One Or More Components Not Compacted Patents (Class 419/7)
  • Patent number: 10399146
    Abstract: A method of making an article is disclosed in which a fusible material is fused with an energy beam applied to the fusible material at a build location with a scanning pattern comprising a plurality of parallel lines terminating at the contoured edge. An energy beam is also applied with a vector scanning pattern at the build location along the contoured edge to liquefy and re-solidify material at the build location along the contoured edge. The method also includes controlling vector scanning energy beam intensity, vector scanning energy beam scanning speed, vector scanning energy beam focus depth, or any combination thereof as a function of an angle between the plurality of parallel lines and the vector along the contoured edge.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: September 3, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Diana Giulietti
  • Patent number: 10376959
    Abstract: According to the present invention, a lamination molding apparatus configured to mold a desired lamination molded object based on a project file, comprising: a chamber covering a molding region and being filled with an inert gas; a laser beam emitter configured to irradiate material powder with a laser beam for sintering the material powder, in an irradiation region on a material powder layer formed on a molding region, a cutting machine configured to move a cutting tool, within the chamber, for cutting a predetermined cutting allowance from a sintered layer obtained by sintering the material powder a calculation means configured to calculate an amount of displacement between a target irradiation position and an actual irradiation position of the laser beam, and to determine a recommended value of a size of the cutting allowance based on a time transition of the amount of displacement or to generate a new project file containing a size of the cutting allowance set based on a time transition of the amount of d
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: August 13, 2019
    Assignee: Sodick Co., Ltd.
    Inventor: Kyokatsu Motoya
  • Patent number: 10363607
    Abstract: A method for the manufacture of a component of defined geometry from two or more materials using a powder bed ALM process includes providing a bed of a first powdered material, selectively fusing portions of the first powdered material to build up a first three dimensional portion of the component geometry and fusing a powder containment bund from the first material to contain unfused first powdered material. A bed of a second powdered material is deposited onto the powder containment bund and selectively fused to build up a second three dimensional portion of the component geometry. Unfused first powdered material can subsequently be removed from a first side of the bund and unfused second powder from a second side of the bund. Remaining parts of the bund which do not form part of the defined geometry of the component can be removed to provide the net shape component.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: July 30, 2019
    Assignee: ROLLS-ROYCE plc
    Inventor: Ian M. Garry
  • Patent number: 10166316
    Abstract: Improved randomized porous structures and methods of manufacturing such porous structures are disclosed. The scaffold of the porous structures are formed from by dividing the space between a plurality of spatial coordinates of a defined volume, where the plurality of spatial coordinates have been moved in a random direction and a random finite distance according to a predetermined randomization limit.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: January 1, 2019
    Assignee: Smith & Nephew, Inc.
    Inventors: Ryan L. Landon, Aashiish Agnihotri, Laura J. Gilmour, Jeffrey Sharp, Randy C. Winebarger
  • Patent number: 10137501
    Abstract: Provided is a method for manufacturing a micropore filter usable as SCE. Stainless steel particles having particle diameters of 3 to 60 ?m are subjected to milling in a bead mill using zirconia beads to prepare powder having a flakiness of 0.03 to 0.4. The zirconia adhered to the surface of the powder is removed by pickling. A load of 10 to 15 kN is applied to 0.5 to 1.0 g of the pickled powder, thereby compacting the powder into a columnar compact body. The compact body is kept and fired in a vacuum atmosphere of 10?5 to 10?3 Pa at a temperature of 1000 to 1300° C. for 1 to 3 hours to form a sintered body. The sintered body is pressed into a pipe having an inner diameter of 0.90 to 0.99 times of the outer diameter of the sintered body, and extruded to obtain a micropore filter.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: November 27, 2018
    Assignee: PURERON JAPAN CO., LTD.
    Inventors: Hidetoshi Nakajima, Toshio Miura, Miyabi Katano, Nozomi Igarashi
  • Patent number: 9905345
    Abstract: Coatings for magnetic materials, such as rare earth magnets, are described. The coatings are designed to reduce or prevent the release of one or both of nickel and cobalt from the coatings or from the underlying magnetic material. The coatings are designed to resist corrosion and release of nickel and cobalt when exposed to moist conditions. The coatings are also designed to be robust enough to withstand damage due to scratch forces. In some embodiments, the coatings include multiple layers of one or of metal and non-metal materials. The coated magnets are well suited for use in the manufacture of wearable consumer products.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: February 27, 2018
    Assignee: Apple Inc.
    Inventors: Katie L. Sassaman, Wai Man Raymund Kwok, Amy Qian, Andrea L. Blakemore
  • Patent number: 9833839
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 5, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 9687911
    Abstract: A manufacturing method of a three-dimensional shaped object is capable of suitably forming a solidified layer by subsequent formation of a powder layer. The manufacturing method according to an embodiment of the present invention is performed by repetition of a powder-layer forming and a solidified-layer forming, the repetition including forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam, wherein a light-beam condition for an irradiation path with an unirradiated portion on both adjacent sides thereof is different from that for another irradiation path with an irradiated portion at an adjacent region.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: June 27, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Abe, Norio Yoshida, Yoshikazu Higashi
  • Publication number: 20150118650
    Abstract: Prosthetic element for bone extremities such as fingers or toes, or teeth, comprising a trabecular part (20, 40, 120) and two end parts or stumps (12, 34, 112; 15, 39, 115).
    Type: Application
    Filed: April 8, 2013
    Publication date: April 30, 2015
    Applicant: LIMACORPORATE SPA
    Inventor: Michele Pressacco
  • Patent number: 8979971
    Abstract: A process for producing a metallic component with an opening or a hollow space by selective laser sintering or laser melting includes melting a metallic powder in layers at appropriate cross-sectional regions by using laser radiation. After the laser sintering or laser melting process, the component is subjected to a fracture splitting process, in which the component is fractured into at least two fractional parts along a fracture line and then the at least two fractional parts are connected to one another at the sites of fracture to form the component. The fracture line contacts or passes through the opening or the hollow space.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: March 17, 2015
    Assignee: MAN Truck & Bus AG
    Inventor: Rainer Schuster
  • Patent number: 8974727
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object, the method comprising the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam, wherein a heater element is disposed on the solidified layer during the repeated steps (i) and (ii), and thereby the heater element is situated within the three-dimensional shaped object.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 10, 2015
    Assignees: Panasonic Corporation, OPM Laboratory Co., Ltd
    Inventors: Satoshi Abe, Yoshiyuki Uchinono, Isao Fuwa, Norio Yoshida, Kazuho Morimoto
  • Publication number: 20150044084
    Abstract: Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.
    Type: Application
    Filed: October 30, 2012
    Publication date: February 12, 2015
    Applicant: California Institute of Technology
    Inventor: California Institute of Technology
  • Patent number: 8951464
    Abstract: One aspect relates to a medical implant, for example, implantable stimulation electrode, having a tight substrate and a porous contact region. One aspect also relates to a lead of a cardiac pacemaker having an implantable stimulation electrode and to a method for manufacturing a medical implant, for example, an implantable stimulation electrode. A medical implant according to one aspect is characterized in that the implant includes a sintered body with graduated porosity.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: February 10, 2015
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Heiko Specht, Andreas Reisinger, Goran Pavlovic
  • Patent number: 8858870
    Abstract: A method of making an article of manufacture includes positioning a cemented carbide piece comprising at least 5% of the total volume of the article of manufacture, and, optionally, a non-cemented carbide piece in a void of a mold in predetermined positions to partially fill the void and define an unoccupied space. Inorganic particles are added to the mold to partially fill the unoccupied space and provide a remainder space. The cemented carbide piece, the non-cemented carbide piece if present, and the hard particles are heated and infiltrated with a molten metal or a metal alloy. The melting temperature of the molten metal or the metal alloy is less than the melting temperature of the inorganic particles. The molten metal or metal alloy in the remainder space solidifies and binds the cemented carbide piece, the non-cemented carbide piece if present, and the inorganic particles to form the article of manufacture.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 14, 2014
    Assignee: Kennametal Inc.
    Inventors: Prakash K. Mirchandani, Morris E. Chandler, Michale E. Waller, Heath C. Coleman
  • Publication number: 20140263579
    Abstract: A thermal barrier tile (34) with a braze layer (46) co-sintered to a ceramic layer (48) is brazed to a substrate (26) of a component for fabrication or repair of a thermal barrier coating (28) for example on a gas turbine ring segment (22, 24). The tile may be fabricated by disposing a first layer of a metal brazing material in a die case (40); disposing a second layer of a ceramic powder on the metal brazing material; and co-sintering the two layers with spark plasma sintering to form the co-sintered ceramic/metal tile. A material property of an existing thermal barrier coating to be repaired may be determined (90), and the co-sintering may be controlled (93) responsive to the property to produce tiles compatible with the existing thermal barrier coating in a material property such as thermal conductivity.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Anand A. Kulkarni, Ahmed Kamel, Stefan Lampenscherf, Jonathan E. Shipper, Jr., Cora Schillig, Gary B. Merrill
  • Publication number: 20140260506
    Abstract: A movable die component for a press device includes a plate body having a workpiece engagement surface configured to engage a workpiece formed by the press device. The plate body has a plurality of internal pockets completely enclosed by the plate body. Optionally, the plate body may be formed by an additive manufacturing process, such as by forming a plurality of direct metal laser sintering layers. The direct metal laser sintering layers may include a lower layer, a plurality of middle layers, and an upper layer with the internal pockets being provided in the middle layers, and with the lower layer covering a bottom of each internal pocket and the upper layer coving a top of each internal pocket.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Tyco Electronics Corporation
    Inventors: Bogdan Octav Ciocirlan, Gregory Thomas Pawlikowski, Chris Edward Whitcomb, Edward Joseph Engasser, Craig Maurice Campbell
  • Publication number: 20140271318
    Abstract: In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Kennametal Inc.
    Inventors: Qingjun Zheng, Yixiong Liu, James A. Faust, Mark J. Rowe, Danie J. De Wet, Sudharsan Subbaiyan, Michael J. Meyer
  • Publication number: 20140255198
    Abstract: A method of fabricating a functionally graded turbine engine component is disclosed and includes the step of depositing layers of powder onto a base and solidifying/fusing each layer with a first directed energy beam to define a component. The method further includes varying a process parameter between deposited layers to define different material properties within the component. The method also proposes surface enhancement approach that can be used after depositing each layer to locally customize the material properties. The method also proposes machining the different internal surfaces to achieve the proper surface finishing required.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Applicant: United Technologies Corporation
    Inventors: Tahany Ibrahim El-Wardany, Matthew E. Lynch, Daniel V. Viens, Robert A. Grelotti
  • Patent number: 8790571
    Abstract: A method for preparing an article is disclosed. The method comprises compacting a mixture of a first pre-alloyed powder and a lubricant to thereby form a green part having a green strength sufficient to permit mechanical handling; applying a slurry to a surface of the green part to thereby form a slurry coated green part, wherein the slurry comprises a second pre-alloyed powder, a binder, and a solvent; and heating the coated green part to a temperature below a solidus temperature of the first pre-alloyed powder and between a solidus temperature and a liquidus temperature of the second pre-alloyed powder to thereby solid state sinter the first pre-alloyed powder into a sintered core and to liquid state sinter the second pre-alloyed powder into a continuous alloy coating over the sintered core.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: July 29, 2014
    Assignee: Kennametal Inc.
    Inventors: Abdelhakim Belhadjhamida, Donald Williams, John Davies
  • Publication number: 20140169971
    Abstract: An impeller including a blade section, a shroud section, and a hub is made of a monolithic structure. The impeller is made by loading a 3D image file into an additive manufacturing device, using it to generate 2D files which correspond to a plurality of cross-sectional layers of the impeller, and solidifying corresponding portions of pulverant material layers to create the impeller.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Venkata R. Vedula, Harold W. Hipsky, Brent J. Merritt, William Louis Wentland
  • Publication number: 20140151013
    Abstract: A method for forming a carbon-metal composite material for a heat sink, comprising the following steps: applying at least one layer comprising carbon particles and at least one layer comprising metal particles on top of one another; and fusing of the layers by irradiating the layers with laser radiation to form the carbon-metal composite material. The invention also relates to a heat sink having a shaped body that comprises a plurality of layers, each layer containing carbon particles in a metal matrix.
    Type: Application
    Filed: July 11, 2012
    Publication date: June 5, 2014
    Applicants: TRUMPF LASER- UND SYSTEMTECHNIK GMBH, TRUMPF LASER GMBH + CO. KG
    Inventors: Klaus Wallmeroth, Christian Schmitz
  • Publication number: 20140144711
    Abstract: A blank may include a tang section, a base section, and an angled section with a recess. The tang section may have an outer surface with an outer diameter. The base section may have an outer surface with a diameter greater than the outer diameter of the tang section. The angled section may lie between the tang section and the base section and may have an outer surface that transitions in diameter from the outer diameter of the tang section to the outer diameter of the base section. The recess in the angled section may be shaped to engage a tip of a former.
    Type: Application
    Filed: June 22, 2011
    Publication date: May 29, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Jeffrey G. Thomas, Ronald E. Joy
  • Patent number: 8738166
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object. The method of the present invention comprises the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer on a base plate with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam; wherein the solidified layers are formed such that they have a high-density portion whose solidified density is 95 to 100% and a low-density portion whose solidified density is 0 to 95% (excluding 95%); and wherein the high-density portion is a portion of the three-dimensional shaped object, to which the force is applied when the three-dimensional shaped object is used.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: May 27, 2014
    Assignee: Panasonic Corporation
    Inventors: Satoshi Abe, Masataka Takenami, Isao Fuwa, Yoshikazu Higashi, Norio Yoshida
  • Publication number: 20140099476
    Abstract: A method for additive manufacturing with multiple materials. First (48), second (50), and third (52) adjacent powder layers are delivered onto a working surface (54A) in respective first (73), second (74), and third (75) area shapes of adjacent final materials (30, 44, 45) in a given section plane of a component (20). The first powder may be a structural metal delivered in the sectional shape of an airfoil substrate (30). The second powder may be a bond coat material delivered in a sectional shape of a bond coat (45) on the substrate. The third powder may be a thermal barrier ceramic delivered in a section shape of the thermal barrier coating (44). A particular laser intensity (69A, 69B) is applied to each layer to melt or to sinter the layer. Integrated interfaces (57, 77, 80) may be formed between adjacent layers by gradient material overlap and/or interleaving projections.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 10, 2014
    Inventors: Ramesh Subramanian, Michael Ott, Dimitrios Thomaidis, Alexandr Sadovoy, Jan Münzer
  • Publication number: 20130309121
    Abstract: Described herein are methods of constructing a part using BMG layer by layer. In one embodiment, a layer of BMG powder is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part layer by layer. One or more layers of non-BMG can be used as needed. In one embodiment, layers of BMG can be cut from one or more sheets of BMG to desired shapes, stacked and fused to form the part.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham
  • Publication number: 20130287590
    Abstract: The present invention relates to a method for producing gas turbine components, in particular aircraft turbine components, preferably low-pressure turbine blades, from a powder which is sintered selectively in layers by locally limited introduction of radiant energy, wherein the sintering is carried out in a closed first housing (2), so that a defined atmosphere can be set, wherein the powder or at least a part of the powder is generated in the same first housing (2) or in a second housing connected to the first housing in a gas-tight manner. The invention further relates to a corresponding apparatus and to a gas turbine blade produced thereby.
    Type: Application
    Filed: January 11, 2012
    Publication date: October 31, 2013
    Applicant: MTU AERO ENGINES AG
    Inventors: Stefan Neuhaeusler, Bertram Kopperger, Josef Waermann, Andreas Jakimov, Erwin Bayer, Wilhelm Meir
  • Patent number: 8551395
    Abstract: A method for preparing a metal-based part, the method comprising applying a slurry to a surface of a temporary substrate to thereby form a slurry-coated temporary substrate, wherein the slurry comprises a Co-, Ni-, or Fe-based metal-based material, a binder, and a solvent; drying the slurry-coated temporary substrate to remove the solvent and to thereby form a coating layer having green strength; heating the coating layer to remove the binder; heating the coating layer to sinter the metal-based material into a continuous metal alloy layer; and separating the substrate from the coating layer. A powder metallurgy preform comprising a powder metallurgy green coating on a preform substrate.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 8, 2013
    Assignee: Kennametal Inc.
    Inventors: Abdelhakim Belhadjhamida, Donald Williams, John Davies
  • Publication number: 20130221805
    Abstract: An ultrasonic probe includes: a piezoelectric transducer which generates ultrasonic waves when voltage is applied to the piezoelectric transducer; and an acoustic matching layer for matching acoustic impedances between the piezoelectric transducer and a subject. The acoustic matching layer includes a sintered layer having, across a surface of the sintered layer, a plurality of microscopic pores formed by sintering a composite including a bonding material and metal nanoparticles each having a size of one micron or less.
    Type: Application
    Filed: April 16, 2013
    Publication date: August 29, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Panasonic Corporation
  • Publication number: 20130133531
    Abstract: An anvil including a hard phase and a metal matrix in which the hard phase is dispersed, a concentration of the metal matrix phase varying according to a concentration gradient, is disclosed. The anvil may be used in a high pressure press. Methods of making an anvil including forming a hard phase dispersed in a metal matrix phase, a concentration of the metal matrix phase varying according to a concentration gradient, are also disclosed.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 30, 2013
    Applicant: SMITH INTERNATIONAL, INC.
    Inventor: SMITH INTERNATIONAL, INC.
  • Patent number: 8409318
    Abstract: A process and apparatus for forming wires, such as wires used as feedstock in welding, brazing, and coating deposition processes. The process and apparatus generally entail feeding through a passage a quantity of powder particles of a size and composition that render the particles susceptible to microwave radiation. As the particles travel through the passage, the particles within the passage are subjected to microwave radiation so that the particles couple with the microwave radiation and are sufficiently heated to melt at least a radially outermost quantity of particles within the passage. The particles are then cooled so that the radially outermost quantity of particles solidifies to yield a wire having a consolidated outermost region surrounding an interior region of the wire.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: April 2, 2013
    Assignee: General Electric Company
    Inventors: Jeffrey Reid Thyssen, Laurent Cretegny, Daniel Joseph Lewis, Stephen Francis Rutkowski
  • Publication number: 20130075575
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object, the method comprising the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam, wherein a heater element is disposed on the solidified layer during the repeated steps (i) and (ii), and thereby the heater element is situated within the three-dimensional shaped object.
    Type: Application
    Filed: June 9, 2011
    Publication date: March 28, 2013
    Applicants: OPM LABORATORY CO., LTD., PANASONIC CORPORATION
    Inventors: Satoshi Abe, Yoshiyuki Uchinono, Isao Fuwa, Norio Yoshida, Kazuho Morimoto
  • Publication number: 20130058824
    Abstract: Provided is a method for producing a decorative sintered metallic article and the same, used in jewelry goods, ornaments, clothing accessories, by combining a copper paste and a silver paste. The method comprises the steps of: producing a patterned piece by alternately arranging the copper paste containing an organic binder and water in 10 to 35 wt % and one or more kinds of copper powders selected from a copper powder and a copper alloy powder, and the silver paste similarly prepared to the copper paste; forming patterned pastes by drawing a pattern through deforming at least rows on the upper surface of the alternately arranged copper and silver pastes; drying the patterned pastes to produce a patterned piece; shaping a decorative object by processing the produced patterned piece; and firing the decorative object to produce a decorative sintered object.
    Type: Application
    Filed: November 4, 2010
    Publication date: March 7, 2013
    Applicant: AIDA CHEMICAL INDUSTRIES CO., LTD.
    Inventors: Masashi Hirama, Hidekazu Yoshihara, Toshie Ito
  • Publication number: 20130052442
    Abstract: A method of forming a ceramic layer on a metal substrate. A substrate (40) is formed (54) from a powder (24) of the metal, and may optionally be partially sintered (56). A layer (43) of powdered ceramic is formed (58) on or applied against the substrate (45). The ceramic powder may include a proportion of nano-sized particles effective to reduce the ceramic sintering temperature and to increase the sintering shrinkage of the ceramic layer to more closely match that of the metal substrate. The substrate and layer are then co-sintered (21, 60) at a temperature and for a duration that densifies and bonds them, producing a metal/ceramic layered material system with low interface stress that is durable to temperature variations in a gas turbine. Spark plasma sintering (32, 34, 36) may be used to sinter and/or co-sinter substrate and layer materials that normally cannot be sintered.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: Gary B. Merrill, Cora Schillig, Andrew J. Burns, John R. Paulus
  • Patent number: 8333922
    Abstract: A method of producing three-dimensional bodies which wholly or for selected parts consists of a composite of crystalline or nanocrystalline metal particles in a matrix of amorphous metal. A metal powder layer (4) is applied onto a heat-conducting base (1, 13) and limited areas of the layer is melted successively by means of a radiation gun and cooled so that they can be made to solidify into amorphous metal. In connection with the melting of one or several of the limited areas, the radiation gun is regulated so that the melted area is cooled in accordance with a stipulated time-temperature curve in order to form a composite of crystalline or nanocrystalline metal particles in a matrix of amorphous metal. The method is repeated until a continuous layer, which contains composite metal to a desired extent, is formed. A new powder layer (4) is applied and the method is repeated, the new layer being fused to the underlying layer for successive construction of the three-dimensional body.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: December 18, 2012
    Assignee: Exmet AB
    Inventors: Peter Skoglund, Abraham Langlet
  • Publication number: 20120270425
    Abstract: A bi-metallic boss is provided. The bi-metallic boss includes a first portion and a second portion. The first portion is made of a first metal powder. The second portion is integrated with the first portion. Moreover, the second portion made of a second metal powder, such that the second metal powder is different from the first metal powder.
    Type: Application
    Filed: July 6, 2012
    Publication date: October 25, 2012
    Applicant: Caterpillar Inc.
    Inventors: Robert D. Rae, Marius G. Enescu
  • Patent number: 8178212
    Abstract: Method for chemical bonding of fiberglass fibers to steel surfaces to prepare the steel for bonding with carbon composite material. This fiber-bonding step greatly increases the strength of the subsequent metal-composite bond. The fiberglass fibers which are chemically bonded to the steel provide a high surface area interface to entangle with carbon fibers in the composite component, and thereby inhibit crack formation on the boundary surface between the steel and composite components when they are bonded together.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: May 15, 2012
    Assignees: Honeywell International Inc., The University of Notre Dame du Lac
    Inventors: Allen H. Simpson, Mark L. La Forest, Alexander Mukasyan
  • Publication number: 20120114960
    Abstract: A cermet has a WC first hard phase, a second hard phase including one or more of a carbide, nitride and carbonitride of an element(s) of groups 4, 5 and 6 of the Periodic Table including a titanium element, and a mutual solid solution thereof, and a binder phase. In the cermet, a carbon amount CT (% by weight), a tungsten amount CW (% by weight), and a nitrogen amount CN (% by weight) satisfy 0.25<(CN/(CT?0.0653·CW))<6. The cermet has a surface region with a thickness of 5 to 100 ?m which includes the first hard phase and the binder phase, and an inner region which includes the first and second hard phases and the binder phase. In a cross-section of the inner region, a ratio of an area of the first hard phase to an area of the second hard phase is 0.15 to 4.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 10, 2012
    Applicant: Tungaloy Corporation
    Inventors: Daisuke Takesawa, Keitaro Tamura, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi
  • Publication number: 20120107561
    Abstract: Provided are a method for producing a decorative metallic article with a wood grain metal pattern and the decorative metallic article with the wood grain metal pattern; the decorative metallic article comprising a sintered copper part produced by sintering a plastic copper containing clay compound, and a sintered silver part produced by sintering a plastic silver containing clay compound.
    Type: Application
    Filed: September 27, 2010
    Publication date: May 3, 2012
    Applicant: AIDA CHEMICAL INDUSTRIES CO., LTD
    Inventors: Masashi Hirama, Hidekazu Yoshihara, Ryota Mitsuhashi, Tomoaki Kasukawa, Akiyoshi Yatsugi
  • Publication number: 20120097591
    Abstract: The invention relates to an apparatus for the chromatographic separation of a substance mixture in liquid form, comprising a stationary phase, wherein the stationary phase is configured in particular as a plate or plate-shaped body, consisting in particular of a porous solid, characterised in that the apparatus comprises at least one feed device for feeding a substance mixture, wherein the feed device comprises a plurality of feed openings and a plurality of feed lines and the feed openings are in particular disposed in one plane so that the length of the feed lines from a collecting feed line to at least a part of the plurality of feed openings is substantially the same.
    Type: Application
    Filed: February 12, 2010
    Publication date: April 26, 2012
    Inventors: Wolfgang Berthold, Andrea Claudia Walter
  • Publication number: 20120100031
    Abstract: The invention concerns a method for producing three-dimensional objects (6) layer by layer using a powdery material (7) which can be solidified by irradiating it with a high-energy beam (4), said method comprising the steps of: applying a first layer of powdery material onto a working area (5); solidifying a part of said first layer by irradiating it with a high-energy beam; and applying a second layer (8) of powdery material onto the first, partly solidified layer. The invention is characterized in that the method comprises the step of: determining a rate at which the temperature of the second layer (8) increases after application onto the first layer. The invention also concerns an apparatus configured to operate according to the above method.
    Type: Application
    Filed: July 15, 2009
    Publication date: April 26, 2012
    Applicant: ARCAM AB
    Inventor: Ulric Ljungblad
  • Publication number: 20120093674
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object. The method of the present invention comprises the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam; wherein only the surface portion of the solidified layer, to which a force is applied when the three-dimensional shaped object is used, is subjected to a machining process.
    Type: Application
    Filed: June 23, 2010
    Publication date: April 19, 2012
    Applicant: PANASONIC ELECTRIC WORKS CO., LTD.
    Inventors: Satoshi Abe, Yoshikazu Higashi, Isao Fuwa, Masataka Takenami
  • Publication number: 20110286874
    Abstract: A method of sintering a 17-4PH alloy powder and a sintered 17-4PH sintered part are disclosed. The part is formed by selective laser sintering a 17-4PH alloy powder and binder mixture to form a green part that is sintered to form a part having a substantially pure martensitic structure. The metal powder includes boron. The sintered part may be further processed by shot peening to improve crack resistance.
    Type: Application
    Filed: August 5, 2011
    Publication date: November 24, 2011
    Applicant: THE BOEING COMPANY
    Inventors: Steven C. LOW, Jerry G. CLARK, Neal W. MUYLAERT, Richard J. NORD, Blair E. THOMPSON, Bryan E. AKE, Reid W. WILLIAMS
  • Patent number: 8052923
    Abstract: A method of producing three-dimensional bodies which wholly or for selected parts consist of amorphous metal. A metal powder layer (4) is applied to a heat-conducting base (1, 13), and a limited area of the layer is melted by a radiation gun (5) and the area is cooled so that the melted area solidifies into amorphous metal. The melting process is successively repeated on new limited areas of the powder layer until a continuous layer of amorphous metal is formed. A new powder layer is applied and the method is repeated, the new layer being fused to underlying amorphous metal for successive construction of the three-dimensional body. The heat-conducting base can be a worktable or a body of amorphous metal or crystalline metal to which amorphous metal is added.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: November 8, 2011
    Inventor: Abraham Langlet
  • Publication number: 20110058975
    Abstract: A method of processing a bimetallic part includes depositing an intermediary material having a metal powder onto a tooling surface of a cavity of a tool, transforming the intermediary material into a metal layer having a first composition on the tooling surface, and forming a metal core having a second, different composition in the cavity such that the metal layer bonds to the metal core to form a bimetallic part.
    Type: Application
    Filed: September 10, 2009
    Publication date: March 10, 2011
    Inventor: Clifford C. Bampton
  • Patent number: 7829012
    Abstract: A method for treating a porous item constructed of metal powder, such as a powder made of Series 400 stainless steel, involves a step of preheating the porous item to a temperature of between about 700 and 900° C. degrees in an oxidizing atmosphere and then sintering the body in an inert or reducing atmosphere at a temperature which is slightly below the melting temperature of the metal which comprises the porous item. The thermal stability of the resulting item is enhanced by this method so that the item retains its porosity and metallic characteristics, such as ductility, at higher (e.g. near-melting) temperatures.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: November 9, 2010
    Assignee: Worldwide Energy, Inc. of Delaware
    Inventors: Brian L. Bischoff, Theodore G. Sutton, Roddie R. Judkins, Timothy R. Armstrong, Kenneth D. Adcock
  • Patent number: 7815847
    Abstract: A process for mass production of three-dimensional articles made of intermetallic compounds based on titanium and aluminium by an electron beam melting technology. The articles are produced in successive sections from powders of the intermetallic compound with which the articles are to be produced. For each section, melting of the powders preceded by a preheating step is performed.
    Type: Grant
    Filed: July 7, 2007
    Date of Patent: October 19, 2010
    Assignees: Avio Investments S.p.A., Avioprop S.r.l.
    Inventors: Paolo Gennaro, Giovanni Paolo Zanon, Giuseppe Pasquero
  • Patent number: 7785529
    Abstract: The invention refers to a method and an apparatus for fabricating a tridimensional solid object by sintering inorganic particles of controlled size distribution. The particles are directed onto a target area in a powdery stream in the shape of a conical surface which is coaxial to a simultaneous heating flux while an at least bidimensional relative movement is maintained between the target area, the powdery stream and the heating flux. As a result the particles sinterization occurs in a single operation directly onto the target area.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: August 31, 2010
    Assignees: MBN Nanomaterialia SpA, LZH Laser Zentrum Hannover E V.
    Inventors: Paolo Matteazzi, Hinrich Becker
  • Publication number: 20100190026
    Abstract: A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material.
    Type: Application
    Filed: January 11, 2010
    Publication date: July 29, 2010
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Terryl A. Wallace, Stephen W. Smith, Robert S. Piascik, Michael R. Horne, Peter L. Messick, Joel A. Alexa, Edward H. Glaessgen, Benjamin T. Hailer
  • Patent number: 7726023
    Abstract: In order to create titanium components with a titanium composite insert, a method is provided whereby an initial pre form 1 has a groove 2 formed in it. An encapsulating member 4 is then provided about the groove 2 in order to create a cavity 5 which is filled with titanium alloy powder 6. This titanium alloy powder 6 is densified and then accurately machined in order to create a groove insert form 7 which can accommodate a titanium composite material pre form insert 8 and further titanium alloy powder 9 such that through a high temperature isostatic pressing (HIP) process, the insert 8 is embedded. The original component form 1 can then be machined in order to create the final component elements such as aerofoils 13.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: June 1, 2010
    Assignee: Rolls-Royce PLC
    Inventor: John Gareth Pursell
  • Patent number: 7722802
    Abstract: The invention relates a powder material consisting of coated particles for a powder-based rapid generative prototyping methods, in particular by compressing a 3D binder. Said powder material consists of individual plastic, metal and/or ceramic particles and/or granules. A coating essentially consists of an adhesive agent which can be activated by a liquid binder, light or laser light, and of sinterable or glass-forming fine-grained material. Said invention also relates to a method for compressing 3D binder with the aid of an organic solvent having a water content less than 45% and to sintered bodies, in particular for moulding or precision mechanical engineering, which are fixed to each other by sintering or glass formation from a fine grained material.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: May 25, 2010
    Assignee: Daimler AG
    Inventors: Rolf Pfeifer, Jialin Shen