Molybdenum Containing Patents (Class 420/101)
  • Patent number: 12031202
    Abstract: A high carbon martensitic stainless steel is disclosed. Said high carbon martensitic stainless steel comprises 1.7 to 1.9% by weight C, 17 to 18% by weight Cr, 1.6 to 2.0% by weight Mo, 2.9 to 3.5% by weight V, 0.40 to 0.60% by weight Nb, and Fe as main constituent. Further, the high carbon martensitic stainless steel has a microstructure comprising of primary carbides in an amount of 15 to 30% by volume and secondary carbides in an amount less than 2% by volume.
    Type: Grant
    Filed: June 6, 2023
    Date of Patent: July 9, 2024
    Assignee: STEER ENGINEERING PRIVATE LIMITED
    Inventors: Vijay Shrinivas, Thillairajan Arumugam
  • Patent number: 11891682
    Abstract: An iron-based sintered alloy, which has a composition including, in terms of percent by mass, Ti: 18.4 to 24.6%, Mo: 2.8 to 6.6%, C: 4.7 to 7.0%, Cr: 7.5 to 10.0%, Ni: 4.5 to 6.5%, Co: 1.5 to 4.5%, Al: 0.6 to 1.0%, the balance being Fe and unavoidable impurities, wherein the alloy has a structure in which hard particles are dispersed in an island form in a matrix, among other characteristics.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: February 6, 2024
    Assignee: THE JAPAN STEEL WORKS, LTD.
    Inventors: Yusuke Watanabe, Kakeru Kusada, Tetsuo Makida, Youhei Sawamura
  • Patent number: 11680301
    Abstract: An ultra-high strength maraging stainless steel with nominal composition (in mass) of C?0.03%, Cr: 13.0-14.0%, Ni: 5.5-7.0%, Co: 5.5-7.5%, Mo: 3.0-5.0%, Ti: 1.9-2.5%, Si: ?0.1%, Mn: ?0.1%, P: ?0.01%, S: ?0.01%, and Fe: balance. The developed ultra-high strength maraging stainless steel combines ultra-high strength (with ?b?2000 MPa, ?0.2?1700 MPa, ??8% and ??40%), high toughness (KIC?83 MPa·m½) and superior salt-water corrosion resistance (with pitting potential Epit?0.15 (vs SCE)). Therefore, this steel is suitable to make structural parts that are used in harsh corrosive environments like marine environment containing chloride ions, etc.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: June 20, 2023
    Assignees: The Boeing Company, Institute of Metal Research
    Inventors: Jialong Tian, Ke Yang, Wei Wang, Yiyin Shan, Wei Yan
  • Patent number: 10787719
    Abstract: Provided are a high-speed tool steel having excellent hot workability, and excellent damage resistance when made into various tools; a material for tools, and a method for producing the same. The high-speed tool steel contains, in mass %, 0.9-1.2% of C, 0.1-1.0% of Si, 1.0% or less of Mn, 3.0-5.0% of Cr, 2.1-3.5% of W, 9.0-10.0% of Mo, 0.9-1.2% of V, 5.0-10.0% of Co, 0.020% or less of N, and the remainder being Fe and impurities, wherein an M value calculated by a formula satisfies ?1.5?M value?1.5. Formula: M value=?9.500+9.334[% C]?0.275[% Si]?0.566[% W]?0.404[% Mo]+3.980[% V]+0.166[% Co], where the characters in brackets [ ] indicate the contained amounts (mass %) of the respective elements. The present invention also pertains to: a material for tools, which is obtained by using the high-speed tool steel; and a method for producing the material for tools.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: September 29, 2020
    Assignee: Hitachi Metals, Ltd.
    Inventor: Shiho Fukumoto
  • Patent number: 10309536
    Abstract: A piston ring in cast tool steels including a ring of a tempered material having a chemical composition including a percent weight concentration of C from 0.80 to 1.40, Cr from 2.50 to 4.20, Mn from 0.10 to 1.00, Mo from 1.00 to 2.00, Nb from 2.50 to 4.50, P of no more than 0.05, S of no more than 0.05, Si from 0.10 to 1.00, Ti from 0.10 to 0.30, V from 1.00 to 3.00, W from 1.00 to 3.00, and a remaining concentration balance of Fe. The tempered material may have a microstructure including a matrix of tempered martensite with precipitation of at least one of secondary M2C carbides and MC carbides, M being at least one of V, Mo, Cr, and W. The microstructure may include NbC eutectic carbides having a cubic morphology. The tempered material may have a hardness from approximately 400 HV to 800 HV.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: June 4, 2019
    Assignees: Instituto De Pesquisas Technologicas Do Estado De Sao Paulo S/A, Mahle Metal Leve S/A, Mahle International GmbH
    Inventors: Mario Boccalini, Jr., Eduardo Albertin, Moyses Leite De Lima, Gisela Marques Araujo
  • Publication number: 20150118098
    Abstract: The present invention relates to the application of at least partially bainitic or interstitial martensitic heat treatments on steels, often tool steels or steels that can be used for tools. The first tranche of the heat treatment implying austenitization is applied so that the steel presents a low enough hardness to allow for advantageous shape modification, often trough machining. Thus a steel product is obtained which can be shaped with ease and whose hardness can be raised to a higher working hardness with a simple heat treatment at low temperature (below austenitization temperature).
    Type: Application
    Filed: May 7, 2013
    Publication date: April 30, 2015
    Applicant: VALLS BESITZ GMBH
    Inventor: Isaac Valls
  • Publication number: 20150013518
    Abstract: The invention relates to a tool (1) and a method for producing a tool (1) for the machining of metal sheets, in particular, for the trimming or forming thereof by means of deep drawing. The method comprises the provision of a metallic basic body (2), onto which a welding material (9) is welded at least in regions. According to the invention, the welding material (9) is composed of an alloy in % by mass of: carbon (C) 1.5-1.8% vanadium (V) 7.5-9.0% chromium (Cr) 4.5-6.0% molybdenum (Mo) 1.0-2.5% nickel (Ni) lower than (<)0.5% manganese (Mn) lower than (<)1.0% silicon (Si) lower than (<)1.0% as well as a remainder of iron (Fe) and melt-induced impurities.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Inventors: Torsten Hallfeldt, Raymund Eugen Pflitsch, Angelo Pintus, Frank Schreiber, Alfons Fischer
  • Publication number: 20140234154
    Abstract: A hard weld overlay which is resistant to cracking when re-heated, and a method for designing such alloys, is disclosed. The alloys are able to resist re-heat cracking through prevention of the precipitation and/or growth of embrittling carbide, borides, or borocarbides at elevated temperatures. In one embodiment, the thermodynamics of the alloy system possess only primary carbides and secondary ferrite carbides.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 21, 2014
    Applicant: Scoperta, Inc.
    Inventors: Justin Lee Cheney, Shengjun Zhang, John Hamilton Maddock
  • Publication number: 20140219859
    Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are families of alloys capable of forming crack-free weld overlays after multiple welding passes.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 7, 2014
    Applicant: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok
  • Patent number: 8735776
    Abstract: Weld deposit compositions with improved crack resistance, improved wear resistance, and improved hardness are provided by controlling matrix grain size and balancing Titanium and/or Niobium with Carbon and/or Boron content. Additionally, the presence of coarse chromium carbides is drastically decreased to reduce the amount of check-cracking. Preferably, the weld deposit is produced from a flux-cored or metal-cored wire. The weld deposit characteristics include a matrix having a fine grain size, small evenly dispersed carbides within the matrix, and a small amount of Carbon in the matrix.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: May 27, 2014
    Assignee: Stoody Company
    Inventors: Ravi Menon, Jack Garry Wallin, Francis Lewis LeClaire
  • Publication number: 20140099228
    Abstract: Disclosed is a steel having high manufacturability and better rolling-contact fatigue properties. The steel contains C of 0.65% to 1.30%, Si of 0.05% to 1.00%, Mn of 0.1% to 2.00%, P of greater than 0% to 0.050%, S of greater than 0% to 0.050%, Cr of 0.15% to 2.00%, Al of 0.010% to 0.100%, N of greater than 0% to 0.025%, Ti of greater than 0% to 0.015%, and O of greater than 0% to 0.0025% and further contains iron and unavoidable impurities. Al-containing nitrogen compound particles dispersed in the steel have an average equivalent circle diameter of 25 to 200 nm, and Al-containing nitrogen compound particles each having an equivalent circle diameter of 25 to 200 nm are present in a number density of 1.1 to 6.0 per square micrometer.
    Type: Application
    Filed: May 25, 2011
    Publication date: April 10, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Masaki Kaizuka
  • Patent number: 8669491
    Abstract: Weld deposit compositions with improved crack resistance, improved wear resistance, and improved hardness are provided by controlling matrix grain size and balancing Titanium and/or Niobium with Carbon and/or Boron content. Additionally, the presence of coarse chromium carbides is drastically decreased to reduce the amount of check-cracking. Preferably, the weld deposit is produced from a flux-cored or metal-cored wire. The weld deposit characteristics include a matrix having a fine grain size, small evenly dispersed carbides within the matrix, and a small amount of Carbon in the matrix.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: March 11, 2014
    Inventors: Ravi Menon, Jack Garry Wallin, Francis Louis LeClaire
  • Patent number: 8562760
    Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the steps of determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: October 22, 2013
    Assignee: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok
  • Publication number: 20130224065
    Abstract: Provided is bearing steel excellent in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering. The bearing steel has a chemical composition containing, by mass %: 0.85% to 1.10% C; 0.30% to 0.80% Si; 0.90% to 2.00% Mn; 0.025% or less P; 0.02% or less S; 0.05% or less Al; 1.8% to 2.5% Cr; 0.15% to 0.4% Mo; 0.0080% or less N; and 0.0020% or less O, which further contains more than 0.0015% to 0.0050% or less Sb, with the balance being Fe and incidental impurities, to thereby effectively suppress the generation of WEA even in environment where hydrogen penetrates into the steel, so as to improve the roiling contact fatigue life and also the workability such as cuttability and forgeability of the material.
    Type: Application
    Filed: November 29, 2011
    Publication date: August 29, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yasumasa Hirai, Kiyoshi Uwai
  • Publication number: 20130039796
    Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.
    Type: Application
    Filed: February 15, 2011
    Publication date: February 14, 2013
    Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, JR.
  • Patent number: 8241559
    Abstract: The invention relates to a steel material having a high silicon content, and to a method for the production thereof, the steel material being particularly suitable for piston rings and cylinder sleeves. In addition to iron and production-related impurities, the steel material contains 0.5 to 1.2 wt. % carbon, 3.0 to 15.0 wt. % silicon and 0.5 to 4.5 wt. % nickel. Also, the steel material can contain small amounts of the following elements Mo, Mn, Al, Co Nb, Ti, V, Sn, Mg, B, Te Ta La, Bi, Zr, Sb, Ca, Sr, Cer, rare earth metals and nucleating agents such as NiMg, MiSiMg, FeMg and FeSIMg. due to the high Si content, a degree of saturation higher than 1.0 is attained, with the melting temperature of the steel material corresponding to normal cast iron. The steel material can be produced according to a conventional cast-iron technique and has a high resistance to wear and tear and a high structural strength (minimal distortion).
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: August 14, 2012
    Assignee: Federal-Mogul Burscheid GmbH
    Inventor: Laszlo Pelsoeczy
  • Publication number: 20120196149
    Abstract: The present disclosure relates to an alloy, for hardbanding and/or hard overlay applications, which is abrasion resistant to the order of siliceous earth particles and weldable in crack free state on industrial products. The alloy is a carbon chrome based alloy comprising titanium and vanadium carbides and thus has an extremely low coefficient of friction, high abrasion resistance as welded without working. In tool joints and stabilizers, the alloy achieves an optimum balance between tool joint and stabilizer wear resistance and induced casing wear. The alloy is also self-shielded and therefore does not require external shielding gas.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Inventor: Robin William Sinclair FIFIELD
  • Patent number: 8168009
    Abstract: “HARD ALLOYS WITH DRY COMPOSITION”, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 2.0; Chrome between 1.0 and 10.0; Tungsten-equivalent, as given by ratio 2Mo+W, between 7.0 and 14.0; Niobium between 0.5 and 3.5. Niobium can be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.5 and 3.5. Vanadium can be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium; Cobalt lower than 8, the remaining substantially Iron and impurities inevitable to the preparation process. As an option to refine carbides, the steel of the present invention can have content of Nitrogen controlled, below 0.030 and addition of Cerium or other earth elements at content between 0.005 and 0.020. For the same purpose, Silicon and Aluminum can be optionally added, at content between 0.5 and 3.0% for both of them.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: May 1, 2012
    Inventors: Rafael Agnelli Mesquita, Celso Antonio Barbosa
  • Publication number: 20120093679
    Abstract: The invention relates to a method for the production of tools for a chip-removing machining of metallic materials and to a tool with improved wear resistance and/or high toughness. The invention further provides an alloyed steel with a chemical composition comprising carbon, silicon, manganese, chromium, molybdenum, tungsten, vanadium, and cobalt as well as aluminum, nitrogen, and iron. The alloyed steel may be used to make tools to a hardness of greater than 66 HRC and increased chip-removing machining performance.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 19, 2012
    Applicant: BOEHLER EDELSTAHL GMBH & CO. KG
    Inventors: Gert KELLEZI, Devrim CALISKANOGLU, Andreas BAERNTHALER
  • Publication number: 20120093677
    Abstract: The invention relates to a method for producing a hot strip from transformation-free ferritic steel, wherein a melt is cast into a roughed strip and the latter is subsequently rolled into a hot strip. For this purpose, it is provided that the melt is cast in a horizontal strip casting facility under conditions of a calm flow and free of bending into a roughed strip in the range between 6 and 20 mm and is subsequently rolled into hot strip having a degree of deformation of at least 50%.
    Type: Application
    Filed: March 11, 2009
    Publication date: April 19, 2012
    Applicants: SMS SIEMAG AG, Salzgitter Flachstahl GMBH
    Inventors: Karl-Heinz Spitzer, Bianca Springub, Joachim Konrad, Hellfried Eichholz, Markus Schäperkötter
  • Publication number: 20120014831
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Application
    Filed: October 19, 2010
    Publication date: January 19, 2012
    Inventors: Shingo Yamasaki, Toshiyuki Manabe, Daisuke Hirakami, Nariyasu Muroga
  • Patent number: 7922836
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 12, 2011
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Publication number: 20100291407
    Abstract: An alloy to be surface-coated, which can keep excellent hardness of 58HRC or above even when the amount of an alloying element added is reduced or even when the alloy is heated to a temperature of as high as 400 to 500° C.; and sliding members produced by forming a hard film on the surface of the alloy. An alloy to be surface-coated, the surface of which is to be covered with a hard film, which alloy contains by mass C: 0.5 to 1.2%, Si: 2.0% or below, Mn: 1.0% or below, Cr: 5.0 to 14.0%, Mo+1/2 W: 0.5 to 5.0%, and N: more than 0.015 to 0.1% with the balance being Fe and impurities, preferably such an alloy which contains by mass C: 0.6 to 0.85%, Si: 0.1 to 1.5%, Mn: 0.2 to 0.8%, Cr: 7.0 to 11.0%, Mo+1/2 W: 1.0 to 4.0%, and N: 0.04 to 0.08%.
    Type: Application
    Filed: January 16, 2009
    Publication date: November 18, 2010
    Applicant: HITACHI METALS, LTD.
    Inventors: Kenji Yokoyama, Kunichika Kubota, Toshihiro Uehara, Takehiro Ohno, Katsuhiko Ohishi
  • Publication number: 20100247368
    Abstract: A bainitic steel alloy and a method for making such an alloy are disclosed, in which the bainite plates are particularly small, less than 50 nanometres in width. In preferred embodiments of the invention, each bainite plate is surrounded by a film of retained austenite; the level of retained austenite in the alloy is greater than 10%; and the alloy is substantially free of blocky unstable austenite and cementite.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 30, 2010
    Applicant: ROLLS-ROYCE PLC
    Inventors: Martin J. RAWSON, Mathew J. PEET, Harshad K.D.H BHADESHIA, Scott D. WOOD, Paul O. HILL, Emma E. BOOTH
  • Publication number: 20100221139
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45%; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245(Mo+3V+1.5Nb+0.75Ta)0.30+125Cr0.20+15.8Mn+7.4Ni+18Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Application
    Filed: May 10, 2010
    Publication date: September 2, 2010
    Applicant: INDUSTEEL CREUSOT
    Inventors: Jean BEGUINOT, Dominique Viale
  • Publication number: 20100108199
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Application
    Filed: December 30, 2009
    Publication date: May 6, 2010
    Inventor: Takemori Takayama
  • Publication number: 20100074791
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Inventor: Takemori Takayama
  • Patent number: 7615123
    Abstract: A powder metallurgy cold-work tool steel article of hot isostatic compacted nitrogen atomized, prealloyed powder. The alloy of the article includes the addition of niobium, which combined with the use of gas atomization, results in a fine carbide size distribution. This in turn results in improved bend fracture strength and impact toughness. In addition, as a result of isostatic compaction of nitrogen gas atomized prealloyed powder a fine distribution of carbides results to obtain a microstructure that achieves both improved toughness and wear resistance.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 10, 2009
    Assignee: Crucible Materials Corporation
    Inventors: Alojz Kajinic, Andrzej L. Wojcieszynski
  • Publication number: 20090274574
    Abstract: A forging steel has a dissolved Mg concentration within the range of 0.04-5 ppm by mass and a dissolved Al concentration within the range of 50-500 ppm.
    Type: Application
    Filed: April 24, 2007
    Publication date: November 5, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Tetsushi Deura, Motohiro Nagao, Atsushi Tomioka, Shogo Fukaya
  • Patent number: 7445750
    Abstract: The invention relates to a tool steel, the composition of which comprises (the percentages being expressed in % by weight): 0.8 ? C ? 1.5 5.0 ? Cr ? 14 0.2 ? Mn ? 3 Ni ? 5 V ? 1 Nb ? 0.1 Si + Al ? 2 Cu ? 1 S ? 0.3 Ca ? 0.1 Se ? 0.1 Te ? 0.1 1.0 ? Mo + ½W ? 4 0.06 ? Ti + ½Zr ? 0.15 0.004 ? N ? 0.02 the balance of the composition consisting of iron and impurities resulting from the smelting, it being furthermore understood that: 2.5×10?4%2?(Ti+½Zr)×N, to a process for manufacturing parts made in this steel and to the parts obtained.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: November 4, 2008
    Assignee: USINOR
    Inventors: Jean Beguinot, Dominique Viale
  • Publication number: 20080159901
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Application
    Filed: May 12, 2005
    Publication date: July 3, 2008
    Inventors: Jean Beguinot, Dominique Viale
  • Publication number: 20080145264
    Abstract: Low carbon carburizing (surface hardening) and higher carbon through hardening steels primarily containing molybdenum, vanadium and nickel and, to a lesser amount, chromium used for rolling contact bearings, gears and other similar applications where high hardness at elevated temperatures is required. The alloy steel includes, in % by weight: 0.05% to 1.25% C; up to 1.25% Cr; 0.40% to 4% Mn; up to 4.0% Mo; up to 2.0% V; 1.0% to 3.0% Ni; 4% to 8% (Mo+V+Ni+Cr); less than 0.20% Si; and balance Fe plus incidental additions and impurities. The method for providing a steel having improved hardness at elevated temperatures includes the steps of: (a) providing an alloy including, in % by weight: less than 1.25% Cr, 0.4% to 4% Mn, up to 4% Mo, up to 2% V, 1 to 3% Ni, 4% to 8% (Mo+V+Ni+Cr), less than 0.2% Si, a C content selected from one of 0.05% to 0.40% C defining a carburizing steel or greater than 0.40% to 1.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Applicant: The Timken Company
    Inventors: Dennis W. Hetzner, George M. Waid
  • Publication number: 20080078475
    Abstract: A powder metallurgy cold-work tool steel article of hot isostatic compacted nitrogen atomized, prealloyed powder. The alloy of the article includes the addition of niobium, which combined with the use of gas atomization, results in a fine carbide size distribution. This in turn results in improved bend fracture strength and impact toughness. In addition, as a result of isostatic compaction of nitrogen gas atomized prealloyed powder a fine distribution of carbides results to obtain a microstructure that achieves both improved toughness and wear resistance.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Alojz Kajinic, Andrzej L. Wojcieszynski
  • Patent number: 6893609
    Abstract: A long-life bearing steel for general purpose use is provided at low cost with no use of specific secondary refining process. Specifically, a bearing material having a component composition in which C: 0.95 to 1.10 mass %, Si: 0.15 to 0.70 mass %, Mn: 1.15 mass % or less, Cr: 0.90 to 1.60 mass %, and P: 0.025 mass % or less are contained, S and O, that are elements forming nonmetallic inclusions, are contained at S: 0.025 mass % or less and O: 0.0012 mass % or less, and the rest is composed of Fe and incidental impurities, wherein the maximum diameter of the oxide-based nonmetallic inclusion is more than 10 ?m, but 15 ?m or less in an inspection area: 320 mm2, the number of oxide-based nonmetallic inclusions having an equivalent circle diameter of 3 ?m or more is 250 or less in the inspection area: 320 mm2, while in the material, AlN is contained at 0.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: May 17, 2005
    Assignee: JFE Steel Corporation
    Inventors: Akihiro Matsuzaki, Takashi Iwamoto, Yoshio Yamazaki, Katsuhiko Kizawa, Masao Goto
  • Patent number: 6881280
    Abstract: An iron-based corrosion resistant and wear resistant alloy is addressed. The alloy contains (in weight percent) 1.1-1.4% carbon, 11-14.25% chromium, 4.75-6.25% molybdenum, 3.5-4.5% tungsten, 0-3% cobalt, 1.5-2.5% niobium, 1-1.75% vanadium, 0-2.5% copper, up to 1.0% silicon, up to 0.8% nickel, up to 0.6% manganese, and the balance iron. The alloy is suitable for use in valve seat insert applications.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: April 19, 2005
    Assignee: L.E. Jones Company
    Inventor: Cong Yue Qiao
  • Patent number: 6869692
    Abstract: Bimetal saw band comprising a support band of high microstructural stability and fatigue strength, comprising 0.25 to 0.35% of carbon, 0.3 to 0.5% of silicon, 0.8 to 1.5% of manganese, 1.0 to 2.0% of molybdenum, 1.5 to 3.5% of chromium, 0.5 to 1.5% of nickel, 0.5 to 2.5% of tungsten, 0.15 to 0.30% of vanadium, 0.05 to 0.10% of niobium, 0.05 to 1.0% of copper, up to 0.2% of aluminum, up to 1% of cobalt, remainder iron including melting-related impurities, and tooth tips made from a steel with high wear resistance, comprising 1.0 to 2.0% of carbon, 3 to 6% of chromium, 1 to 5% of vanadium, 3 to 10% of molybdenum, 4 to 10% of tungsten, 4 to 10% of cobalt, up to 1% of silicon, up to 1% of manganese, up to 0.5% of niobium, up to 0.5% of nitrogen, remainder iron including melting-related impurities.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 22, 2005
    Assignee: Stahlwerk Ergste Westig GmbH
    Inventors: Oskar Pacher, Werner Lenoir
  • Patent number: 6866816
    Abstract: A unique austenitic iron base alloy for wear and corrosion resistant applications, characterized by its excellent sulfuric acid corrosion resistance and good sliding wear resistance, is useful for valve seat insert applications when corrosion resistance is required. The alloy comprises 0.7-2.4 wt % carbon, 1.5-4 wt % silicon, 3-9 wt % chromium, less than 6 wt % manganese, 5-20 wt % molybdenum and tungsten combined, with the tungsten comprising not more than ? of the total, 0-4 wt % niobium and vanadium combined, 0-1.5 wt % titanium, 0.01-0.5 wt % aluminum, 12-25 wt % nickel, 0-3 wt % copper, and at least 45 wt % iron.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: March 15, 2005
    Assignee: Alloy Technology Solutions, Inc.
    Inventors: Xuecheng Liang, Gary R. Strong
  • Publication number: 20040103959
    Abstract: The invention concerns an article of a steel which is characterized in that it consists of an alloy which contains in weight-%: 1.2-2.0 C, 0.1-1.5 Si, 0.1-2.0 Mn, max. 0.2 N, max. 0.25 S, 4-8 Cr, 0.5-3.5 (Mo+W/2), 5-8 V, max. 1.0 Nb, balance essentially only iron and unavoidable impurities, and that the steel has a micro-structure obtainable by a manufacturing of the steel which comprises spray forming of an ingot, the micro-structure of which contains 8-15 vol-% carbides of essentially only MC-type where M substantially consists of vanadium, of which carbides at least 80 vol-% have a substantially rounded shape and a size in the longest extension of the carbides amounting to 1-20 &mgr;m.
    Type: Application
    Filed: September 29, 2003
    Publication date: June 3, 2004
    Inventors: Odd Sandberg, Lennart Jonson
  • Patent number: 6680129
    Abstract: Chain parts and other steel articles are provided with hard, wear-resistant carbide coatings by tumbling them in a heated retort with a particulate mix which includes a source of vanadium and/or niobium. The steel substrate comprises a steel having at least 0.2% carbon, preferably 0.7-1.2%. Where the chromium content of the steel is 4-12%, preferably 4-8%, the chemical deposition process includes drawing a small amount of chromium from the steel substrate into the vanadium or niobium carbide coating, where it is distributed substantially homogeneously, helping to provide adhesion strength to the coating.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: January 20, 2004
    Assignee: BorgWarner Inc.
    Inventors: Yumin Wang, Yoshito Hanayama, Doug Fornell, Naosumi Tada, Kunihiko Mishima
  • Publication number: 20030156965
    Abstract: This invention relates to a nitrogen-alloyed steel with a high wear resistance, which is manufactured via spray compacting and has the following composition (in mass-%): C: 0.8-2.5%, N: 0.03-0.75%, Si: 0.15-1.8%, Mn: ≦1.0%, P: ≦0.03%, S: ≦0.05%, Cr: 4.0-11.5%, Mo: 0.5-6.0%, V: ≦4.0%, Nb: ≦4.0%, W: ≦3.5%, O2: ≦0.005%, other ally constituents as needed, residual iron and usual contaminants as the residue. The chemical composition has been optimized to have the carbide-carbonitride-forming elements satisfy a wear factor Sv, and to maintain the silicon-nitrogen ratio VSiN in order to minimize the residual austenite contents. In addition, the invention relates to a procedure for manufacturing this type of steel and a composite manufactured using steel according to the invention. The steel material according to the invention has an improved wear resistance and dimensional stability.
    Type: Application
    Filed: February 18, 2003
    Publication date: August 21, 2003
    Inventors: Claudia Ernst, Volker Schuler, Bernd Gehricke, Ingolf Schruff
  • Publication number: 20030152477
    Abstract: Bimetal saw band comprising a support band of high microstructural stability and fatigue strength, comprising 0.25 to 0.35% of carbon, 0.3 to 0.5% of silicon, 0.8 to 1.5% of manganese, 1.0 to 2.0% of molybdenum, 1.5 to 3.5% of chromium, 0.5 to 1.5% of nickel, 0.5 to 2.5% of tungsten, 0.15 to 0.30% of vanadium, 0.05 to 0.10% of niobium, 0.05 to 1.0% of copper, up to 0.2% of aluminum, up to 1% of cobalt, remainder iron including melting-related impurities, and tooth tips made from a steel with high wear resistance, comprising 1.0 to 2.0% of carbon, 3 to 6% of chromium, 1 to 5% of vanadium, 3 to 10% of molybdenum, 4 to 10% of tungsten, 4 to 10% of cobalt, up to 1% of silicon, up to 1% of manganese, up to 0.5% of niobium, up to 0.5% of nitrogen, remainder iron including melting-related impurities.
    Type: Application
    Filed: February 6, 2003
    Publication date: August 14, 2003
    Inventors: Oskar Pacher, Werner Lenoir
  • Patent number: 6511554
    Abstract: The present invention relates to stainless spheroidal carbide cast iron material is such: comprises iron (Fe) as its main component, C 0.6˜4.0% and V 4˜15% as its necessary components, P 0.01˜0.15%, S 0.01˜0.05% Al 0.05˜1.0%, and Mg 0.01˜0.2% as gas (hydrogen) bubble assistants, and Si 0.2˜4.5%, Cr 13˜30%, Mn 0.2˜3.0%, and Ni and/or Co 4˜15% as anticorrosion matrix formers, and according to the case of necessary, alloy elements 0.1˜1.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: January 28, 2003
    Inventors: Yutaka Kawano, Shigenori Nishiuchi, Satoru Yamamoto, Seisuke Sugahara, Toshiyuki Kikuchi
  • Patent number: 6436338
    Abstract: An iron-based corrosion resistant and wear resistant alloy is addressed. The alloy contains (in weight percent) 1.1-1.4% carbon, 11-14.25% chromium, 4.75-6.25% molybdenum, 3.5-4.5% tungsten, 0-3% cobalt, 1.5-2.5% niobium, 1-1.75% vanadium, 0-2.5% copper, up to 1.0% silicon, up to 0.8% nickel, up to 0.6% manganese, and the balance iron. The alloy is suitable for use in valve seat insert applications.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: August 20, 2002
    Assignee: L. E. Jones Company
    Inventor: Cong Yue Qiao
  • Patent number: 6272963
    Abstract: A metal band saw is disclosed which is used to cut cutting-resistant materials such as SKD11, stainless steel, etc. and has characteristics of generating less chips on the cutting edge as well as improving wear resistance, resulting in very long service life. The blade material for the metallic band saw comprises high-speed steel containing 2 wt. % or less of vanadium (V), wherein 3 area % or more of carbide grains having a major diameter of 3 &mgr;m or more as observed in a metallographic structure.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: August 14, 2001
    Assignee: Hitachi Metals, Ltd.
    Inventor: Shiho Fukumoto
  • Patent number: 6200528
    Abstract: An alloy steel having the capability of retaining high hardness at elevated temperature for a prolonged time is suitable for use as a high speed tool steel. The alloy steel comprises in % by weight: 0.7-1.4 C; less than 1 Mn; less than 0.04 P; up to 0.7 Si; 3-6 Cr; 4-12 Mo; less than 0.5 Co; 0.5-2.25 V; 1-7 W; up to 1.25 Al; at least one of 0.04-2.5 Nb; 0.025-2.5 Zr; 0.08-4.75 Ta and 0.005-0.7 Ti; balance substantially Fe. The alloy may also have an S content of 0.036-0.300; Mn of 0.30-1.35 and may optionally be treated when in a liquid state with up to 0.05 of Mg or Ca.
    Type: Grant
    Filed: September 17, 1998
    Date of Patent: March 13, 2001
    Assignee: Latrobe Steel Company
    Inventors: Mark S. Rodney, James L. Maloney, III, George Waid
  • Patent number: 6153024
    Abstract: This wire stock is made of a microalloyed steel having a carbon content of between 0.2% and 0.6% by weight and furthermore containing at least one alloying element selected from the group consisting of vanadium, molybdenum and chromium, in a proportion, by weight, of at least 0.05% and at most 0.5% of said alloying element or of the combination of said alloying elements. Such wire stocks are manufactured in order to produce, by deformation and heat treatment, a ready-to-use wire which is used, for example, to reinforce articles made of plastics or made of rubber, especially tire covers, plies, belts, hoses.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: November 28, 2000
    Assignee: Ispat-Unimetal
    Inventors: Jean-Claude Arnaud, Eric Depraetere, Raoul Serre, Marc Francois
  • Patent number: 6099797
    Abstract: This invention reveals steel alloys for use in manufacturing reinforcing wires for rubber products, such as tires. The steel filaments made with such steel alloys have an outstanding combination of strength and ductility. The steel alloys of this invention can be manufactured into filaments having a tensile strength in the range of 4000 MPa to 5000 MPa. Additionally, these can be patented in a low-cost process due to their having a very fast rate of isothermal transformation. This allows the steel in the steel wire being patented to transform from a face-centered cubic microstructure to an essentially body-centered cubic microstructure within a very short period. This invention more specifically discloses a steel alloy composition which is particularly suitable for use in manufacturing reinforcing wire for rubber products which consists essentially of (a) iron, (b) about 1.05 to about 1.7 weight percent carbon, (c) about 0.2 to about 0.8 weight percent manganese, (d) about 0.1 to about 0.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: August 8, 2000
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Anand Waman Bhagwat, Sameer Suresh Vijayakar, Dong Kwang Kim
  • Patent number: 6060018
    Abstract: Cold tool steel having superior machinability, wear-resistance and minimized heat treatment size-change were obtained by specifying components and contents thereof, especially of C, Cr, Si, V and Mo, not by high-temperature soaking. Further, such prehardened cold tool steals as having excellent machinability even after heat-treatment together with minimum size-change were manufactured by further strictly specifying components, particularly of C, Si, Mn, Mo, V, and by specifying heat-treatment conditions.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: May 9, 2000
    Assignee: Nippon Koshuha Steel Co., Ltd.
    Inventors: Junji Yoshida, Yuji Machida, Keiichi Hayashida, Masaaki Otakane
  • Patent number: 5795540
    Abstract: A corrosion and wear-resistant chill cast part is formed from an iron composition comprising from 26 to 36 percent Cr; 0 to 10 percent Ni; 2 to 6 percent Mo; 0 to 3 percent Cu; 0 to 0.2 percent N; 0 to 1.5 percent Si; 0 to 1.5 percent Mn; 4 to 9 percent V; and 1.4 to 1.9 percent C. All percents are by weight of the total composition. The remainder of the composition is Fe and impurities.
    Type: Grant
    Filed: September 17, 1996
    Date of Patent: August 18, 1998
    Assignee: KSB Aktiengesellschaft
    Inventors: Anja Dwars, Wolfgang Prechtl, Jorg Schropfer, Hermann Tischner
  • Patent number: 5674449
    Abstract: An iron base alloy having high wear resistance at elevated temperatures with good oxidation resistance contains 1-2.8 wt. % carbon, 3-16 wt. % chromium, 1-8 wt. % vanadium, 0.5-5 wt. % niobium, up to 14 wt. % molybdenum and up to 14 wt. % tungsten, the molybdenum and tungsten combined comprising 6-14 wt. % of the alloy.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: October 7, 1997
    Assignee: Winsert, Inc.
    Inventors: Xuecheng Liang, Gary R. Strong