Mechanical Blending Patents (Class 419/32)
  • Publication number: 20080210555
    Abstract: A method of manufacturing sputtering targets from powder materials, comprising steps of: providing at least one raw powder material; forming the at least one raw powder material into a green body with density greater than about 40 % of theoretical maximum density; treating the green body with microwaves to form a sintered body with density greater than about 97% of theoretical maximum density; and forming a sputtering target from the sintered body. The methodology is especially useful in the fabrication of targets comprising dielectric and cermet materials.
    Type: Application
    Filed: December 4, 2007
    Publication date: September 4, 2008
    Applicant: HERAEUS INC.
    Inventors: Fenglin Yang, Anirban Das, Carl Derrington, Bernd Kunkel
  • Patent number: 7413703
    Abstract: Processes for making rigid, binder free agglomerates of powdered metal are disclosed. The agglomerates have a low tap density. Articles that contain binder free agglomerates made from electrochemically active powder are also disclosed.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: August 19, 2008
    Assignee: Eveready Battery Company, Inc.
    Inventors: Peter Ru-Feng Tsai, Ning Ciu
  • Publication number: 20080159905
    Abstract: A controlled combustion synthesis apparatus comprises an ignition system, a pressure sensor for detecting internal pressure, a nitrogen supply, a gas pressure control valve for feeding nitrogen and exhausting reaction gas, means for detecting the internal temperature of the reaction container, a water cooled jacket, and a cooling plate. A temperature control system controls the temperature of the reaction container by controlling the flow of cooling water supplied to the jacket and the cooling plate in response to the detected temperature. By combustion synthesizing, while controlling the internal pressure and temperature, the apparatus can synthesize a silicon alloy including 30-70 wt. % silicon, 10-45 wt. % nitrogen, 1-40 wt. % aluminum, and 1-40 wt % oxygen.
    Type: Application
    Filed: April 19, 2007
    Publication date: July 3, 2008
    Applicant: ISMAN J Corporation
    Inventors: Toshiyuki Watanabe, Masafumi Matsushita, Toshitaka Sakurai, Kazuya Sato, Yoko Matsushita
  • Patent number: 7378053
    Abstract: The invention proposes a copper-based material with low thermal expansion and high thermal conductivity having good machinability and adaptability to nickel plating and also proposes a method for producing the same. The copper-based material is prepared through the steps of: adding 5 to 60% of iron-based alloy power having a certain value in thermal expansion coefficient into a matrix powder of pure copper phase powder and/or a precipitation hardening copper alloy powder; mixing the powders together; compacting the obtained powder mixture into a green compact and sintering it at temperatures of 400 to 600° C.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: May 27, 2008
    Assignee: Hitachi Powered Metals Co., Ltd.
    Inventor: Zenzo Ishijima
  • Publication number: 20080102303
    Abstract: A composite is produced by the steps of (a) blending a first mixture of metallic powders; (b) compacting the blended first mixture of metallic powders to a plurality of discretely shaped articles; (c) blending a second mixture of metallic powders; (d) mixing the plurality of discretely shaped articles with the blended second mixture of metallic powders to form a precursor blend; (e) compacting the precursor blend; and (f) sintering the precursor blend. The composite has a metallic matrix with embedded shapes dispersed throughout the matrix where the embedded shapes have an incipient liquid phase sintering temperature less than an incipient liquid phase sintering temperature of the matrix.
    Type: Application
    Filed: June 12, 2007
    Publication date: May 1, 2008
    Inventors: Timothy J. Brent, Michael T. Stawovy
  • Patent number: 7311874
    Abstract: A method of fabricating a sputter target comprises: homogenously blending a plurality of powders including at least a first powder and a second powder. The first powder is comprised of chromium (Cr), cobalt (Co), ruthenium (Ru), nickel (Ni), or iron (Fe). The second powder is comprised of boron (B), carbon (C), a nitrogen (N)-containing material, a boride, a carbide, a nitride, a silicide, an oxygen (O)-containing material or an oxide. The second powder has a particle size of between 0.01 microns and 50 microns. The method further comprises: canning the blended plurality of powders to form a substantially non-segregated encapsulated powdered material mix; pressing the encapsulated powdered material mix to form a billet; and machining the billet to form a sputter target.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: December 25, 2007
    Assignee: Heraeus Inc.
    Inventor: Wenjun Zhang
  • Patent number: 7273584
    Abstract: An oxide dispersion strengthened martensitic steel excellent in high-temperature strength having residual ?-grains can be manufactured by a method comprising mixing either element powders or alloy powders and a Y2O3 powder; subjecting the resulting mixed powder to mechanical alloying treatment; solidifying the resulting alloyed powder by hot extrusion; and subjecting the resulting extruded solidified material to final heat treatment involving normalizing and tempering heat treatment to thereby manufacture an oxide dispersion strengthened martensitic steel in which Y2O3 particles are dispersed in the steel, wherein ?to ?transformation is not allowed to occur during the described hot extrusion and the proportion of residual ?-grains in which oxide particles are finely dispersed in high density is increased by controlling the mixture ratio of the powders for the mechanical alloying treatment.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 25, 2007
    Assignee: Japan Nuclear Cycle Development Institute
    Inventors: Satoshi Ohtsuka, Shigeharu Ukai, Takeji Kaito, Takeshi Narita, Masayuki Fujiwara
  • Patent number: 7250134
    Abstract: A steel powder metal skeleton is infiltrated with an infiltrant composition similar to the skeleton, with an additional agent that depresses the melting point of the infiltrant relative to the skeleton. Infiltration is driven primarily by capillary pressure. The powder and infiltrant compositions differ primarily only in a higher concentration of a melting point depressant agent “MPD” in the infiltrant. Carbon (C) and silicon (Si) and several other elements can be elements in an MPD, either alone or in combination. Certain steel target compositions are such that a complementary infiltrant, and skeleton can be chosen such that a skeleton will remain solid at an infiltration temperature at which the infiltrant can be melted and fully infiltrated, and further where there is a persistent two phase field, with a liquid phase that is large enough (greater than 7% vol, and typically between 20 and 40 vol %) so that flow can be maintained without choke off from diffusional solidification.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: July 31, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian D. Kernan, Emanuel M. Sachs, Samuel M. Allen, Adam M. Lorenz
  • Patent number: 7229588
    Abstract: A cobalt-chromium-boron-platinum sputtering target alloy having multiple phases. The alloy can include Cr, B, Ta, Nb, C, Mo, Ti, V, W, Zr, Zn, Cu, Hf, O, Si or N. The alloy is prepared by mixing Pt powder with a cobalt-chromium-boron master alloy, ball milling the powders and HIP'ing to densify the powder into the alloy.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: June 12, 2007
    Assignee: Heraeus, Inc.
    Inventors: Michael Sandlin, Bernd Kunkel, Willy Zhang, Phillip Corno
  • Patent number: 7217388
    Abstract: The present invention provides a method in which a strengthened platinum material can be produced, in which no blisters occur on the surface of the material even after heat treatment of 1,400° C. or higher and a metal oxide such as zirconium oxide is finely dispersed, and which has excellent high-temperature creep properties, when the strengthened platinum material is produced using a melt-sprayed platinum alloy powder. The method for producing a strengthened platinum material includes oxidizing a platinum alloy powder obtained by melt-spray, wet-milling the platinum alloy powder by adding an organic solvent, sintering, and forging, wherein the wet-milled platinum alloy fine powder is charged into a heat resistant container and heated to 1,200 to 1,400° C. in a vacuum atmosphere to be subjected to degassing.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: May 15, 2007
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Haruki Yamasaki
  • Patent number: 7175802
    Abstract: Spent sputtering targets are refurbished by filling the depleted region of the target with new sputter material using a hot isostatic pressing or HIP'ing technique.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: February 13, 2007
    Assignee: Heraeus, Inc.
    Inventors: Michael Sandlin, Wenjun Zhang, Bernd Kunkel
  • Patent number: 7175803
    Abstract: The present invention is directed to methods of manufacturing an x-ray tube component, such as an evacuated housing and the like. The component has a radiation shielding layer, which is comprised of a plurality of powder metals, at least one of which is comprised of powder metal component that is substantially non-transmissive to x-radiation. The powder metal includes, for example, tungsten.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: February 13, 2007
    Assignee: Varian Medical Systems Technologies, Inc.
    Inventors: Christopher F. Artig, Deborah L. Salmon
  • Patent number: 7169208
    Abstract: A composition for use with alloys including extra-fine nickel powder dispersed with a hydrophobic inorganic dispersant which is preferably high-purity silica treated with hexamethyldisilazane (fumed silica). The composition breaks and prevents the agglomeration of the nickel powder, thereby preventing weaknesses in alloys, like steel for example, formed with the nickel powder. A method for making an alloy with the composition includes mixing the nickel powder with other metals and/or nonmetals and the hydrophobic fumed silica to form an alloy blend, pressing the alloy blend, and sintering the alloy blend.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: January 30, 2007
    Assignee: Inco Limited
    Inventors: Scott Thomas Campbell, Thomas Francis Stephenson, Tajpreet Singh
  • Patent number: 7087202
    Abstract: This invention concerns particulate reinforced Al-based composites, and the near net shape forming process of their components. The average size of the reinforced particle in the invented composites is 0.1–3.5 ?m and the volume percentage is 10–40%, and a good interfacial bonding between the reinforced particulate and the matrix is formed with the reinforced particles uniformly distributed. The production method of its billet is to have the reinforced particles and Al-base alloy powder receive variable-speed high-energy ball-milling in the balling drum. Then, with addition of a liquid surfactant, the ball-mill proceeds to carry on ball-milling. After the ball-milling, the produced composite powder undergoes cold isostatic pressing and the subsequent vacuum sintering or vacuum hot-pressing to be shaped into a hot compressed billet, which in turn undergoes semisolid thixotropic forming and may be shaped into complex-shaped components. These components can be used in various fields.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: August 8, 2006
    Assignees: ASM Assembly Automation Ltd., General Research Institute for Non-Ferrous Metals
    Inventors: Deming Liu, Chou Kee Peter Liu, Jian Zhong Fan, Jun Xu, Tao Zuo, Zhao Zu Gao
  • Patent number: 7052526
    Abstract: A magnesium base composite material is provided such that compound particles generated by a solid-phase reaction with magnesium are uniformly dispersed in a magnesium alloy body. The compound particles dispersed in the body comprise magnesium silicide (Mg2Si) and magnesium oxide (MgO) so that the magnesium base composite material may have excellent strength, hardness and abrasion resistance and tempered opponent aggression.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: May 30, 2006
    Assignee: Toudai TLO, Ltd.
    Inventor: Katsuyoshi Kondoh
  • Patent number: 7037464
    Abstract: In an oxide dispersion strengthened martensitic steel which comprises, by % by weight, 0.05 to 0.25% C, 8.0 to 12.0% Cr, 0.1 to 4.0% W, 0.1 to 1.0% Ti, 0.1 to 0.5% Y2O3 with the balance being Fe and unavoidable impurities and in which Y2O3 particles are dispersed in the steel, by adjusting the Ti content within the range of 0.1 to 1.0% so that an excess oxygen content Ex.O in steel satisfies [0.22×Ti (% by weight)<Ex.O (% by weight)<0.46×Ti (% by weight)], the oxide particles are finely dispersed and highly densified to thereby obtain an oxide dispersion strengthened martensitic steel excellent in high-temperature strength. It is also possible to reduce the amount of oxygen contamination in steel during the mechanical alloying of raw material powders to provide Ex.O within a predetermined range, by carrying out the mechanical alloying in an Ar atmosphere having a super purity of not less than 99.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: May 2, 2006
    Assignee: Japan Nuclear Cycle Development Institute
    Inventors: Satoshi Ohtsuka, Shigeharu Ukai, Takeji Kaito, Takeshi Narita, Masayuki Fujiwara
  • Patent number: 6960319
    Abstract: Disclosed is a flow-softening tungsten alloy having the general formula: W100-pAiBjCkDe wherein W is tungsten; A is one or more elements selected from the group consisting of nickel, iron, chromium and cobalt; B is in or more elements selected from the group consisting of molybdenum, niobium and tantalum; C is one or more of the elements selected from the groups consisting of titanium and aluminum; D is one or more elements selected from the group consisting of boron, carbon, and silicon; i is from about 5 to about 8 weight percent; j is from 0 to about 4 weight percent; k is from about 0.1 to about 4 weight percent; 1 is from 0 to about 0.1 weight percent; and p is greater than or equal to about 7 weight percent and less than or equal to about 20 weight percent. In this alloy p is approximately equal to the sum of i, j, k and 1. A method of preparing this alloy and a kinetic energy penetrator manufactured from it are also disclosed.
    Type: Grant
    Filed: October 27, 1995
    Date of Patent: November 1, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Deepak Kapoor
  • Patent number: 6905779
    Abstract: A copper-based sliding material comprising sintered copper or sintered copper alloy, and 0.1 to 5 vol. % hard substance particles harder in hardness than said copper or copper alloy, said hard substance particles being substantially evenly dispersed so that, when at least one, randomly selected surface portion or sectional portion of said sintered copper or sintered copper alloy is partitioned into squares each having a side of 20 ?m, at least one particle exists in each of squares not less than 80% of the whole squares. The copper-based sliding material has good anti-seizure property and superior resistance to fatigue without containing any lead.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: June 14, 2005
    Assignee: Daido Metal Company Ltd.
    Inventors: Kenji Sakai, Naohisa Kawakami, Satoru Kurimoto, Takashi Inaba, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 6902697
    Abstract: An aluminum powder is mixed with a neutron absorber powder through cold isostatic press to form a preliminary molding. The preliminary molding is then subjected to sintering under no pressure in vacuum. After sintering, a billet is subjected to induction heating and hot extrusion to form a square pipe.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: June 7, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsunari Ohsono, Kazuo Murakami, Yasuhiro Sakaguchi, Toshiro Kobayashi, Toyoaki Yasui
  • Patent number: 6902809
    Abstract: The present invention provides a method for preparing a rhenium-tantalum alloy with improved strength and ductility characteristics. The method includes mixing powders of rhenium and tantalum with a weight ration of approximately 97% rhenium to approximately 3% tantalum. The powdered blend is then compressed to a green state. The green compress of rhenium and tantalum is then sintered such that tantalum goes into solid solution with rhenium. The sintered material is then cold rolled. The cold rolling disperses oxides away from concentrations in the alloy grain boundaries. If desired, the alloy may then be annealed. The result is a rhenium-tantalum alloy that displays improved high temperature strength and ductility over pure rhenium materials. The present alloy is particularly suited to fabrication of rocketry components such as valve bodies, poppets, seats, and nozzles.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 7, 2005
    Assignee: Honeywell International, Inc.
    Inventor: Don L. Mittendorf
  • Patent number: 6863862
    Abstract: Methods of producing atomized intermetallic aluminide powders with a controlled oxygen content, and articles made from the powders by powder metallurgical techniques are disclosed. Gas atomized intermetallic aluminide powders can be oxidized to increase their oxygen content. Water atomized intermetallic aluminide powders can be milled to change their size, shape and/or oxygen content. Blends or mixtures of modified gas and water atomized intermetallic aluminide powders can be processed into articles by powder metallurgical techniques.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: March 8, 2005
    Assignee: Philip Morris USA Inc.
    Inventors: Firooz Rasouli, Clive Scorey, John McKernan, John F. Cunningham
  • Patent number: 6852274
    Abstract: A hard metal granulate is produced by wet milling and spray drying in a spray tower using pure water as the liquid phase. The spray tower is configured and operated in such a way that a ratio of the quantity of water added via the slurry (in liters per hour) to tower volume (in m3) is between 0.5 and 1.8 and in that a maximum of 0.17 kg of slurry is atomized per m3 of incoming drying gas. The slurry has a solid particle concentration within a range of 65-85% by weight. Under these conditions, the addition of a water-soluble, long-chain polyglycol to the slurry prior to spraying previously required in order to prevent oxidation of the hard metal granulate is no longer necessary.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: February 8, 2005
    Assignee: Ceratizit Austria Gesellschaft m.b.H.
    Inventors: Gerhard Knünz, Helmut Beirer, Andreas Lackner, Wolfgang Glätzle, Erwin Hartlmayr
  • Publication number: 20040266605
    Abstract: This invention pertains to product and process. The product is a transparent product of a density in excess 99.5% comprising spinel and having uniform mechanical properties. The process pertains to fabrication of a transparent spinel product comprising the steps of dissolving a sintering aid in water to form a neutral sintering aid solution, adding a suitable additive to the sintering aid solution, applying the sintering aid solution to spinel particles to form a spinel dispersion, sub-dividing or atomizing the spinel dispersion to form droplets comprising one or more spinel particles coated with the final spinel solution, drying the droplets to form dried coated particles comprising one or more spinel particles coated with a dried layer of the sintering aid, and densifying the dried coated particles to form a transparent spinel product having uniform optical and mechanical properties in absence of grains of exaggerated size.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Inventors: Guillermo R. Villalobos, Jas S. Sanghera, Shyam S. Bayya, Ishwar D. Aggarwal
  • Publication number: 20040247481
    Abstract: New alloys of the AB5 type are disclosed which are of the formula:
    Type: Application
    Filed: February 3, 2004
    Publication date: December 9, 2004
    Applicant: HERA, Hydrogen Storage Systems, Inc.
    Inventors: Guoxian Liang, Robert Schulz
  • Patent number: 6827755
    Abstract: A high-strength and high-toughness ferritic steel having a tensile strength of not less than 1,000 MPA and a Charpy impact value of not less than 1 MJ/m2 is provided. A ferritic steel comprising, by weight, not more than 1% Si, not more than 1.25% Mn, 8 to 30% Cr, not more than 0.2% C, not more than 0.2% N, not more than 0.4% O, a total amount of not more than 12% of at least one compound-forming element selected from the group of Ti, Zr, Hf, V and Nb in amounts of not more than 3% Ti, not more than 6% Zr, not more than 10% Hf, not more than 1.0% V and not more than 2.0% Nb, also containing where necessary not more than 0.3% Mo, not more than 4% W and not more than 1.6% Ni, and the balance consisting of Fe and unavoidable impurities, and having an average crystal grain size of not more than 1 &mgr;m, can be obtained by a method comprising encapsulating a steel powder produced by mechanical alloying, and subjecting the encapsulated steel powder to plastic deformation.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: December 7, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Masami Taguchi, Ryo Ishibashi, Yasuhisa Aono, Hidehiko Sumitomo, Hiroki Masumoto, Masakuni Fujikura
  • Publication number: 20040213692
    Abstract: The invention proposes a copper-based material with low thermal expansion and high thermal conductivity having good machinability and adaptability to nickel plating and also proposes a method for producing the same. The copper-based material is prepared through the steps of: adding 5 to 60% of iron-based alloy power having a certain value in thermal expansion coefficient into a matrix powder of pure copper phase powder and/or a precipitation hardening copper alloy powder; mixing the powders together; compacting the obtained powder mixture into a green compact and sintering it at temperatures of 400 to 600° C.
    Type: Application
    Filed: April 27, 2004
    Publication date: October 28, 2004
    Inventor: Zenzo Ishijima
  • Publication number: 20040180217
    Abstract: A sputtering target including indium oxide and tin oxide, the content by percentage of the tin atoms therein being from 3 to 20 atomic % of the total of the indium atoms and the tin atoms, and the maximum grain size of indium oxide crystal in the sputtering target being 5 &mgr;m or less. When a transparent conductive film is formed by sputtering, this sputtering target makes it possible to suppress the generation of nodules on the surface of the target and to conduct the sputtering stably.
    Type: Application
    Filed: January 30, 2004
    Publication date: September 16, 2004
    Inventors: Kazuyoshi Inoue, Shigeo Matsuzaki
  • Patent number: 6783568
    Abstract: A sintered steel and a method for the manufacture thereof are described, the sintered steel being made by a method comprising the steps of providing a first pre-alloyed steel powder having a composition comprising in weight %: C 0.5-2, Cr 3.5-6, (2 Mo+W) 12-22, V 0.5-5, Co 0-12, Mn 0.1-0.5, Si 0.1-0.6, Fe balance apart from incidental impurities; providing a second pre-alloyed steel powder having a composition comprising in weight %: C 0.3-0.7, Cr 3-5.5, Mo 1-2.5, V 0.3-1.5, W 0-2, Mn 0.1-0.6, Si 0.8-1.2. Fe balance apart from incidental impurities; mixing together from 2 to 50 weight % of the first pre-alloyed steel powder with 98 to 50 weight % of the second pre-alloyed steel powder optionally up to 60 weight % of an iron powder and with carbon powder such that the final carbon content of the matrix of the sintered steel powder is a maximum of 1.1 weight %1; compacting the mixture and sintering to form the sintered steel.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: August 31, 2004
    Assignee: Federal-Mogul Sintered Products Limited
    Inventors: Andrew Keith Bowskill, Charles Grant Pumell, Iain Robert Whitaker
  • Publication number: 20040161625
    Abstract: A copper-based sliding material comprising sintered copper or sintered copper alloy, and 0.1 to 5 vol. % hard substance particles harder in hardness than said copper or copper alloy, said hard substance particles being substantially evenly dispersed so that, when at least one, randomly selected surface portion or sectional portion of said sintered copper or sintered copper alloy is partitioned into squares each having a side of 20 &mgr;m, at least one particle exists in each of squares not less than 80% of the whole squares. The copper-based sliding material has good anti-seizure property and superior resistance to fatigue without containing any lead.
    Type: Application
    Filed: December 27, 2000
    Publication date: August 19, 2004
    Inventors: Kenji Sakai, Naohisa Kawakami, Satoru Kurimoto, Takashi Inaba, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 6740288
    Abstract: The present invention relates to a process for preparing a powdered tungsten-aluminum alloy, in which the powdered tungsten and aluminum as starting materials is mechanical alloyed at normal temperature to provide the tungsten-aluminum alloy. The process of this present invention is simple and easy and the device used is simple to handle. The process is carried out at room temperature, and is suitable for preparing an alloy of metals wherein there is large disparity between melting points and densities of the metals, which alloy could not be prepared by the known smelting process.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: May 25, 2004
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Science
    Inventors: Xianfeng Ma, Xuewei Yan, Wei Zhao, Shixue Wu
  • Patent number: 6723387
    Abstract: A thermal spray method for the fabrication of ceramic/metal and ceramic/ceramic hardcoating for wear applications. The method makes use of feedstock powder, composed of micron-scale aggregates of hard phase material particles that are either mixed or coated with a readily fusible nano-scale binder phase material. Thus, during thermal spraying, the nanostructured material undergoes rapid melting while the aggregated material is heated but not necessarily melted. A dense coating is formed when the molten nano-material fills the available pore spaces between the heated and softened aggregates, providing a strong and tough matrix for the consolidated material. Optimal wear properties are achieved when the volume fraction of aggregated particles is high, typically in the range of 0.5-0.9. Aggregated material may be composed of one, two or more particles of difference sizes and/or compositions, with particle size distribution that gives high packing density for the hard phase.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: April 20, 2004
    Assignee: Rutgers University
    Inventors: Bernard H. Kear, Ganesh Skandan
  • Publication number: 20040050454
    Abstract: A blended powder including a first powder containing an R2T14B phase as a main phase, and a second powder containing an R2T17 phase at 25 wt % or more of the whole is prepared. Herein, R is at least one element selected from the group consisting of all rare-earth elements and Y (yttrium), T is at least one element selected from the group consisting of all transition elements, and Q is at least one element selected from the group consisting of B (boron) and C (carbon). The blended powder is sintered, so as to manufacture a permanent magnet having a structure in which a rare-earth element included in the second powder is concentrated in a grain surgace region of a main phase.
    Type: Application
    Filed: July 30, 2003
    Publication date: March 18, 2004
    Inventors: Takao Sekino, Yuji Kaneko
  • Publication number: 20040018109
    Abstract: Methodology for constructing composite particles from ingredients comprising two or more particulate components. The resultant particles are usefully incorporated into powder coating compositions. The approach also finds utility in other applications, including but not limited to the food, drug, and cosmetics industry. Fluidized particles are subjected to an intense, but relatively brief heating event. This causes associated particles to fusingly assemble into fused composite clusters.
    Type: Application
    Filed: July 26, 2002
    Publication date: January 29, 2004
    Inventors: Walter J. Blatter, James A. Heck, Lowell G. Lindquist
  • Patent number: 6673307
    Abstract: The present invention relates to a method of making a cemented carbide by mixing powder of WC and possibly other powders forming hard constituents and binder phase and pressing agent, drying, pressing and sintering whereby; the mixing is wet mixing with no change in grain size or grain size distribution of the hard constituent powders; the WC grains are coated with binder metal and deagglomerated prior to the mixing. The sintering is made by microwave sintering at 1325-1410° C. with a holding time of 5-15 min. As a result a cemented carbide with improved properties is obtained.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Sandvik AB
    Inventors: Mikael Lindholm, Mats Waldenström, Mats Ahlgren
  • Publication number: 20030231975
    Abstract: The present invention provides:
    Type: Application
    Filed: May 20, 2003
    Publication date: December 18, 2003
    Applicants: SNECMA MOTEURS, SNECMA SERVICES
    Inventors: Frederic Braillard, Claude Mons, Philippe Perruchaut, Didier Ribot, Joel Vigneau
  • Publication number: 20030202898
    Abstract: A metal-made seamless pipe is provided, containing at least one metal selected from the group consisting of metals each having a melting point of 1,600° C. or more, and has a porosity of 0.3 to 25%. The porosity is defined as a ratio of the open pores present at the outer surface of the pipe to the total surface area of the outer surface of the pipe. The open pores do not include through-pores perforating to the inner surface of the pipe. A process for producing such a metal-made seamless pipe is also provided. The metal-made seamless pipe is low in processability but can be produced having a small thickness and a small inner diameter, having superior mechanical strength and gastightness, and can be suitably used as a sealing member of a translucent vessel of a high-pressure discharge lamp.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 30, 2003
    Applicant: NGK Insulators, Ltd.
    Inventor: Norikazu Niimi
  • Patent number: 6630100
    Abstract: A rectangular pipe is molded by mixing aluminum powder with powder of a neutron absorbing material, molding a premolded body by means of cold isostatic pressing (CIP), canning the premolded body, sintering the premolded body by means of hot isostatic pressing (HIP), performing outer cutting and end face cutting on the can after the sintering, taking a billet out of the can, and extruding this billet.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: October 7, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kazuo Murakami, Yasuhiro Sakaguchi, Toshiro Kobayashi, Toyoaki Yasui
  • Patent number: 6626975
    Abstract: The invention relates to a method for producing a homogeneous mixture of hard material powders and binder metal powders without using grinding bodies, liquid grinding auxiliary agents and suspending media. According to the invention, the mixture components are mixed at close range while generating a high shearing collision velocity of the powder particles and are remotely mixed by rotating the mixing bed without resulting in a particle size reduction of the hard material powders.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 30, 2003
    Assignee: H. C. Starck GmbH & Co. KG
    Inventors: Benno Gries, Jörg Bredthauer
  • Patent number: 6627058
    Abstract: This invention is directed to a composition comprising: (a) platinum group metal powder, alloys, or mixtures thereof as a powder or deposited on graphite supports; (b) poly(glycol ether), derivatives, or mixtures thereof; (c) carbon-based electrically conductive filler; and (d) thermoplastic polymer or mixtures thereof. The invention is further directed to a process for dispersing platinum group metal powder, alloys, or mixtures thereof in poly(glycol ether), derivatives, or mixtures thereof. The invention is further directed to the above composition wherein the platinum group metal powder has been dispersed according to the above process.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: September 30, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Man-Sheung Chan
  • Patent number: 6613276
    Abstract: Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: September 2, 2003
    Assignee: The Regents of the University of California
    Inventors: Zuhair A. Munir, Joseph N. Woolman, John J. Petrovic
  • Patent number: 6596226
    Abstract: A process for producing a thermoelectric material based on two or more elements selected in the group constituted by Bi, Sb, Te and Se, which process comprises: i. an alloying step wherein determined amounts of the elements Bi, Sb, Te or Se are mixed until an homogenous powdered alloy is obtained; ii. an extrusion step of the powdered homogenous alloy obtained in the preceding step. The elements Bi, Sb, Te or Se being preferably mechanically mixed in an homogenous powdered alloy. The thermoelectric material, which are obtainable by this process, exhibits improved thermoelectric and mechanical properties and are therefore suitable, for example, as cooler, as temperature stabilizer in a electronic device or as power generator.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: July 22, 2003
    Assignee: 5NPLUS Inc.
    Inventors: Jean-Pierre Simard, Dmitri Vasilevskiy, Jacques L'Ecuyer
  • Patent number: 6576038
    Abstract: A method to agglomerate metal particles such as tantalum and niobium powders is described which includes combining a volatilizable or vaporizable liquid with the particles to form wet particles; compacting the wet particles; drying the compacted wet particles to form a cake; and heat treating the cake to form the agglomerated particles. Also described are agglomerated particles obtained by this method and further, particles, preferably tantalum or niobium powder, having a flow rate of at least about 65 mg/sec and/or an improved pore size distribution, and/or a higher Scott Density. Capacitors made from tantalum powder and niobium powder are also described.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: June 10, 2003
    Assignee: Cabot Corporation
    Inventor: Bhamidipaty K. D. P. Rao
  • Patent number: 6527824
    Abstract: A method of producing a high-density article is presented comprising selecting one or more primary tungsten-containing constituents with densities greater than 10.0 g/cc and one or more secondary constituents with densities less than 10.0 g/cc, co-milling the mixture of constituents in a high-energy mill to obtain mechanical alloying effects, then processing the resulting powder product by conventional powder metallurgy to produce an article with bulk density greater than 9.0 g/cc.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: March 4, 2003
    Inventor: Darryl D. Amick
  • Publication number: 20030010153
    Abstract: A ferrous sintered valve seat material is made of mixed powders comprising a sinter-hardenable phase and a finely dispersed carbide phase. The powder mixture comprises a sinter-hardening prealloyed powder forming 75 to 90 wt. % of the mixture and a tool steel powder with finely dispersed carbides forming 5 to 25% of the mixture. Machinability additives of MnS, CaF2 or MoS2types are added in an amount of 1 to 5 wt. %. Improved thermal conductivity is obtained by infiltrating the compact with Cu up to 25 wt. %.
    Type: Application
    Filed: April 30, 2002
    Publication date: January 16, 2003
    Applicant: FEDERAL-MOGUL WORLD WIDE, INC.
    Inventors: Mark Birler, Salvator Nigarura, Juan Trasorras
  • Publication number: 20020152841
    Abstract: An aluminum powder is mixed with a neutron absorber powder through cold isostatic press to form a preliminary molding. The preliminary molding is then subjected to sintering under no pressure in vacuum. After sintering, a billet is subjected to induction heating and hot extrusion to form a square pipe.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 24, 2002
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsunari Ohsono, Kazuo Murakami, Yasuhiro Sakaguchi, Toshiro Kobayashi, Toyoaki Yasui
  • Patent number: 6454992
    Abstract: A bond coat composition for use in thermal barrier coatings comprises a NiAl—CoCrAlY matrix containing particles of AlN dispersed therein. The bond coat composition is prepared by croymilling NiAl and CoCrAlY in liquid nitrogen.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: September 24, 2002
    Assignee: Ohio Aerospace Institute
    Inventor: Mohan G. Hebsur
  • Patent number: 6428596
    Abstract: A multiplex powder composite for use in a cored wire electrode to be deployed in a thermal spray or welding apparatus. The composite comprises micron-sized particles and sub-micron-sized particles, including nano-scale particles, the particles mechanically cooperating to promote smooth powder flow, which facilitates compaction of the cored wire electrode.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: August 6, 2002
    Assignee: Concept Alloys, L.L.C.
    Inventors: David John Urevich, Joseph Paul Hughes
  • Patent number: 6398843
    Abstract: A dispersion-strengthened material is described which comprises aluminium or aluminium alloy containing a substantially uniform dispersion of ceramic particles to confer dispersion strengthening which is inherently stable at high working temperatures, the ceramic particles having a diameter of less than 400 nm, and preferably in the range 10 nm to 100 nm. Suitable ceramic dispersoids include Al2O3, TiO2, Al3C4, ZrO2, Si3N4, SiC, SiO2.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: June 4, 2002
    Assignee: Qinetiq Limited
    Inventor: Andrew Tarrant
  • Patent number: 6375709
    Abstract: This invention concerns a lubricant for warm compaction of iron-based metallurgical powder compositions. 50 to 100% by weight of the lubricant is a polyester, aromatic or partly aromatic, which has a number-average molecular weight Mn of 5,000-50,000. This invention further concerns a metal powder composition containing the lubricant, a method for making sintered products by using the lubricant, and use of the same in warm compaction of metallurgical powders.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: April 23, 2002
    Assignee: Höganäs AB
    Inventors: Helge Storström, Hilmar Vidarsson
  • Patent number: 6368376
    Abstract: Disclosed is a process for making an oxide dispersion-strengthened tungsten heavy alloy by mechanical alloying that includes the steps of: adding 0.1 to 5 wt. % of Y2O3 powder to a mixed powder comprising more than 90 wt. % of tungsten powder, and nickel and iron powders for the rest; and subjecting the resulting mixture to a mechanical alloying to prepare an oxide dispersion-strengthened tungsten heavy alloy powder. The oxide dispersion-strengthened tungsten heavy alloy prepared by the mechanical alloying is characterized in that fine Y2O3 particles are uniformly dispersed in the matrix which are stable at high temperatures results in enhanced high-temperature strength and a reduction of the shearing strain of the fraction during high strain rate deformation.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: April 9, 2002
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Soon Hyung Hong, Ho Jin Ryu