Powder Next To Solid Patents (Class 419/8)
  • Publication number: 20140234650
    Abstract: According to the invention, there are disclosed a power metallurgy composite cam sheet and a fabrication method thereof. The power metallurgy composite cam sheet is constructed by combining a power metallurgy cam be composited on a surface of a matrix. The fabrication method of the power metallurgy composite cam sheet includes sinter welding, braze welding, argon arc welding, laser welding, hot pressing and other methods. The powder metallurgy composite cam sheet fabricated by the invention has merits of stable size, good impact toughness, good abrasion resistance, low cost and so on, so that it can replace an integral cam sheet that is currently fabricated by forging, drawing, power metallurgy or other process. It is suitable for the case where a hollow camshaft is prepared by mechanical assembly, hydraulic forming, welding or other process, so that the usage requirements of an assembled camshaft can be met.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 21, 2014
    Inventors: Linshan Wang, Limin Wang, Xuebing Liang, Xiaojiang Dong, Lei Wang
  • Patent number: 8800848
    Abstract: Methods for forming a wear resistant layer metallurgically bonded to at least a portion of a surface of a metallic substrate may generally comprise positioning hard particles adjacent the surface of the metallic substrate, and infiltrating the hard particles with a metallic binder material to form a wear resistant layer metallurgically bonded to the surface. In certain embodiments of the method, the infiltration temperature may be 50° C. to 100° C. greater than a liquidus temperature of the metallic binder material. The wear resistant layer may be formed on, for example, an exterior surface and/or an interior surface of the metallic substrate. Related wear resistant layers and articles of manufacture are also described.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 12, 2014
    Assignee: Kennametal Inc.
    Inventors: Prakash K. Mirchandani, Morris E. Chandler
  • Patent number: 8800657
    Abstract: Disclosed herein is an apparatus for use downhole comprising an expandable component; a support member that has a selected corrosion rate; wherein the support member is disposed on the expandable component; where the support member comprises a plurality of particles fused together; the particles comprising a core comprising a first metal; and a first layer disposed upon the core; the first layer comprising a second metal; the first metal having a different corrosion potential from the second metal; the first layer comprising a third metal having a different corrosion potential from the first metal.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: August 12, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg Antonovych Mazyar, Michael H. Johnson, Casey L. Walls
  • Patent number: 8778259
    Abstract: A self-renewing cutting tool or cutting element is formed by bonding an overcoat, cladding or layer of highly abrasive, very durable material on a surface of a substrate or load-bearing element. The cutting layer is a composite structure and includes appropriately sized, multi-edged pieces of a superhard material, such as tungsten carbide, dispersed in a softer material which produces high strength bonds between and among the pieces and the substrate or load-bearing element.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 15, 2014
    Inventor: Gerhard B. Beckmann
  • Publication number: 20140193286
    Abstract: In a method for the production of a treatment element for a screw machine, a treatment element core of a first metal material is arranged in an inner space of a capsule of a hot isostatic pressing installation so that a contoured annular space is formed between a capsule wall and a treatment element core. The annular space is filled with a powder of a second metal material so as to produce an anti-wear layer. Afterwards, the treatment element blank is produced in such a way that the materials are combined by hot isostatic pressing to form a composite body. The treatment element blank is then post-processed to form the treatment element. The method according to the invention simplifies the production of treatment elements by in particular simplifying post machining and/or heat treatment of the anti-wear layer thus produced.
    Type: Application
    Filed: July 31, 2012
    Publication date: July 10, 2014
    Inventors: Dietmar John, Dirk Kyrion, Karl-Conrad Polzer, Peter Munkes, Reinhard Wuttke
  • Patent number: 8758667
    Abstract: A cold press and a method for the production of green compacts for diamond-containing tool segments includes a tool matrix, a top ram and a bottom ram assigned to a matrix adapter from opposite directions for the purpose of compressing sinterable metal powder and diamond granules after both of these materials have been fed to the matrix adapter. Step-by-step build-up of the green compact is carried out in such a manner that after one layer of metal powder and one layer of diamond granulate have been charged, these layers are together compressed.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: June 24, 2014
    Assignee: Dr. Fritsch Sondermaschinen GmbH
    Inventors: Rainer Idler, Markus Schaefer, Michael Feil
  • Patent number: 8740044
    Abstract: A method for bonding a heat-conducting substrate and a metal layer is provided. A heat-conducting substrate, a first metal layer and a preformed layer are provided. The preformed layer is between the heat-conducting substrate and the first metal layer. The preformed layer is a second metal layer or a metal oxide layer. A heating process is performed to the preformed layer in an oxygen-free atmosphere to convert the preformed layer to a bonding layer for bonding the heat-conducting substrate and the first metal layer. The temperature of the heating process is less than or equal to 300° C.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: June 3, 2014
    Assignee: Subtron Technology Co., Ltd.
    Inventor: Chien-Ming Chen
  • Patent number: 8741214
    Abstract: A method of making a sintered article in which a solid object is embedded includes forming a green body of compressed particles with the solid body is partially embedded. The green body includes an opening across which the solid body extends. The green body is sintered to form a sintered body and the opening permits deformation of the solid body in response to stress applied during the sintering process. A sintered article in which a solid body is at least partially embedded includes an opening. The solid body extends across the opening so that the solid body can deform within the opening. The opening in the solid body prevents distortion of the sintered body from a planar configuration during sintering, even when the green body is relatively thin.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: June 3, 2014
    Assignee: Evans Capacitor Company
    Inventor: David A. Evans
  • Patent number: 8715385
    Abstract: A bearing material and a method for the manufacture of a bearing having a lining of the bearing material is described, the bearing material comprising: in wt %: 4-12 tin; 0.1-2 nickel; 1-6 bismuth; 0.01-less than 0.10 alumina; balance copper apart from incidental impurities.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: May 6, 2014
    Assignee: MAHLE International GmbH
    Inventors: Raymond Brigdeman, Janette Johnston
  • Patent number: 8703045
    Abstract: The present invention relates to a method of manufacturing a multiple composition component 10, comprising: arranging first, second and third constituent parts 40, 30, 42 having first, second and third compositions respectively A, B, C so that the first constituent part 40 shares a first boundary with the second constituent part 30 and the second constituent part 30 shares a second boundary with the third constituent part 40. The first, second and third constituent parts 40, 30, 42 are each either a powder or a solid so that the first and second boundaries are each a solid adjacent to a powder. The arrangement is then processed so as to form a single solid component having first, second and third regions 16, 18, 20 having first, second and third compositions A, B, C respectively.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Rolls-Royce PLC
    Inventors: Robert J. Mitchell, Catherine M. F. Rae, Mark C. Hardy, Shaun R. Holmes
  • Publication number: 20140093384
    Abstract: A method of forming a complex shaped part includes the steps of forming a polymer core by an additive manufacturing process. A metal is plated about surfaces of the polymer core, and the polymer core is removed, leaving hollows within a plate core. Metal powder is deposited within the hollows. An integral blade rotor is also disclosed.
    Type: Application
    Filed: December 18, 2012
    Publication date: April 3, 2014
    Applicant: United Technologies Corporation
    Inventors: Sergey Mironets, Wendell V. Twelves, Grant O. Cook, III, Robert P. Delisle, Agnes Klucha, William J. Ward
  • Patent number: 8685314
    Abstract: First and second components, which may be metallic components, are joined together in a process including introducing a sinterable powder between the components, the powder being retained within a receptacle, displacing the second component towards the first component to compress the powder, and subsequently applying heat and pressure to the powder to form a sintered bond.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 1, 2014
    Assignee: Rolls-Royce PLC
    Inventors: Stephen Tuppen, Daniel Clark
  • Patent number: 8663540
    Abstract: A heater tube is provided for use in a method of producing a diamond or cubic boron nitride (CBN) tipped cutting tool by sintering a mass of crystalline particles to a metal carbide. The heater tube has a cylindrical shape and is comprised of a plurality of windings of an expanded graphite foil which are compressed together. In the method, a heater tube assembly is formed which comprises the metal carbide substrate positioned within the heater tube and a mass of diamond or CBN particles positioned within the heater tube adjacent the substrate. The method includes simultaneously applying sufficient levels of pressure to the heater tube assembly and sufficient levels of electrical current to the heater tube assembly for a sufficient amount of time to cause sintering of the crystalline particles and bonding to the substrate to form a diamond or CBN tipped cutting tool.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: March 4, 2014
    Inventor: Leland M. Reineke
  • Patent number: 8663359
    Abstract: Methods of forming larger sintered compacts of PCD and other sintered ultrahard materials are disclosed. Improved solvent metal compositions and layering of the un-sintered construct allow for sintering of thicker and larger high quality sintered compacts. Jewelry may also be made from sintered ultrahard materials including diamond, carbides, and boron nitrides. Increased biocompatibility is achieved through use of a sintering metal containing tin. Methods of sintering perform shapes are provided.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: March 4, 2014
    Assignee: Dimicron, Inc.
    Inventors: David P. Harding, Mark E. Richards, Richard H. Dixon, Victoriano Carvajal, Bao-Khang Ngoc Nguyen, German A. Loesener, A. Ben Curnow, Troy J. Medford, Trenton T. Walker, Jeffery K. Taylor, Bill J. Pope
  • Publication number: 20130344347
    Abstract: A process and device in production of precise three-dimensional sinters of a shape substantially close to that of an original part, using flash sintering produced by spark plasma sintering (SPS) technology. A mold is produced in a die of an enclosure for SPS flash sintering, the mold being shaped as an impression of the original part. The following are deposited in successive layers in the mold: a layer based on a superalloy powder, a metallic protection layer, and a thermal barrier layer. In a sintering, pressurization is initiated and a pulsed current passes through, producing a rapid rise in temperature in accordance with a flash sintering cycle whose temperature, pressure, and duration are regulated, with at least one temperature plateau and one pressure plateau. The layer of superalloy forms, by diffusion, during the sintering, a bonding continuum of material with the part to be repaired.
    Type: Application
    Filed: March 6, 2012
    Publication date: December 26, 2013
    Applicant: SNECMA
    Inventors: Juliette Hugot, Justine Menuey
  • Publication number: 20130344344
    Abstract: A method for forming a composite article includes providing a metallic substrate and a preform adjacent the metallic substrate. The preform includes an unfused metallic powder material with an organic binder dispersed through the powder material. The metallic substrate and the preform are then subjected to a monocyclic heating process. The monocyclic heating process causes removal of the organic binder from the preform, fusing of the metallic powder material and metallurgical bonding of the metallic powder to the metallic substrate.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Inventors: Robert J. Gastor, Brent A. Augustine
  • Patent number: 8608822
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: December 17, 2013
    Inventor: Robert G. Lee
  • Patent number: 8603388
    Abstract: The invention concerns a method for obtaining a metal implant for open porosity tissue support and/or replacement, characterized in that it comprises the following steps: (i) selecting a mould, (ii) arranging in the mould a solid metal core (7), (iii) filling the volume of the mould (1) still available with a powder of microspheres (3), (iv) consolidating the microspheres (3) with each other as well as with said at least one solid core (7) by electrical discharge sintering.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 10, 2013
    Assignees: Protip SAS, Universite Louis Pasteur (ULP), Hopitaux Universitaires de Strasbourg (HUS)
    Inventors: Christian Debry, André Walder
  • Publication number: 20130289593
    Abstract: An ultrasound therapy system is provided that can include any number of features. In some embodiments, the custom transducer housings can be manufactured using a rapid-prototyping method to arrange a plurality of single-element, substantially flat transducers to share a common focal point. The rapid-prototyping method can include, for example, fused-deposition modeling, 3D printing, and stereolithography. In some embodiments, the therapy system can include a plurality of transducer modules insertable into the openings of the transducer housing. Each transducer module can include an acoustic lens, a substantially flat, single-element transducer, and a matching layer disposed between the lens and the transducer. Methods of use and manufacture are also described.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 31, 2013
    Inventors: Timothy L. Hall, Adam Maxwell, Charles A. Cain, Yohan Kim, Zhen Xu
  • Patent number: 8557175
    Abstract: The invention relates to a method for making a metal part that comprises a reinforcement (15) made of ceramic fibers. The method comprises the following steps: forming at least one annular-shaped insert (15) by assembling a bundle of metal-coated fibers; placing the insert into a hollow metal mold (10) such that the insert is spaced between the walls (10a, 10b) of the mold; filling the mold with a metal powder; generating vacuum in the mold and closing the same; hot isostatic compressing the assembly at a temperature and under a pressure sufficient for binding the powder particles between them and for binding the insert fibers between them; removing the mold and optionally machining to the desired shape.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: October 15, 2013
    Assignee: Messier-Bugatti-Dowty
    Inventor: Richard Masson
  • Publication number: 20130266794
    Abstract: A composite part including: a compacted powder composition; and a polymer composite comprising nanometer-sized and/or micrometer-sized reinforcement structures, wherein the composite part has an interpenetrating network between the compacted powder composition and the polymer composite and wherein the reinforcement structures comprise one or more of: particles, platelets, fibers, whiskers, and tubes. A composite part formed by a method including compacting a powder composition including a lubricant into a compacted body; heating the compacted body to a temperature above the vaporization temperature of the lubricant such that the lubricant is substantially removed from the compacted body; subjecting the obtained heat treated compacted body to a liquid polymer composite including nanometer-sized and/or micrometer-sized reinforcement structures; and solidifying the heat treated compacted body comprising liquid polymer composite by drying and/or by at least one curing treatment.
    Type: Application
    Filed: June 3, 2013
    Publication date: October 10, 2013
    Inventors: PONTUS BERGMARK, BJORN SKARMAN
  • Publication number: 20130251292
    Abstract: A bearing device includes a body, a circular cover, and a through hole commonly defined through both the body and the cover. The body is an injection molded piece made from metal powder and molten binder. The cover is an injection molded piece made from metal powder and molten binder. Two passages are defined between the body and the cover, and each passage communicates the through hole with an exterior of the bearing device, whereby lubricant can flow from the through hole to the passages. A bearing assembly having the bearing device is also provided, and a method of manufacturing the bearing device is further provided.
    Type: Application
    Filed: December 19, 2012
    Publication date: September 26, 2013
    Applicant: Foxconn Technology Co., Ltd.
    Inventors: WEN-CHENG CHEN, MING-HSIU CHUNG
  • Publication number: 20130230424
    Abstract: Feedthrough assemblies and methods of manufacturing feedthrough assemblies are provided. Methods include molding a ferrule comprising titanium using metal injection molding and positioning the ferrule about at least a portion of an insulator, the insulator comprising alumina. Methods also include overmolding a ferrule about at least a portion of an insulator using metal injection molding, the ferrule comprising titanium and the insulator comprising alumina. Sintering densifies the ferrule and provides a hermetic seal between the ferrule and insulator. The insulator may be fired or unfired prior to sintering of the ferrule.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 5, 2013
    Applicant: Medtronic, Inc.
    Inventors: Markus W. Reiterer, Brad C. Tischendorf, Andrew J. Thom
  • Publication number: 20130229251
    Abstract: An electronic device comprising a first magnetic powder, a second magnetic powder and a conducting wire buried in the mixture of the first magnetic powder and the second magnetic powder is provided. The conducting wire comprises an insulating encapsulant and a conducting metal encapsulated by the insulating encapsulant. The Vicker's Hardness of the first magnetic powder is greater than the Vicker's Hardness of the second magnetic powder, and the mean particle diameter of the first magnetic powder is larger than the mean particle diameter of the second magnetic powder. By means of the hardness difference of the first magnetic powder and the second magnetic powder, the mixture of the first magnetic powder and the second magnetic powder and the conducting wire buried therein are combined to form an integral magnetic body at the temperature lower than the melting point of the insulating encapsulant.
    Type: Application
    Filed: March 29, 2013
    Publication date: September 5, 2013
    Applicant: CYNTEC CO., LTD.
    Inventors: Wen-Hsiung Liao, Roger Hsieh, Hideo Ikuta, Yueh-Lang Chen
  • Patent number: 8524147
    Abstract: A process for producing powder green compacts includes centrifugally compacting a slip containing a material powder, a binder resin and a dispersion medium in a mold, into a compact containing the material powder and the binder resin. A process for producing sintered compacts includes sintering the green compact. A powder green compact contains a material powder and a binder resin, the binder resin being present between particles of the material powder and binding the material particles. A sintered compact is obtained by sintering the green compact.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: September 3, 2013
    Assignees: Hiroshima University, Alloy Industries Co., Ltd.
    Inventors: Hiroyuki Suzuki, Yoshinobu Shimoitani
  • Patent number: 8524148
    Abstract: A method of making a medical device which is at least partially bio-erodible and which exhibits controlled elution of therapeutic agent.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: September 3, 2013
    Assignee: Abbott Laboratories
    Inventors: Sanjay Shrivastava, John Toner, Sandra Burke, Keith Cromack, Peter Tarcha, Donald Verlee, Ho-Wah Hui
  • Publication number: 20130224058
    Abstract: A method for manufacturing a component having at least one internal cavity includes the step of providing a core element of metallic material that includes at least one cavity having a first opening covered by a cover element with a first and second side. A form partially surrounds the core element and cover element. The form is filled with metallic filling material and heated in a heating chamber that is pressurized with gas for a predetermined time period at a predetermined temperature and a predetermined isostatic pressure, so that a metallurgical bond is achieved between the core element, cover element and metallic filling material. The core element is arranged such that, after filling the form with metallic filling material, the second side of the cover element is covered with metallic filling material so that the cavity during heating is pressurized to the predetermined isostatic pressure.
    Type: Application
    Filed: November 9, 2011
    Publication date: August 29, 2013
    Applicant: Sandvik Intellectual Property AB
    Inventors: Tomas Berglund, Rickard Sandberg
  • Publication number: 20130218281
    Abstract: A method of pressure forming a brown part from metal and/or ceramic particle feedstocks includes: introducing into a mold cavity or extruder a first feedstock and one or more additional feedstocks or a green or brown state insert made from a feedstock, wherein the different feedstocks correspond to the different portions of the part; pressurizing the mold cavity or extruder to produce a preform having a plurality of portions corresponding to the first and one or more additional feedstocks, and debinding the preform. Micro voids and interstitial paths from the interior of the preform part to the exterior allow the escape of decomposing or subliming backbone component substantially without creating macro voids due to internal pressure. The large brown preform may then be sintered and subsequently thermomechanically processed to produce a net wrought microstructure and properties that are substantially free the interstitial spaces.
    Type: Application
    Filed: April 30, 2010
    Publication date: August 22, 2013
    Applicant: ACCELLENT INC.
    Inventors: Mark W. Broadley, James Alan Sago, Hao Chen, Edward J. Schweitzer, John Eckert, Jeffrey M. Farina
  • Publication number: 20130202475
    Abstract: The present invention relates to a method for producing a leadthrough for an optical conductor (V3) in a housing part, comprising the following steps: a) producing granules composed of metal powder and, if appropriate binder, b) providing a mould having a mould space, c) injecting or compressing the granules into the mould in order to produce a moulding, d) sintering the moulding, e) introducing a passage opening into the molding prior to sintering, f) inserting a tube (V2) into the passage opening prior to sintering, and g) leading the optical conductor through the tube after sintering.
    Type: Application
    Filed: March 22, 2011
    Publication date: August 8, 2013
    Inventors: Ingo Smaglinski, Gerhard Himmelsbach, Thomas Petigk
  • Publication number: 20130202476
    Abstract: A method and an arrangement for manufacturing a component with hot isostatic pressing occurring in solid form, the component comprising a shape opening onto the outer surface. The method comprises forming a sheet metal capsule for metallic powder, and manufacturing a core by arranging around a core centre made of a first material, a form layer made of a second material, the shape of the outer surface of the form layer corresponding to the shape of the outer surface of the opening shape of the component. The core is placed in a spot, where the shape opening onto the outer surface is to be formed, and metallic powder is arranged in the sheet metal capsule, which forms the body part of the component to be manufactured. Cladding material is arranged between the outer surface of the core and the metallic powder, and hot isostatic pressing is performed to simultaneously compact the metal powder and the cladding material.
    Type: Application
    Filed: March 31, 2011
    Publication date: August 8, 2013
    Applicant: METSO MINERALS, INC.
    Inventors: Jussi Hellman, Teuvo Kovaniemi, Jari Liimatainen, Mikko Uusitalo
  • Patent number: 8486328
    Abstract: Powders of respective metal elements (Mn,Co) constituting a transition metal oxide (MnCo2O4) having a spinel type crystal structure are used as a starting material. A paste containing the mixture of the powders is interposed between an air electrode and an interconnector, and with this state, a sintering is performed, whereby a bonding agent according to the present invention can be obtained. This bonding agent has a “co-continuous structure”. In the “co-continuous structure”, a thickness of an arm portion that links many base portions to one another is 0.3 to 2.5 ?m. The bonding agent includes a spherical particle in which plural crystal faces are exposed to the surface, the particle having a side with a length of 1 ?m or more, among the plural sides constituting the outline of the crystal face. The diameter of the particle is 5 to 80 ?m.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 16, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Toshiyuki Nakamura, Takashi Ryu
  • Patent number: 8479700
    Abstract: A chromium-iron alloy comprises in weight %, 1 to 3% C, 1 to 3% Si, up to 3% Ni, 25 to 35% Cr, 1.5 to 3% Mo, up to 2% W, 2.0 to 4.0% Nb, up to 3.0% V, up to 3.0% Ta, up to 1.2% B, up to 1% Mn and 43 to 64% Fe. In a preferred embodiment, the chromium-iron alloy comprises in weight %, 1.5 to 2.3% C, 1.6 to 2.3% Si, 0.2 to 2.2% Ni, 27 to 34% Cr, 1.7 to 2.5% Mo, 0.04 to 2% W, 2.2 to 3.6% Nb, up to 1% V, up to 3.0% Ta, up to 0.7% B, 0.1 to 0.6% Mn and 43 to 64% Fe. The chromium-iron alloy is useful for valve seat inserts for internal combustion engines such as diesel or natural gas engines.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 9, 2013
    Assignee: L. E. Jones Company
    Inventors: Cong Yue Qiao, Todd Trudeau
  • Patent number: 8460602
    Abstract: A sintering method with uniaxial pressing includes: a powder filling step of disposing a spent target in an inner space of a frame jig having the inner space piercing in a uniaxial direction, and filling the inner space with a raw material powder for a target to cover an erosion part side of the spent target with the raw material powder for a target, a cushioning-material disposition step of disposing a deformable cushioning material so that the raw material powder for a target with which the inner space has been filled in the powder filling step is sandwiched between the spent target and the deformable cushioning material; and a sintering step of pressing the raw material powder for a target with which the inner space has been filled and the spent target in the uniaxial direction through the cushioning material and sintering them.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 11, 2013
    Assignee: Tanaka Holdings Co., Ltd
    Inventors: Toshiya Yamamoto, Takanobu Miyashita, Osamu Itoh
  • Publication number: 20130136645
    Abstract: A method for forming a functional part in a minute space includes the steps of; filling a minute space with a dispersion functional material in which a thermally-meltable functional powder is dispersed in a liquid dispersion medium; evaporating the liquid dispersion medium present in the minute space; and heating the functional powder and hardening it under pressure.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 30, 2013
    Applicant: NAPRA CO., LTD.
    Inventor: NAPRA CO., LTD.
  • Publication number: 20130125475
    Abstract: The present invention relates to tungsten rhenium compounds and composites and to methods of forming the same. Tungsten and rhenium powders are mixed together and sintered at high temperature and high pressure to form a unique compound. An ultra hard material may also be added. The tungsten, rhenium, and ultra hard material are mixed together and then sintered at high temperature and high pressure.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: SMITH INTERNATIONAL, INC.
    Inventor: Smith International, Inc.
  • Patent number: 8444913
    Abstract: In this method, the conductive powder mass is placed on the support, and then the member is placed on the mass and a compression force is applied, urging the member against the mass and the support before heating the mass. The magnitude is increased from an initial value to a first predefined value for agglomerating the mass, which value is less than a plastic deformation threshold of the powder mass. Then, the magnitude is maintained at the first predefined value throughout a predetermined duration for agglomerating the powder mass. Finally, the magnitude is increased from the first value to a second predefined value less than a critical threshold for damaging the member but greater than a minimum threshold for sintering the mass at the predetermined temperature, the second predefined value being greater than the first predefined value.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: May 21, 2013
    Assignee: Valeo Etudes Electroniques
    Inventors: Jean-Michel Morelle, Laurent Vivet, Mathieu Medina, Sandra Dimelli
  • Publication number: 20130112376
    Abstract: A heat pipe apparatus having a sintered lattice wick structure includes a plurality of wicking walls having respective length, width and heights and spaced in parallel to wick liquid in a first direction along the respective lengths, the respective lengths being longer than the respective widths and the respective heights, the plurality of wicking walls being adjacent to one another and spaced apart to form vapor vents between them, a plurality of interconnect wicking walls to wick liquid between adjacent wicking walls in a second direction substantially perpendicular to the first direction, and a vapor chamber encompassing the sintered lattice wick structure, the vapor chamber having an interior condensation surface and interior evaporator surface, wherein the plurality of wicking walls and the plurality of interconnect wicking walls are configured to wick liquid in first and second directions and the vapor vents communicate vapor in a direction orthogonal to the first and second directions.
    Type: Application
    Filed: December 24, 2012
    Publication date: May 9, 2013
    Applicant: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventor: Teledyne Scientific & Imaging, LLC
  • Publication number: 20130106198
    Abstract: Disclosed herein are a core assembly for wireless power communication, a power supplying device for wireless power communication having the same, and a method for manufacturing the same. The core assembly for wireless power communication includes: a plate shaped core including concave parts disposed in a main surface thereof and made of a magnetic material; a plurality of winding type coils received in the concave parts and partially overlapping each other; and a circuit board connected to both ends of each of the coils which controls application of a power to the coils.
    Type: Application
    Filed: June 22, 2011
    Publication date: May 2, 2013
    Applicant: HANRIM POSTECH CO., LTD.
    Inventors: Yoon-Sang Kuk, Chun-Kil Jung
  • Patent number: 8425834
    Abstract: Provided are a method for producing a clad material, and a clad material which can prevent a brazing filler metal layer from having a higher melting point so as to prevent the strength degradation and thermal deformation of a metal material, which can reduce production costs, which can reduce in thickness the layer to prevent sagging of the brazing filler metal upon brazing and which can improve press formability. A powder press-fixing machine is used to press-fix metal powder to surfaces of a base material uncoiled from a coil by an uncoiler. In order to provide a required composition of brazing filler metal, at least two kinds of metal powder is mixed, the mixed powder being press-fixed to the base material to form the brazing filler metal layer, the brazing filler metal constituting the layer having the composition such that copper is added with at least phosphor to lower a melting point of the same relative to that of copper, thus producing the clad material.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: April 23, 2013
    Assignee: IHI Corporation
    Inventors: Chitoshi Mochizuki, Hiroshi Kaita, Takeshi Kayama
  • Patent number: 8414827
    Abstract: The present invention relates to a porous lightweight iron and a method for preparing the same, and more particularly to a porous lightweight iron having decreased weight due to pores formed therein while having a strength similar to that of existing steel products; and a method for preparing a porous lightweight iron having desired properties or various properties according to intended use. As described above in detail, according to the present invention, the thickness, weight and strength of lightweight iron to be produced, can be controlled, thus making it possible to prepare porous lightweight iron having desired properties by controlling the sintering temperature during the preparation process, the mixing ratio of diamond or silicon carbide and the mixing ratio of raw materials.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: April 9, 2013
    Inventor: Se-Lin Lee
  • Publication number: 20130071282
    Abstract: A method for affixing a stop member to a seal plate for use with electrosurgical instruments is provided. An aperture is formed on a seal plate during a metal injection molding process thereof. A stop member is positioned within the aperture on the seal plate. The seal plate is, subsequently, sintered with the stop member positioned in the aperture.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: TYCO Healthcare Group LP
    Inventor: Monte S. Fry
  • Patent number: 8383033
    Abstract: A method for preparing an implant having a porous metal component. A loose powder mixture including a biocompatible metal powder and a spacing agent is prepared and compressed onto a metal base. After being compressed, the spacing agent is removed, thereby forming a compact including a porous metal structure pressed on the metal base. The compact is sintered, forming a subassembly, which is aligned with a metal substrate portion of an implant. A metallurgical bonding process, such as diffusion bonding, is performed at the interface of the subassembly and the metal substrate to form an implant having a porous metal component.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: February 26, 2013
    Assignee: Biomet Manufacturing Corp.
    Inventor: Gautam Gupta
  • Patent number: 8361381
    Abstract: A process for making a diffusion hardened medical implant having a porous surface is disclosed. The medical implant is made by a hot isostatic pressing process which simultaneously forms that porous surface and the diffusion hardened surface.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 29, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: Daniel A. Heuer, Vivek Pawar, Marcus Lee Scott, Shilesh C. Jani
  • Patent number: 8361254
    Abstract: Maraging steel compositions, methods of forming the same, and articles formed therefrom comprising, by weight, 15.0 to 20.0% Ni, 2.0 to 6.0% Mo, 3.0 to 8.0% Ti, up to 0.5% Al, the balance Fe and residual impurities. The composition may be a first layer of a composite plate, and may have a second layer deposited on the first layer, the second layer having a composition comprising, by weight, 15.0 to 20.0% Ni, 2.0 to 6.0% Mo, 1.0 to 3.0 Ti, up to 0.5% Al, the balance Fe and residual impurities. The first layer may have a hardness value ranging from 58 to 64 RC, and the second layer may have a hardness value ranging from 48 to 54 RC. The first layer may be formed employing powdered metallurgical techniques. Articles formed from the compositions include armored plate.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: January 29, 2013
    Assignee: ATI Properties, Inc.
    Inventors: Ronald E. Bailey, Thomas R. Parayil, Timothy M. Hackett, Tong C. Lee
  • Patent number: 8357257
    Abstract: A magnetic sheet, which contains: a magnetic layer including a magnetic powder and a resin composition containing the magnetic powder therein; and a convex-concave forming layer, in which the convex-concave forming layer has Bekk smoothness of 70 sec/mL or less. A method for producing a magnetic sheet, which contains: adding a magnetic powder to a resin composition to prepare a magnetic composition, and giving the magnetic composition a shape to form a magnetic layer; and placing and stacking a convex-concave forming layer and a pattern transferring material on a surface of the magnetic layer in this order, and hot pressing the stacked layers so as to bond the convex-concave forming layer with the magnetic layer to form a laminate, as well as to transfer a surface configuration of the pattern transferring material to a surface of the laminate of the convex-concave forming layer and the magnetic layer.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 22, 2013
    Inventors: Keisuke Aramaki, Junichiro Sugita, Morio Sekiguchi, Katsuhiko Komuro
  • Patent number: 8337747
    Abstract: In a process for manufacturing composite sintered machine components, the composite sintered machine component has an approximately cylindrical inner member and an approximately disk-shaped outer member, the inner member has pillars arranged in a circumferential direction at equal intervals and a center shaft hole surrounded by the pillars, and the outer member has holes corresponding to the pillars of the inner member and a center shaft hole corresponding to the center shaft hole of the inner member. The process comprises compacting the inner member and the outer member individually using an iron-based alloy powder or an iron-based mixed powder so as to obtain compacts of the inner member and the outer member, tightly fitting the pillars of the inner member into the holes of the outer member, and sintering the inner member and the outer member while maintaining the above condition so as to bond them together.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 25, 2012
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Hiromasa Imazato, Koichiro Yokoyama
  • Publication number: 20120321499
    Abstract: The invention relates to a method for manufacturing a dog ring gear, each dog being made up of a front portion and a rear portion, the method including the following steps: forming, by means of compression and sintering, a ring gear with dog preforms extending on all or part of the periphery thereof; and calibrating the sintered ring gear in a die including a front die half and a rear die half intended for engaging at the junction between the front and rear portions of the dogs, the thickness (A) of a rear portion (BP) of each preform, in the original plane of the dogs, being greater than the narrowest section (S1) of a groove formed in the rear die half and smaller than the thickest section (S2) of the groove, in the plane.
    Type: Application
    Filed: December 16, 2010
    Publication date: December 20, 2012
    Applicant: FEDERAL MOGUL SINTERTECH
    Inventors: Vincent Bonnefoy, Jean-Luc Ebroussard
  • Publication number: 20120276393
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Inventor: Robert G. LEE
  • Patent number: 8298478
    Abstract: Methods of preparing an electrode are provided. A metal powder can be sintered onto a portion of a lead wire to form a connection region. An additional metal powder can be de-oxidation sintered onto the connection region to form the electrode. The oxides formed during the de-oxidation sintering are then removed from the electrode.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: October 30, 2012
    Assignee: Medtronic, Inc.
    Inventors: Michael B. Hintz, Paul B. Young
  • Patent number: 8293377
    Abstract: An object of this invention is to provide a case for rolling powder alloy without failures at the time of rolling. The case for rolling powder alloy (1) is formed like a shape of box and comprises a side constituent member (10) forming like a rectangular frame in a combination of two members (10a, 10a) and surrounding a side surface of metal powder, an upper lid constituent member (11) mounting on one opening of the side constituent member (10) and covering an upper surface of the metal powder, and a lower lid constituent member (12) mounting on the other opening of the side constituent member (10) and covering a lower surface of the metal powder. The peripheral edges of the upper lid constituent member (11) and the lower lid constituent member (12) are, respectively, provided with a peripheral wall (11b, 12b) standing upright along an outer peripheral surface of the side constituent member, and the side constituent member (10) is inserted into a space surrounded by the peripheral wall (11b, 12b).
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: October 23, 2012
    Assignee: Nikkeikin Aluminum Core Technology Company Ltd.
    Inventors: Toshimasa Nishiyama, Hideki Hommo, Tsutomu Komata