Subsequent Working Patents (Class 419/28)
  • Patent number: 10364677
    Abstract: A turbine engine rotor component has a Ti-based first member (66) circumscribing an axis (500) and has either a circumferential array of integrally formed airfoils (62) or a circumferential array of blade retention features. A TiB particulate reinforced second member (90) also circumscribes the axis.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: July 30, 2019
    Assignee: United Technologies Corporation
    Inventor: James O. Hansen
  • Patent number: 10297430
    Abstract: Method of producing a target having a small average crystal grain size of gold or platinum and having a uniform crystal grain size in an in-plane direction of a target surface and a thickness direction of the target in order to further stabilize film deposition characteristics during sputtering.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: May 21, 2019
    Assignee: FURUYA METAL CO., LTD.
    Inventors: Tomohiro Maruko, Yu Suzuki, Shoji Saito, Amiko Ito, Yusuke Takaishi, Nobuo Kikuchi, Daishi Kaneko, Eiji Matsumoto
  • Patent number: 10252337
    Abstract: A method for manufacturing a metallic article includes providing or obtaining a metallic material in powder form, using an additive manufacturing process, building the metallic article from the powder-form metallic material, layer-by-layer, in a build direction, wherein as a result of the additive manufacturing process, the metallic article comprises columnar grain structures oriented in the build direction, and conveying the metallic article through a gradient furnace in a direction of conveyance from a first area of the gradient furnace to a second area of the gradient furnace to increase a size of the columnar grain structures in the metallic article. The metallic article is conveyed through the gradient furnace in an orientation such that the columnar structures oriented in the build direction are substantially parallel to the direction of conveyance.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 9, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Mamballykalathil Menon, Brian G. Baughman, James J. Cobb, Donald G. Godfrey, Mark C. Morris
  • Patent number: 10232442
    Abstract: A method of making a machine component includes extruding a supply of an aluminum alloy to produce an extrusion. The extrusion is formed under temperature-limited forming conditions of 275° C. or less to produce a blank. The blank is machined to at least one predetermined tolerance to produce the machine component.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: March 19, 2019
    Assignee: Caterpillar Inc.
    Inventors: Nan Yang, Jeff A. Jensen, Yajun Fan
  • Patent number: 10207325
    Abstract: A method of additive manufacturing includes building a component having a top surface, attaching the component to a powder bed fusion plate that receives the component, filling the powder bed fusion chamber so the powder is flush with the top surface of the component, and adding a first layer of powdered metal level with the top surface of the component. The method of additive manufacturing also includes fusing the first layer of powdered metal to the top surface of the component to create a fusion joint, and building up an additively manufactured body from the top surface of the component in subsequent layers.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: February 19, 2019
    Assignee: Delavan Inc.
    Inventors: Gregory Zink, Spencer Pack, Matt Donovan
  • Patent number: 10099287
    Abstract: Dynamic pressure bearing (10), including: a green compact (10?), as a base material, of raw material powder including metal powder capable of forming an oxide coating; and dynamic pressure generating portions (A1 and A2) formed through die molding on an inner peripheral surface (8a) forming a radial bearing gap with an outer peripheral surface (2a1) of a shaft to be supported, that is, a shaft member (2). An oxide coating (11) is formed between particles of the metal powder by subjecting the green compact (10?) to steam treatment, and the dynamic pressure bearing (10) has a radial crushing strength of 150 MPa or more.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: October 16, 2018
    Assignee: NTN CORPORATION
    Inventor: Tetsuya Kurimura
  • Patent number: 10062503
    Abstract: The present invention discloses a manufacturing method of green compacts of rare earth alloy magnetic powder and a manufacturing method of rare earth magnet, it is a manufacturing method that pressing the rare earth alloy magnetic powder added with organic additive in a closed space filled with inert gases to manufacture the green compacts, wherein the rare earth alloy magnetic powder is compacted under magnetic field in a temperature atmosphere of 25° C.-50° C. and a relative humidity atmosphere of 10%-40%. This method is to set the temperature of the inert atmosphere in a fully closed space, inhibiting bad forming phenomenon of the magnet with low oxygen content (broken, corner-breakage, crack) after sintering, and increasing the degree of orientation, Br and (BH)max.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: August 28, 2018
    Assignee: XIAMEN TUNGSTEN CO., LTD.
    Inventors: Hiroshi Nagata, Chonghu Wu
  • Patent number: 10024723
    Abstract: An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 17, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Harold Y. Hwang, Mengkun Liu, Richard D. Averitt, Keith A. Nelson, Aaron Sternbach, Kebin Fan
  • Patent number: 10016852
    Abstract: An additive manufacturing apparatus is disclosed. The additive manufacturing apparatus includes a linear rail having a length. The linear rail is one of rotatable or revolvable in a horizontal plane about a vertical axis. The additive manufacturing apparatus further includes an electromagnetic energy source movably coupled to the linear rail and movable in a polar coordinate system having a radius R.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: July 10, 2018
    Assignee: The Boeing Company
    Inventor: Adam R. Broda
  • Patent number: 9937558
    Abstract: An Fe-based sintered alloy, essentially consists of, in percentage by mass, Mn: 0.5 to 2.0, Mo: 0.3 to 1.6, Cu: 0.4 to 1.5, C: 0.4 to 0.7 and the balance of Fe plus unavoidable impurities; and has a metallic structure made of 5 to 70% of martensite phase relative to a base material except pore and 25 to 90% of bainite phase relative to the base material except the pore.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: April 10, 2018
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Hiroshi Ohmori, Yuji Yamanishi
  • Patent number: 9810264
    Abstract: A method of forming a component includes heating the component to a burnishing temperature above 500 degrees Fahrenheit, and burnishing a surface of the component while the component is at the burnishing temperature to densify the surface. The burnishing process at an elevated temperature may be integrated into other processes, such as the sintering or heat treating processes.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: November 7, 2017
    Assignee: The Timken Company
    Inventors: Praveen Pauskar, Richard J. Abbruzzi, Wayne V. Denny
  • Patent number: 9776243
    Abstract: A selective laser sintering method reduces a warping deformation of a three-dimensional shaped object, the warping deformation being due to the scanning of a light beam. The manufacturing method is a method for manufacturing a three-dimensional shaped object by alternate repetition of a powder-layer forming and a solidified-layer forming, wherein a scanning of the light irradiation is divided into light beam-scannings “A” and “B”, the light beam-scanning “A” being for the light irradiation of a peripheral portion corresponding to a periphery of the three-dimensional shaped object, and the light beam-scanning “B” being for the light irradiation of an internal portion corresponding to a region of the three-dimensional shaped object, the region being located inside the periphery. In particular, the peripheral portion is subjected to a discontinuous light beam-irradiation in the light beam-scanning “A” such that an irradiation path of the light beam is divided into a plurality of sub-irradiation paths.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: October 3, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Abe, Masataka Takenami, Isamu Matsumoto
  • Patent number: 9707622
    Abstract: There is provided a selective laser sintering method capable of reducing the bulge of the peripheral portion corresponding to the periphery of the three-dimensional shaped object. The manufacturing method according to an embodiment of the present invention includes alternate repetition of a powder-layer forming and a solidified-layer forming, the repetition comprising: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby sintering the powder in the predetermined portion or a melting and subsequently solidifying the powder; and (ii) forming another solidified layer by newly forming a powder layer on the formed solidified layer, followed by irradiation of a predetermined portion of the newly formed powder layer with the light beam, wherein a scanning of the light irradiation is divided into light beam-scannings “A” and “B”.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: July 18, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masataka Takenami, Satoshi Abe, Isamu Matsumoto
  • Patent number: 9586285
    Abstract: There is provided a selective laser sintering method capable of reducing the trouble in chipping or breakage of the machining tool and the like. The manufacturing method according to an embodiment of the present invention is a method for manufacturing a three-dimensional shaped object by repetition of a powder-layer forming and a solidified-layer forming, the repetition including the steps of (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof, and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: March 7, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Abe, Masataka Takenami, Isamu Matsumoto
  • Patent number: 9566639
    Abstract: A production method for a sintered member includes preparing a raw powder, compacting the raw powder into a green compact having pores at the surface thereof, and sintering the green compact into a sintered compact. The production method also includes sealing the pores exposed at the surface of the sintered compact by at least one of plastically deforming and melting the surface of the sintered compact. The production method further includes forging the sintered compact by using a lubricant after the sealing.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: February 14, 2017
    Assignee: HITACHI POWDERED METALS CO., LTD.
    Inventors: Tomoyuki Kohida, Katsuhiko Ueda, Kenzou Morita
  • Patent number: 9469887
    Abstract: A process for producing a weldable titanium or titanium alloy wire characterized in that full consolidation of the wire is achieved via solid-state processing entailing compaction, extrusion, and rolling, whereby melting of the constituent titanium sponge particles does not occur.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: October 18, 2016
    Assignee: NORSK TITANIUM AS
    Inventor: Kevin Dring
  • Patent number: 9444092
    Abstract: Modified graphite particles obtained from graphite or based on graphite, the said particles having impurities in their internal structure and having on the surface a low, even nil, rate of an impurity or several impurities. In addition, these particles have at least one of the following characteristics: a tab density between 0.3 and 1.5 g/cc; a potatolike shape; and a granulometric dispersion such that the D90/D10 ratio varies between 2 and 5 and the particles have a size between 1 and 50 ?m. These particles can be used for fuel cells, electrochemical generators, or as moisture absorbers and/or oxygen absorbers and they have important electrochemical properties. The electrochemical cells and batteries thus obtained are stable and safe.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: September 13, 2016
    Assignee: HYDRO-QUEBEC
    Inventors: Abdelbast Guerfi, Fernand Brochu, Kimio Kinoshita, Karim Zaghib
  • Patent number: 9412999
    Abstract: Modified graphite particles obtained from graphite or based on graphite, the said particles having impurities in their internal structure and having on the surface a low, even nil, rate of an impurity or several impurities. In addition, these particles have at least one of the following characteristics: a tab density between 0.3 and 1.5 g/cc; a potatolike shape; and a granulometric dispersion such that the D90/D10 ratio varies between 2 and 5 and the particles have a size between 1 and 50 ?m. These particles can be used for fuel cells, electrochemical generators, or as moisture absorbers and/or oxygen absorbers and they have important electrochemical properties. The electrochemical cells and batteries thus obtained are stable and safe.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: August 9, 2016
    Assignee: HYDRO-QUEBEC
    Inventors: Abdelbast Guerfi, Fernand Brochu, Kimio Kinoshita, Karim Zaghib
  • Patent number: 9260787
    Abstract: Provided is a hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures as well as fine spangles, and a method of manufacturing the same. According to the present invention, a hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures includes a base steel sheet, a composite layer formed on the base steel sheet and including transition metal, an inhibition layer formed on the composite layer and including a iron-aluminum (Fe—Al) based intermetallic compound, and a zinc (Zn)-plated layer formed on the inhibition layer, in which an average diameter of spangles in the zinc-plated layer is 150 ?m or less, and a method of manufacturing the hot-dip galvanized steel sheet is provided.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 16, 2016
    Assignee: POSCO
    Inventors: Ju-Youn Lee, Myung-Soo Kim, Jong-Sang Kim
  • Patent number: 9248526
    Abstract: A method for manufacturing a welding material includes: a compound preparing step in which a compound is prepared by mixing alloy powder containing first alloy powder having a first average particle size and second alloy powder having a second average particle size, a water soluble binder and water; a drying step; an extruding step; a degreasing step in which the extruded formed body is heated to a predetermined temperature of 400° C. or above; a C—O reaction step in which the extruded formed body is heated to a predetermined temperature which falls within a range of 950° C. to 1150° C. under a vacuum atmosphere; and a sintering step in which the extruded formed body is heated to a predetermined temperature which falls within a range of 1200° C. to 1350° C. under a nitrogen gas atmosphere thus forming a welding material.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: February 2, 2016
    Assignee: KSA CO., LTD.
    Inventor: Kenichi Shimodaira
  • Patent number: 9184437
    Abstract: Modified graphite particles are obtained from graphite or based on graphite. The particles have impurities in their internal structure and have on the surface a low, even nil, rate of an impurity or several impurities. In addition, these particles have at least one of the following characteristics: a tab density between 0.3 and 1.5 g/cc; a potatolike shape; and a granulometric dispersion such that the D90/D10 ratio varies between 2 and 5 and the particles have a size between 1 and 50 ?m. These particles can be used for fuel cells, electrochemical generators, or as moisture absorbers and/or oxygen absorbers and they have important electrochemical properties. The electrochemical cells and batteries thus obtained are stable and safe.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: November 10, 2015
    Assignee: HYDRO-QUEBEC
    Inventors: Abdelbast Guerfi, Fernand Brochu, Kimio Kinoshita, Karim Zaghib
  • Publication number: 20150147218
    Abstract: Disclosed herein is an apparatus for use downhole comprising an expandable component; a support member that has a selected corrosion rate; wherein the support member is disposed on the expandable component; where the support member comprises a plurality of particles fused together; the particles comprising a core comprising a first metal; and a first layer disposed upon the core; the first layer comprising a second metal; the first metal having a different corrosion potential from the second metal; the first layer comprising a third metal having a different corrosion potential from the first metal.
    Type: Application
    Filed: June 24, 2014
    Publication date: May 28, 2015
    Inventors: Oleg Antonovych Mazyar, Michael H. Johnson, Casey L. Walls
  • Publication number: 20150114785
    Abstract: A plate carrier for a multi-plate clutch comprises: an annular member with a first circumferential face and a second circumferential face; a toothing in the first circumferential face of the annular member, having circumferentially distributed teeth and gaps; at least one groove in the second circumferential face of the annular member, wherein the groove extends over a circumferential portion of the annular member, wherein the groove and the toothing intersect one another, so that radial apertures are formed in the regions of intersection between the groove and the tooth gaps. A multi-plate clutch can be provided with such a plate carrier.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: Wolfgang Beigang, Waldemar Rupp, Simon Broicher, Lukas Hoets
  • Patent number: 9017600
    Abstract: In various embodiments, planar sputtering targets are produced by forming a billet at least by pressing molybdenum powder in a mold and sintering the pressed powder, working the billet to form a worked billet, heat treating the worked billet, working the worked billet to form a final billet, and heat treating the final billet.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 28, 2015
    Assignee: H.C. Starck Inc.
    Inventors: Brad Lemon, Joseph Hirt, Timothy Welling, James G. Daily, III, David Meendering, Gary Rozak, Jerome O'Grady, Prabhat Kumar, Steven A. Miller, Rong-chein Richard Wu, David G. Schwartz
  • Publication number: 20150104669
    Abstract: A high-strength magnesium alloy member is suitable for products in which at least one of bending stress and twisting stress primarily acts. The member has required elongation and 0.2% proof stress, whereby strength and formability are superior, and has higher strength and large compressive residual stress in the vicinity of the surface of a wire rod. In the magnesium alloy member formed as a wire rod in which at least one of bending stress and twisting stress primarily acts, the wire rod includes a surface portion having the highest hardness of 170 HV or more in the vicinity of the surface and an inner portion having a 0.2% proof stress of 550 MPa or more and an elongation of 5% or more, and the wire rod has the highest compressive residue stress in the vicinity of the surface of 50 MPa or more.
    Type: Application
    Filed: March 29, 2013
    Publication date: April 16, 2015
    Applicant: NHK SPRIG CO., LTD.
    Inventors: Yuji Araoka, Tohru Shiraishi, Yoshiki Ono
  • Publication number: 20150098855
    Abstract: The present invention relates to a method of surface hardening a plurality of sintered bodies having a hard phase and a binder phase. The method includes the steps of placing the bodies in a container, and forming a system including the container and the bodies therein, and causing the bodies to move and collide with each other and with inside walls of the container. The container is vibrating utilizing a mechanical resonance frequency of the system.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 9, 2015
    Inventors: Michael Carpenter, Sarah Geoghegan, Eugene Keown, Jane Smith
  • Publication number: 20150093720
    Abstract: A method of manufacturing an article, including taking an article formed in an initial state via an additive manufacturing process and performing a second manufacturing process to transform the article into a second state, which includes mounting the article in a holding device, processing at least one first feature on the article, which includes processing at least one set of mounting features on the article, re-mounting the article via the at least one set of mounting features, and then processing at least one second feature on the article.
    Type: Application
    Filed: May 10, 2013
    Publication date: April 2, 2015
    Applicant: RENISHAW PLC
    Inventors: David Beeby, Mark Forman
  • Publication number: 20150078950
    Abstract: A method of making a molybdenum or molybdenum alloy metal strip is disclosed. The method includes roll compacting a molybdenum-based powder into a green strip. The method also includes sintering the green strip followed by a combination of warm rolling, annealing, and cold rolling steps to form the final metal strip which may be cut-to-length. The strip at the final thickness may also undergo an optional stress relief step.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: AMETEK, Inc.
    Inventors: Muktesh Paliwal, Ryan A. Smith, Kerry B. Daley, Charles M. Italiano, Yakov Mindin
  • Patent number: 8980166
    Abstract: The invention relates to a method for producing a strand-like, particularly band-like semi-finished part for electrical contacts, wherein the semi-finished part has a top side intended for making the electrical contact, said top side made from a silver-based composite material in which one or multiple metal oxides or carbon are embedded, and has a carrier layer supporting the composite material made of silver or a silver-based alloy, said method having the following steps: Powder-metallurgic production of a block made from the silver-based composite material, encasing of the block made of the composite material with a powder made primarily of silver, compressing the block, encased by the metal powder, to condense the metal powder, sintering the compressed block, reshaping the sintered block by extrusion pressing, creating a partial strand with a top side made from composite material and a bottom side made from silver or a silver-based alloy.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 17, 2015
    Assignee: Doduco GmbH
    Inventors: Helmut Heinzel, Andreas Kraus, Evelyn Mahle-Moessner, Johann Wenz
  • Publication number: 20150064045
    Abstract: Provided is a sintered bearing (1), including 3 to 12% by mass of aluminum, 0.05 to 0.5% by mass of phosphorus, and the balance including copper as a main component, and inevitable impurities, the sintered bearing (1) having a structure in which an aluminum-copper alloy is sintered with a sintering aid added to raw material powder, a pore (db, do) in a surface layer portion of the sintered bearing (1) being formed smaller than an internal pore (di).
    Type: Application
    Filed: March 13, 2013
    Publication date: March 5, 2015
    Applicant: NTN CORPORATION
    Inventors: Makoto Jinnou, Natsuhiko Mori, Yoshinori Ito
  • Publication number: 20150053291
    Abstract: A method for manufacturing a fluid-leading component includes positioning a base element machined by a material-removing method with a planar upper face in a mounting support. The method at least includes the initial application of a layer section with predetermined dimensions of a particulate material in a predetermined region on the planar upper face of the base element; the heating of the layer section by a heat source in such a manner that the particles of the material within predetermined dimensions bond; and the application thereto and heating of at least one further layer section with predetermined dimensions of a particulate material in a predetermined region. In this way it is possible, in the generative manufacturing method, to obviate the need to provide support structures that subsequently have to be removed, and the base element is a functional part of the component to be manufactured.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 26, 2015
    Applicants: Airbus Operations GmbH, Liebherr-Aerospace Lindenberg GmbH
    Inventors: Gerhard Hummel, Philipp Rapp, Lothar Kroll, Frank Schubert, Martin Kausch
  • Publication number: 20150039033
    Abstract: As implant for the stabilization of bones or vertebrae is provided, the implant being a solid body including a longitudinal axis that defines a longitudinal direction and including a flexible section that has a surface and has a length in the longitudinal direction, the flexible section including at least one cavity located near the surface and having a width in the longitudinal direction that is smaller than the length of the flexible section, the at least one cavity being connected to the surface through at least one slit, and a width of the slit in the longitudinal direction being smaller than the width of the cavity.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 5, 2015
    Inventor: Markku Biedermann
  • Publication number: 20150033894
    Abstract: A sintered gear serving as a mechanical structure component is a mechanical structure component made of a metal sintered body, and includes a base region; and a high density region formed so as to include a maximum stress position at which a maximum tensile stress or a maximum shear stress is applied, and to include a surface, in which the high density region is lower in porosity than the base region. A surface hardened layer is formed in a region including the surface by performing a hardening process.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 5, 2015
    Applicant: NTN CORPORATION
    Inventors: Takahiro Okuno, Eiichirou Shimazu, Hikaru Araki
  • Patent number: 8945466
    Abstract: There is provided a composite material for a heat dissipating plate which achieves both a high thermal conductivity and a low coefficient of thermal expansion and has a performance satisfactory as a heat dissipating plate and a method of production of a composite material which can produce the composite material at a low cost. For this reason, powder metallurgy is used to produce the composite material for a heat dissipating plate. The composite material for a heat dissipating plate which is fabricated by this method of production contains an aluminum alloy and silicon carbide. The particles of silicon carbide are in contact with each other.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: February 3, 2015
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Kaoru Ishido, Hideki Ishii, Shigehisa Watanabe, Hisashi Hori
  • Publication number: 20150007704
    Abstract: An ultrasonic tuned blade includes a base and a tire cutting edge made of a tool steel having a vanadium content which is at least about 8 percent. For example, the tool steel can have a combined vanadium, cobalt, and tungsten content that is at least about 15 percent. The tool steel can be formed into a simple block via a powder metallurgy process. The simple block can be milled into an ultrasonic tire cutting horn shape comprising a tuned blade including a base and a tire cutting edge. The ultrasonic steel tire cutting horn can be heat treated to provide the tool steel with a Rockwell hardness, for example, of at least about 50 HRC and less than about 64 HRC. The ultrasonic steel tire cutting horn can include a low friction or wear resistant coating.
    Type: Application
    Filed: June 2, 2014
    Publication date: January 8, 2015
    Applicant: BRANSON ULTRASONICS CORPORATION
    Inventor: Francisco VIEIRA
  • Patent number: 8925180
    Abstract: A processing machine that combines the functions of mounting press and grinding for metallographic analysis and includes a main frame at least one shaft and a drive device horizontally mounted on the main frame. A mounting press unit and a grind unit are mounted on the main frame. The grind unit including a base secured on the main frame and linearly corresponds to the mounting press unit and the corresponding line parallel to the at least one shaft. The grind unit includes a headstock slidably mounted on the at least one shaft the and reciprocally moved on the at least one shaft to selectively align with the base of the grind unit and the mounting press unit when the drive device is operated. A control unit disposed in the grind unit for controlling the mounting press unit and the grind unit.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: January 6, 2015
    Assignee: Top Tech Machines Co., Ltd.
    Inventors: Wen-Liang Yang, Hsin-Ying Lee
  • Patent number: 8920533
    Abstract: A powder metal mixture is disclosed that provides improved mechanical properties for parts made from powder metal, such as cam caps. The powder metal mixture, upon sintering, forms an S phase intermetallic in the Al—Cu—Mg alloy system. The S phase is present in a concentration that results in an enhanced response to cold work strengthening of the powder metal part. Further, by minor adjustments to certain alloy elements, such as tin, the tensile properties of the resultant part may be adjusted.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 30, 2014
    Assignee: GKN Sinter Metals, LLC
    Inventors: Donald Paul Bishop, Christopher D. Boland, Richard L. Hexemer, Jr., Ian W. Donaldson
  • Patent number: 8916090
    Abstract: The invention provides an endoscope having a lens holder, wherein the lens holder comprises a body containing a sintered feedstock and machined surfaces. The invention also provides a method of manufacturing the endoscope which comprises the steps of molding a metal blank by a MIM process, wherein the metal blank is “near net shape” and has a sprue, a post, and optionally an outer shell, machining the inner surfaces and then the outer surfaces of the metal blank to form a lens holder, installing a lens in the lens holder, and assembling the lens holder having the lens into the endoscope.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: December 23, 2014
    Assignee: Karl Storz Imaging, Inc.
    Inventor: Kin Ming Kwan
  • Patent number: 8889064
    Abstract: A method for preparing a part in nickel-based superalloy is disclosed. The method comprises the following steps: elaborating a nickel-based superalloy with a composition capable of providing hardening by double precipitation of a gamma? phase and of a gamma? or delta phase; atomizing a melt of the superalloy in order to obtain a powder; sifting the powder; introducing the powder into a container; closing and applying vacuum to the container; densifiying the powder and the container in order to obtain an ingot or a billet; hot forming said ingot or said billet; wherein before the densification step, the powder and the container are heated for at least 4 hrs, at a temperature both above 1,140° C. and at least 10° C. less than the solidus temperature of the superalloy, and at a pressure causing densification of less than or equal to 15% of the powder volume.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: November 18, 2014
    Assignee: Aubert & Duval
    Inventor: Gérard Raisson
  • Publication number: 20140334962
    Abstract: A method of powdering NdFeB rare earth permanent magnetic alloy includes: adding mixed powder after a hydrogen pulverization into a grinder; grinding the powder with a high-speed gas flow ejected by a nozzle; sending the ground powder into a centrifugal sorting wheel with the gas flow; collecting, by a cyclone collector, fine power selected by the sorting wheel; collecting, by a post cyclone collector, the fine powder discharged out with the gas flow from a gas discharging pipe of the cyclone collector; introducing, by a depositing device, the fine powder collected by the cyclone collector and by the post cyclone collector into a depositing tank; compressing, by a compressor, and cooling, by a cooler, the gas discharged by the post cyclone collector; and then sending the gas into a gas inlet of the nozzle for recycling. A device thereof is also provided.
    Type: Application
    Filed: July 26, 2014
    Publication date: November 13, 2014
    Inventor: Baoyu Sun
  • Publication number: 20140328712
    Abstract: A vacuum heat treatment method for NdFeB rare earth permanent magnetic devices and an equipment thereof are disclosed. A rotary vacuum heat treatment equipment is for processing the NdFeB rare earth permanent magnetic devices with a vacuum heat treatment and obviously improves magnetic performance of the NdFeB rare earth permanent magnetic device, especially coercivity, which facilitates reducing a usage of heavy rare earth elements and protecting rare earth resources. Thus the vacuum heat treatment method and the equipment thereof are able to manufacture high-performance rare earth permanent magnetic devices.
    Type: Application
    Filed: September 11, 2013
    Publication date: November 6, 2014
    Applicant: China North Magnetic & Electronic Technology Co., LTD
    Inventor: Haotian Sun
  • Publication number: 20140314610
    Abstract: A method for producing a thermoelectric object for a thermoelectric conversion device is provided. A starting material which contains elements in the ratio of a half-Heusler alloy is melted and then cast form an ingot. The ingot is heat-treated for 12 to 24 hours at a temperature of 1000° C. to 1200° C. The homogenised ingot is crushed and ground to provide a powder. The powder is cold-pressed and sintered for 0.5 to 24 hours at a temperature of 1000° C. to 1500° C.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 23, 2014
    Inventors: Joachim GERSTER, Alberto BRACCHI, Michael MULLER
  • Patent number: 8865059
    Abstract: A powder alloy rolling case (1) includes a side face configuring member (10) formed like a rectangular frame with two members (10a, 10a) combined, and surrounding side faces of metal powder (2); an upper lid configuring member (11) provided to cover one opening of the side face configuring member (10), and covering an upper face of the metal powder; and a lower lid configuring member (12) provided to cover the other opening of the side face configuring member (10), and covering a lower face of the metal powder (2), wherein joints (10b, 10b) between the members (10a, 10a) configuring member (10) are provided in opposing two side faces out of four side faces of the side face configuring member (10).
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: October 21, 2014
    Assignee: Nikkeikin Aluminum Core Technology Company Ltd.
    Inventors: Toshimasa Nishiyama, Hideki Hommo, Tsutomu Komata
  • Patent number: 8857390
    Abstract: A method of joining multiple powder metal components to form a powder metal component assembly using an adhesive is disclosed. By machining at least one of the powder metal components prior to the adhesive joining, otherwise difficult to machine features can be more easily machined for less cost and at higher production rates. Unlike high temperature joining techniques, the adhesive joins the powder metal components at room temperature. This room temperature adhesive joining eliminates the thermal distortions in pre-joined machined features common to high temperature joining techniques such as brazing or welding that bring these features out of specification during joining.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 14, 2014
    Assignee: GKN Sinter Metals, LLC
    Inventors: Gerald Michael Malen, Timothy Costanzo, Ian W. Donaldson, Joel H. Mandel
  • Publication number: 20140299386
    Abstract: Earth-boring casing shoes include a crown configured for at least one of drilling and reaming a wellbore when the crown is attached to a section of casing and the casing is advanced into a wellbore. The crown includes a body comprising a corrodible composite material, and at least one cutting structure carried on the body. The casing shoes further include a connection structure configured for attachment to a section of casing. Methods are used to form such casing shoes, and such casing shoes are used to install casing within wellbores.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 9, 2014
    Inventor: James Andy Oxford
  • Publication number: 20140294656
    Abstract: Frames for plug connectors capable of being a reduced size may include features to support contacts, house circuitry for coupling with the contacts, facilitate the flow of molten material during the molding of the frame, and allow for ease of insertion and removal of the plug connector to and from a corresponding receptacle connector. For example, a frame may include ledges, interlocks and rounded and tapered openings. Methods for manufacturing the frame are also provided.
    Type: Application
    Filed: September 11, 2012
    Publication date: October 2, 2014
    Applicant: APPLE INC.
    Inventors: Michael Brickner, Wayne Cowan, Brett A. Rosenthal, Richard Heley, Mathias W. Schmidt
  • Publication number: 20140295199
    Abstract: A composite metal surface that looks metallic, but permits effective transmission of an electromagnetic field. The composite metal surface can be integrated into various electronic equipment, such as telephones, remote controls, battery doors, keyboards, mice, game controllers, cameras, laptops, inductive power supplies, and essentially any other electronic equipment. The composite metal surface can also be integrated into non-electrically conductive heat sinks, high permeability shielding, and polished metal non-electrically conductive surfaces.
    Type: Application
    Filed: October 12, 2012
    Publication date: October 2, 2014
    Applicant: Access Business Group International LLC
    Inventors: David W. Baarman, Benjamin C. Moes, Neil W. Kuyvenhoven, Joshua K. Schwannecke, Roy M. Taylor, Jr., Kaitlyn J. Turner, Robert Wolford, Matthew J. Norconk, Ryan D. Schamper
  • Patent number: 8845957
    Abstract: A method for producing a magnetizable metal shaped body comprising a ferromagnetic starting material that is present in powder and in particulate form, using the following steps: (a) first compaction of the starting material (S3) such that adjoining particles become bonded to each other by means of positive adhesion and/or integral bonding in sections along the peripheral surfaces thereof and while forming hollow spaces, (b) creating an electrically isolating surface coating on the peripheral surfaces of the particles in regions outside the joining sections (S4), and (c) second compaction of the particles (S5) provided with the surface coating, such that the hollow spaces are reduced in size or eliminated.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: September 30, 2014
    Assignees: ETO Magnetic GmbH, Kennametal Europe GmbH
    Inventors: Paul Guempel, Stefan Glaeser, Beat Hofer
  • Patent number: 8845956
    Abstract: The disclosure relates to a method for production of a component, such as a contact piece, for a switchgear assembly. To introduce a slot and apply a contact outer contour directly during the powder-metallurgical production process of the contact material, contouring in the form of a slot or slots is introduced into the powder-metal material, which is located in a mold, essentially in a direction parallel to a normal to a surface of the component, to form the component with a slot.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: September 30, 2014
    Assignee: ABB Technology AG
    Inventors: Dietmar Gentsch, Guenter Pilsinger
  • Publication number: 20140277328
    Abstract: A composite material for a medical implant includes a matrix of magnesium or magnesium alloy, and a catalyst which is dispersed within the matrix. The catalyst has the capacity to reduce an amount of hydrogen gas released from the matrix when the matrix is being degraded inside the patient.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: ST. JUDE MEDICAL SYSTEMS AB
    Inventors: Andreas ÖRNBERG, Anna Norlin-Weissenrieder, Jonas Weissenrieder