operation. The method makes it possible to maintain the grain size, the grain size distribution and the morphology of the WC grains.Type: ApplicationFiled: October 17, 2012Publication date: September 18, 2014Applicant: SANDVIK INTELLECTUAL PROPERTY ABInventors: Carl-Johan Maderud, Tommy Flygare, Michael Carpenter, Jane Smith
-
Patent number: 8834786Abstract: Carbide pellets including relatively small amounts of metallic binder are produced by steps of pressing, comminuting, shaping and sintering. The carbide pellets may be used as wear resistant hard facing materials that are applied to various types of tools. The carbide pellets provide improved mechanical properties such as hardness and abrasiveness while maintaining required levels of toughness and strength.Type: GrantFiled: June 30, 2010Date of Patent: September 16, 2014Assignee: Kennametal Inc.Inventors: Terry Wayne Kirk, Hongbo Tian, Xin Deng, Debangshu Banerjee, Qingjun Zheng
-
Patent number: 8795584Abstract: A small diameter, elongated steel article, comprising fully consolidated, prealloyed metal powder is disclosed. The consolidated metal powder has a microstructure that has a substantially uniform distribution of fine grains having a grain size of not larger than about 9 when determined in accordance with ASTM Standard Specification E 112. The microstructure of the consolidated metal powder is further characterized by having a plurality of substantially spheroidal carbides uniformly distributed throughout the consolidated metal powder that are not greater than about 6 microns in major dimension and a plurality of sulfides uniformly distributed throughout the consolidated metal powder wherein the sulfides are not greater than about 2 microns in major dimension. A process for making the elongated steel article is also disclosed.Type: GrantFiled: August 23, 2012Date of Patent: August 5, 2014Assignee: CRS Holdings, Inc.Inventors: Olivier Schiess, Pierre Marechal, Gregory J. Del Corso
-
Publication number: 20140170013Abstract: An in-situ process for making aluminum titanium carbide composite materials include the steps of mixing powdered aluminum, titanium and calcium carbonate, compacting the mixture and heating by a high frequency induction heater up to a temperature at which titanium carbide is formed at about 800° C.-1,000° C. The compact are then introduced into a tube furnace under an inert atmosphere such as argon, nitrogen, helium etc. at 1200° C. to 1350° C. for 4 to 7 hours to complete the reaction and optimize the TiC particles.Type: ApplicationFiled: December 19, 2012Publication date: June 19, 2014Applicant: King Saud UniversityInventor: King Saud University
-
Publication number: 20140154126Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.Type: ApplicationFiled: November 18, 2013Publication date: June 5, 2014Inventor: Robert G. Lee
-
Publication number: 20140147327Abstract: The present invention relates to the development of an alloy material with significantly improved low-temperature brittleness, recrystallization brittleness, and irradiation brittleness by the introduction of a recrystallization microstructure into an alloy, particularly a tungsten material, to significantly strengthen a weak grain boundary of the recrystallization microstructure. The present invention comprises the steps of: mechanically alloying at least one species selected from a group-IVA, VA, or VIA transition metal carbide and a metallic raw material; sintering base powders obtained through the mechanically alloying step, by using a hot isostatic press; and performing plastic deformation of at least 60% on the alloy obtained through the sintering step, at a strain rate between 10?5 s?1 and 10?2 S?1 and at a temperature between 500° C. and 2,000° C.Type: ApplicationFiled: July 27, 2012Publication date: May 29, 2014Applicant: TOHOKU UNIVERSITYInventors: Hiroaki Kurishita, Hideo Arakawa, Satoru Matsuo
-
Publication number: 20140147221Abstract: A target for the deposition of mixed crystal layers with at least two different metals on a substrate by means of arc vapor deposition (arc PVD), wherein the target includes at least two different metals. To produce mixed crystal layers which are as free as possible of macroparticles (droplets) according to the invention at least the metal with the lowest melting point is present in the target in a ceramic compound, namely as a metal oxide, metal carbide, metal nitride, metal carbonitride, metal oxynitride, metal oxycarbide, metal oxycarbonitride, metal boride, metal boronitride, metal borocarbide, metal borocarbonitride, metal borooxynitride, metal borooxocarbide, metal borooxocarbonitride, metal oxoboronitride, metal silicate or mixture thereof, and at least one metal different from the metal with the lowest melting point is present in the target in elemental (metallic) form.Type: ApplicationFiled: October 18, 2011Publication date: May 29, 2014Applicant: WALTER AGInventor: Veit Schier
-
Patent number: 8647561Abstract: Embodiments of the present invention include methods of producing a composite article. A method comprises introducing a first powdered metal grade from a feed shoe into a first portion of a cavity in a die and a second powdered metal grade from the feed shoe into a second portion of the cavity, wherein the first powder metal grade differs from the second powdered metal grade in chemical composition or particle size. Further methods are also provided. Embodiments of the present invention also comprise composite inserts for material removal operations. The composite inserts may comprise a first region and a second region, wherein the first region comprises a first composite material and the second region comprises a second composite material.Type: GrantFiled: July 25, 2008Date of Patent: February 11, 2014Assignee: Kennametal Inc.Inventors: X. Daniel Fang, David J. Wills, Prakash K. Mirchandani
-
Publication number: 20140010700Abstract: A method for producing a high strength aluminum alloy brackets, cases, tubes, ducts, beams, spars and other parts containing L12 dispersoids from an aluminum alloy powder containing the L12 dispersoids. The powder is consolidated into a billet having a density of about 100 percent. The billet is extruded using an extrusion die shaped to produce the component.Type: ApplicationFiled: June 25, 2013Publication date: January 9, 2014Inventor: Awadh B. Pandey
-
Publication number: 20130052075Abstract: A wear pad of a band saw guide exposed to wear from a moving band saw blade is produced in a powder metallurgical manner from a steel material having the following composition, in percent by weight: 0.01-2 C, 0.01-3.0 Si, 0.01-10.0 Mn, 16-33 Cr, max. 5 Ni, 0.01-5.0 (W+Mo/2), max. 9 Co, max. 0.5 S, 1.6-9.8 N, 7.5 to 14 of (V+Nb/2), wherein the contents of N and of (V+Nb/2) are balanced in relation to each other so that the contents of the elements are within a range I?, F?, G, H, I? in a coordinate system, where the content of N is the abscissa and the content of (V+Nb/2) is the ordinate, and where the coordinates for the points (in the format [x: (N, (V+Nb/2)]) are [I?: (1.6, 7.5)], [F?: (5.8, 7.5)], [G: (9.8, 14.0)], and [H: (2.6, 14.0)], max 7 of any of Ti, Zr, and Al; and a balance essentially only iron and unavoidable impurities.Type: ApplicationFiled: March 9, 2011Publication date: February 28, 2013Inventor: Jan Boström
-
Publication number: 20120321500Abstract: A small diameter, elongated steel article, comprising fully consolidated, prealloyed metal powder is disclosed. The consolidated metal powder has a microstructure that has a substantially uniform distribution of fine grains having a grain size of not larger than about 9 when determined in accordance with ASTM Standard Specification E 112. The microstructure of the consolidated metal powder is further characterized by having a plurality of substantially spheroidal carbides uniformly distributed throughout the consolidated metal powder that are not greater than about 6 microns in major dimension and a plurality of sulfides uniformly distributed throughout the consolidated metal powder wherein the sulfides are not greater than about 2 microns in major dimension. A process for making the elongated steel article is also disclosed.Type: ApplicationFiled: August 23, 2012Publication date: December 20, 2012Inventors: Olivier Schiess, Pierre Marechal, Gregory J. De Corso
-
Patent number: 8329093Abstract: A method for preparing metal-matrix composites including cold-process isostatic compaction of previously mixed powders and hot-process uniaxial pressing of the resulting compact is disclosed. The method enables metal-matrix composites with improved properties to be obtained. A device for implementing isostatic compaction comprising a latex sheath into which the mixture of powders is poured, a perforated cylindrical container in which the latex sheath is arranged, and means for sealed insulation of the mixture of powders contained in the sheath is also disclosed.Type: GrantFiled: March 14, 2006Date of Patent: December 11, 2012Assignee: Forges de BologneInventor: Jacques Tschofen
-
Publication number: 20120276393Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.Type: ApplicationFiled: July 9, 2012Publication date: November 1, 2012Inventor: Robert G. LEE
-
Publication number: 20120241670Abstract: The present invention provides a preparation method of a metal matrix composite. The method comprises the following steps of: 1) pulverizing a solid carbon material to a micrometer size; 2) plastic deforming a metal matrix powder and dispersing the pulverized nanometer-sized carbon material into the metal matrix powder during the plastic deformation; 3) integrating the metal/carbon nano-material composite powder obtained in step 2) by using a hot forming process; and 4) heat treating the integrated bulk material at a predetermined temperature to form a composite having a metal-carbon nanophase, a metal-carbon nanoband formed by growth of the metal-carbon nanophase, or a metal-carbon nano-network structure formed by self-coupling of the metal-carbon nanoband.Type: ApplicationFiled: October 22, 2010Publication date: September 27, 2012Applicant: Industry-Academic Cooperation Foundation, Yonsei UniversityInventors: Dong Hyun Bae, Hyun Joo Choi
-
Publication number: 20120207640Abstract: High strength aluminum alloys and methods for producing them. The alloys consist essentially of about 9.0 to 10.3 wt. % zinc, about 2.5 to 3.5 wt. % magnesium, about 1.5 to 3.0 wt. % copper and less than about 0.05 wt. % of any other alloying constituent. The balance consists of aluminum. These alloys are compatible with ceramic reinforcements used in metal matrix composites.Type: ApplicationFiled: February 14, 2011Publication date: August 16, 2012Applicant: Gamma Technology, LLCInventor: William C. Harrigan, JR.
-
Publication number: 20120177453Abstract: The invention relates to hard-metal body comprising a hard-metal, the hard-metal comprising tungsten carbide grains and metal binder comprising cobalt having a concentration of tungsten dissolved therein, the body comprising a surface region adjacent a surface and a core region remote from the surface, the surface region and the core region being contiguous with each other; the mean binder fraction of the core region being greater than that of the surface region; the mean carbon concentration within the binder being higher in the surface region than in the core region; to tools comprising same and methods of making same.Type: ApplicationFiled: March 6, 2012Publication date: July 12, 2012Inventors: Igor Yuri Konyashin, Sebastian Ralf Hlawatschek, Bernd Heinrich Ries, Frank Friedrich Lachmann
-
Patent number: 8171851Abstract: A kinetic energy penetrator is provided comprising a consolidated body of a metal nanoparticles phase comprising metal nanoparticles and a metal carbide nanoparticles phase comprising metal carbide nanoparticles. Methods for making a kinetic energy penetrator as well as material compositions comprising a consolidated body of a metal nanoparticles phase comprising metal nanoparticles and a metal carbide nanoparticles phase comprising metal carbide nanoparticles are also provided.Type: GrantFiled: April 1, 2009Date of Patent: May 8, 2012Assignee: Kennametal Inc.Inventors: David R. Siddle, Christopher D. Dunn
-
Patent number: 8043555Abstract: An earth-boring bit has a steel body and bearing pin for rotatably supporting a cone. The cone has an exterior surface containing rows of cutting elements. The cone and cutting elements are formed of cemented tungsten carbide. The cone may be manufactured by applying pressure to a mixture of hard particles and metal alloy powder to form a billet, then machining the billet to a desired over-sized conical shaped product. Then the conical-shaped product is liquid-phase sintered to a desired density, which causes shrinking to the desired final shape.Type: GrantFiled: December 7, 2009Date of Patent: October 25, 2011Assignee: Baker Hughes IncorporatedInventors: Redd H. Smith, Trevor Burgess, Jimmy W. Eason
-
Publication number: 20110214529Abstract: A process for forming a remateable machined titanium powder base alloy connecting rod using a titanium alloy powder having an average particle size of about 1-20 microns, a mean aspect ratio of about 5 to 300, and a specific surface area of at least about 25 m2/g.Type: ApplicationFiled: May 12, 2011Publication date: September 8, 2011Inventor: Gerald Martino
-
Publication number: 20110142707Abstract: Methods of manufacturing rotary drill bits for drilling subterranean formations include forming a plurality of boron carbide particles into a body having a shape corresponding to at least a portion of a bit body of a rotary drill bit, infiltrating a plurality of boron carbide particles with a molten aluminum or aluminum-based material, and cooling the molten aluminum or aluminum-based material to form a solid matrix material surrounding the boron carbide particles. In additional methods, a green powder component is provided that includes a plurality of particles each comprising boron carbide and a plurality of particles each comprising aluminum or an aluminum-based alloy material. The green powder component is at least partially sintered to provide a bit body, and a shank is attached to the bit body.Type: ApplicationFiled: February 7, 2011Publication date: June 16, 2011Applicant: BAKER HUGHES INCORPORATEDInventors: Heeman Choe, John H. Stevens, James C. Westhoff, Jimmy W. Eason, James L. Overstreet
-
Publication number: 20110091345Abstract: A method for producing a high strength aluminum alloy tubing containing L12 dispersoids from an aluminum alloy powder containing the L12 dispersoids. The powder is consolidated into a billet having a density of about 100 percent. The tube is formed by at least one of direct extrusion, Mannesmann process, pilgering, and rolling.Type: ApplicationFiled: October 16, 2009Publication date: April 21, 2011Applicant: United Technologies CorporationInventor: Awadh B. Pandey
-
Publication number: 20110002804Abstract: The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for a binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the CERACON™ process, or hot isostatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.Type: ApplicationFiled: September 13, 2010Publication date: January 6, 2011Applicant: BAKER HUGHES INCORPORATEDInventors: Jimmy W. Eason, James C. Westhoff, Roy Carl Lueth
-
Publication number: 20100251921Abstract: A kinetic energy penetrator is provided comprising a consolidated body of a metal nanoparticles phase comprising metal nanoparticles and a metal carbide nanoparticles phase comprising metal carbide nanoparticles. Methods for making a kinetic energy penetrator as well as material compositions comprising a consolidated body of a metal nanoparticles phase comprising metal nanoparticles and a metal carbide nanoparticles phase comprising metal carbide nanoparticles are also provided.Type: ApplicationFiled: April 1, 2009Publication date: October 7, 2010Applicant: Kennametal Inc.Inventors: David Richard Siddle, Christopher David Dunn
-
Publication number: 20100227188Abstract: An economic ferrous sintered multilayer roll-formed bushing, a producing method of the same and a connecting device are provided, in which a ferrous sintered sliding material layer is tightly sintered-bonded to a back metal steel, the ferrous sintered sliding material layer being intended to have low coefficient of friction, having excellent seizing resistance and abrasion resistance and providing self-lubricating property so as to prolong a lubrication interval or eliminate the necessity of lubricating. The ferrous sintered multilayer roll-formed bushing according to the present invention comprises: a back metal steel; a ferrous sintered sliding material layer sinter-bonded to the back metal steel; a diffusion layer of ferrous alloy particle formed at the vicinity of the bonding boundary between the ferrous sintered sliding material layer and the back metal steel; and a Cu alloy phase formed at the vicinity of the bonding boundary and extending in the direction of the bonding boundary.Type: ApplicationFiled: January 30, 2007Publication date: September 9, 2010Inventor: Takemori Takayama
-
Patent number: 7749430Abstract: A member for a semiconductor device of low price, capable of forming a high quality plating layer on a surface, having heat conductivity at high temperature (100° C.) of more than or equal to 180 W/m·K and toughness that will not cause breaking due to screwing, and will not cause solder breaking due to heat stress when it is bonded to other member with solder, and a production method thereof are provided. A member for a semiconductor device (1) having a coefficient of thermal expansion ranging from 6.5×10?6/K to 15×10?6/K inclusive, and heat conductivity at 100° C.Type: GrantFiled: January 11, 2006Date of Patent: July 6, 2010Assignee: A.L.M.T. Corp.Inventor: Akira Fukui
-
Publication number: 20100154587Abstract: Methods of fabricating bodies of earth-boring tools include mechanically injecting a powder mixture into a mold cavity, pressurizing the powder mixture within the mold cavity to form a green body, and sintering the green body to a desired final density to form at least a portion of a body of an earth-boring tool. For example, a green bit body may be injection molded, and the green bit body may be sintered to form at least a portion of a bit body of an earth-boring rotary drill bit. Intermediate structures formed during fabrication of an earth-boring tool include green bodies having a plurality of hard particles, a plurality of matrix particles comprising a metal matrix material, and an organic material that includes a long chain fatty acid derivative. Structures formed using the methods of fabrication are also disclosed.Type: ApplicationFiled: December 22, 2008Publication date: June 24, 2010Inventor: Jimmy W. Eason
-
Patent number: 7687023Abstract: A composite alloy that contains TiC is made using a green binder system of titanium sponge granules and a liquid phase binder system comprising titanium, nickel, and aluminum. The alloy has a mass of less than 5 grams per cubic centimeter. The alloy may be bonded to a hard substrate to provide an armor tile.Type: GrantFiled: April 2, 2007Date of Patent: March 30, 2010Inventor: Robert G. Lee
-
Publication number: 20100074788Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, etc. The method for manufacturing TMCC is comprised of the following steps: (a) preparing a basic powdered blend containing matrix alloy or titanium powders, dispersing ceramic and/or intermetallic powders, and powders of said complex carbide- and/or silicide particles, (b) preparing the Al—V master alloy containing ?5 wt. % of iron, (c) preparing the Al—V—Fe master alloy fine powder having a particle size of ?20 ?m, (d) mixing the basic powdered blend with the master alloy powder to obtain a chemical composition of TMCC, (e) compacting the powder mixture at room temperature, (f) sintering at the temperature which provides at least partial dissolution of dispersed powders, (g) forging at 1500-2300° F., and (h) cooling.Type: ApplicationFiled: November 19, 2009Publication date: March 25, 2010Applicant: Advance Material Products Inc.(ADMA Products, Inc.)Inventors: Vladimir S. Moxson, Volodymyr A. Duz, Alexander E. Shapiro
-
Patent number: 7648675Abstract: A method of sintering a composite body characterized by a transition metal carbide phase (such as a ZrC phase) substantially evenly distributed in a second, typically refractory, transition metal (such as W) matrix at ambient pressures, including blending a first predetermined amount of first transition metal oxide powder (such as ZrO2) with a second predetermined amount of second transition metal carbide powder (such as WC powder). Next the blended powders are mixed to yield a substantially homogeneous powder mixture and a portion of the substantially homogeneous powder mixture is formed into a green body.Type: GrantFiled: October 6, 2006Date of Patent: January 19, 2010Inventors: Shi C. Zhang, Gregory E. Hilmas, William G. Fahrenholtz
-
Publication number: 20090291011Abstract: A method of sintering a composite body characterized by a transition metal carbide phase (such as a ZrC phase) substantially evenly distributed in a second, typically refractory, transition metal (such as W) matrix at ambient pressures, including blending a first predetermined amount of first transition metal oxide powder (such as ZrO2) with a second predetermined amount of second transition metal carbide powder (such as WC powder). Next the blended powders are mixed to yield a substantially homogeneous powder mixture and a portion of the substantially homogeneous powder mixture is formed into a green body.Type: ApplicationFiled: October 6, 2006Publication date: November 26, 2009Inventors: Shi C. Zhang, Gregory E. Hilmas, William G. Fahrenholtz
-
Publication number: 20090074604Abstract: The disclosed is an ultra-hard composite material. The method for manufacturing the ultra-hard composite material includes mixing a metal carbide powder and a multi-element high-entropy alloy powder to form a mixture, green compacting the mixture, and sintering the mixture to form the ultra-hard composite material. The described multi-element high-entropy alloy consists of five to eleven principal elements, with every principal element occupying a 5 to 35 molar percentage of the alloy.Type: ApplicationFiled: April 25, 2008Publication date: March 19, 2009Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Chi-San CHEN, Chih-Chao YANG, Jien-Wei YEH, Chin-Te HUANG
-
Publication number: 20090041609Abstract: The invention relates to manufacturing the flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates, sheets for aircraft and automotive applications, heat-sinking lightweight electronic substrates, armor plates, etc. High-strength discontinuously-reinforced titanium metal matrix composite (TMMC) comprises (a) titanium matrix or titanium alloy as a major component, (b) ceramic and/or ?50 vol. % intermetallic hard particles dispersed in matrix, (c) complex carbide- and/or boride particles at least partially soluble in matrix at sintering or forging temperatures such as ?50 vol. % AlV2C, AlTi2Si3, AlTi6Si3, VB2, TiVSi2, TiVB4, Ti2AlC, AlCr2C, TiAlV2, V2C, VSi2, Ta3B4, NbTiB4, Al3U2C3 dispersed in matrix. Method for manufacturing these TMMC materials is disclosed. Sintered TMMC density exceeds 98% and closed discontinuous porosity allows performing hot deformation in air without encapsulating.Type: ApplicationFiled: August 7, 2007Publication date: February 12, 2009Inventors: Volodymyr A. Duz, Vladimir S. Moxson, Alexander E. Shapiro
-
Patent number: 7488512Abstract: In a solid precursor evaporation system configured for use in a thin film deposition system, such as thermal chemical vapor deposition (TCVD), a method for preparing one or more trays of solid precursor is described. The solid precursor may be formed on a coating substrate, such as a tray, using one or more of dipping techniques, spin-on techniques, and sintering techniques.Type: GrantFiled: December 9, 2004Date of Patent: February 10, 2009Assignee: Tokyo Electron LimitedInventors: Kenji Suzuki, Emmanuel P. Guidotti, Gerrit J. Leusink, Masamichi Hara, Daisuke Kuroiwa, Sandra G. Malhotra, Fenton McFeely, Robert R. Young, Jr.
-
Publication number: 20080310989Abstract: A method for preparing metal-matrix composites including cold-process isostatic compaction of previously mixed powders and hot-process uniaxial pressing of the resulting compact disclosed. The method enables metal-matrix composites with improved properties to be obtained. A device for implementing isostatic compaction comprising a latex sheath into which mixture of powders is poured, a perforated cylindrical container in which the latex sheath is arranged, and means for sealed insulation of the mixture of powders contained in the sheath is also disclosed.Type: ApplicationFiled: March 14, 2006Publication date: December 18, 2008Applicant: FORGES DE BOLOGNEInventor: Jacques Tschofen