Tungsten Containing Patents (Class 420/113)
-
Patent number: 8865061Abstract: The invention relates to a steel alloy for a low alloy steel for producing high-tensile, weldable, hot-rolled seamless steel tubing, in particular construction tubing. The chemical composition (in % by mass) is: 0.15-0.18% C; 0.20-0.40% Si; 1.40-1.60% Mn; max. 0.05% P; max. 0.01% S; >0.50-0.90% Cr; >0.50-0.80% Mo; >0.10-0.15% V; 0.60-1.00% W; 0.0130-0.0220% N; the remainder is made up of iron with production-related impurities; with the optional addition of one or more elements selected from Al, Ni, Nb, Ti, with the proviso that the relationship V/N has a value of between 4 and 12 and the Ni content of the steel is not more than 0.40%.Type: GrantFiled: January 23, 2009Date of Patent: October 21, 2014Assignee: Vallourec Deutschland GmbHInventors: Christoph Kaucke, Guido Kubla, Heinz Sanders, Charles Stallybrass, André Schneider, Markus Schütz
-
Patent number: 8815147Abstract: A cold die steel excellent in the characteristic of suppressing dimensional change, which has a chemical composition in mass %: C: 0.7% or more and less than 1.6%, Si: 0.5 to 3.0%, Mn: 0.1 to 3.0%, P: less than 0.05% including 0%, S: 0.01 to 0.12%, Cr: 7.0 to 13.0%, one or two elements selected from the group consisting of Mo and W: amounts satisfying the formula (Mo+(W/2))=0.5 to 1.7%, V: less than 0.7% including 0, Ni: 0.3 to 1.5%, Cu: 0.1 to 1.0% and Al: 0.1 to 0.7%. Preferably, the die steel satisfies the formula in mass %: Ni/Al=1 to 3.7. It is preferred that the die steel also satisfies the following formula in mass %: (Cr?4.2×C)=5 or less and (Cr?6.3×C)=1.4 or more and that it contains 0.3% or less of Nb.Type: GrantFiled: December 24, 2008Date of Patent: August 26, 2014Assignee: Hitachi Metals, Ltd.Inventors: Kunichika Kubota, Hideshi Nakatsu, Shugo Komatsubara
-
Patent number: 8801872Abstract: A case hardened gear steel having enhanced core fracture toughness includes by weight percent about 16.3Co, 7.5Ni, 3.5Cr, 1.75Mo, 0.2W, 0.11C, 0.03Ti, and 0.02V and the balance Fe, characterized as a predominantly lath martensitic microstructure essentially free of topologically close-packed (TCP) phases and carburized to include fine M2C carbides to provide a case hardness of at least about 62 HRC and a core toughness of at least about 50 ksi?in.Type: GrantFiled: August 20, 2008Date of Patent: August 12, 2014Assignee: QuesTek Innovations, LLCInventors: James A. Wright, Jason Sebastian
-
Patent number: 8709336Abstract: The invention concerns a method for making an abrasion resistant steel plate having a chemical composition comprising: 0.35%?C?0.8%, 0%?Si?2%, 0%?Al?2%, 0.35%?Si+Al?2%, 0%?Mn?2.5%, 0%?Ni?5%, 0%?Cr?5%, 0%?Mo?0.50%, 0%?W?1.00%, 0.1%?Mo+W/2?0.50%, 0%?B?0.02%, 0%?Ti?2%, 0%?Zr?4%, 0.05%?Ti+Zr/2?2%, 0%?S?0.15%, N<0.03%; optionally from 0% to 1.5% of Cu; optionally Nb, Ta or V with Nb/2+Ta/4+V?0.5%; optionally less than 0.1% of Se, Te, Ca, Bi or Pb; the rest being iron and impurities; the composition satisfying: 0.1%?C*=C?Ti/4?Zr/8+7×N/8?0.55% and 1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K>1.8, with K=0.5 if B?0.0005% and K=0 if B<0.0005% and Ti+Zr/2?7×N/2?0.05%; hardening after austenitization while cooling at a speed>0.5° C./s between a temperature>AC3 and ranging between T=800?270×C*?90×Mn?37×Ni?70×Cr?83×(Mo+W/2) and T?50° C.; then at a core speed Vr<115×ep?1.7 between T and 100° C., (ep=plate thickness in mm); cooling down to room temperature. The invention also concerns the resulting plate.Type: GrantFiled: June 17, 2008Date of Patent: April 29, 2014Assignee: Industeel CreusotInventors: Jean Beguinot, Jean-Georges Brisson
-
Publication number: 20140065316Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <20 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the steps of determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.Type: ApplicationFiled: August 22, 2013Publication date: March 6, 2014Applicant: Scoperta, Inc.Inventors: Justin Lee Cheney, John Hamilton Madok
-
Patent number: 8663550Abstract: A hot work tool steel family with exceptional thermal diffusivity, toughness (both fracture toughness and notch sensitivity resilience CVN—charpy V-notch) and trough hardenability has been developed. Mechanical resistance and yield strength at room and high temperatures (above 600° C.) are also high, because the tool steels of the present invention present a high alloying level despite the high thermal conductivity. Given the exceptional resistance to thermal fatigue and thermal shock, wear resistance can be severely increased for many applications requiring simultaneously resistance to thermal cracking and wear like is the case for some forging and some parts of die casting dies.Type: GrantFiled: March 12, 2010Date of Patent: March 4, 2014Assignee: Rovalma, S.A.Inventor: Isaac Valls Anglés
-
Patent number: 8592050Abstract: A piston ring includes: a refined steel including: carbon C in a range of 0.20% mass to 0.90% mass, silicon Si in a range of 0.10% mass to less than 0.60% mass, manganese Mn in a range of 0.20% mass to 1.50% mass, chromium Cr in a range of 0.30% mass to 2.00% mass, and a remnant including: iron Fe, and an unavoidable impurity. A parameter A calculated from the following expression (1) based on contents of the Si, Mn and Cr is 9.0 or less: parameter A=8.8 Si+1.6 Mn+1.7 Cr—expression (1). A parameter B calculated from the following expression (2) based on contents of the C, Si, Mn and Cr is 10.8 or more: parameter B=36 C+4.2 Si+3.8 Mn+4.5 Cr—expression (2).Type: GrantFiled: March 3, 2009Date of Patent: November 26, 2013Assignees: Nissan Motor Co., Ltd., Nippon Piston Ring Co., Ltd.Inventors: Junpei Ogawa, Takaaki Kondou, Tomonori Miyazawa, Toyoki Iguchi, Takuma Suzuki, Takeshi Makita, Katsuaki Ogawa, Takahiro Okazaki
-
Patent number: 8562759Abstract: Disclosed herein are iron-based alloys having a structure comprising fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the step determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.Type: GrantFiled: September 17, 2010Date of Patent: October 22, 2013Assignee: Scoperta, Inc.Inventors: Justin Lee Cheney, John Hamilton Madok
-
Patent number: 8562760Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the steps of determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.Type: GrantFiled: November 3, 2010Date of Patent: October 22, 2013Assignee: Scoperta, Inc.Inventors: Justin Lee Cheney, John Hamilton Madok
-
Patent number: 8414713Abstract: A high hardness, high strength, and high impact toughness steel for military articles such as armor plates, bodies of deep penetrating bombs, and missiles. The steel has a HRC of 54 to 56, UTS of 290 to 305 ksi, YS of 225 to 235 ksi, an elongation of 13-14%, a reduction of area of 47-50% and a Charpy V-notch impact toughness energy of 26 to 28 ft-lbs at room temperature. The microstructure of the steel consists essentially of fine packets of martensitic lathes, fine titanium carbides as centers of growth of the martensitic lathes, and retained austenite.Type: GrantFiled: May 18, 2009Date of Patent: April 9, 2013Inventor: Gregory Vartanov
-
Patent number: 8097207Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45%; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245(Mo+3V+1.5Nb+0.75Ta)0.30+125Cr0.20+15.8Mn+7.4Ni+18Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.Type: GrantFiled: May 10, 2010Date of Patent: January 17, 2012Assignee: Industeel CreusotInventors: Jean Beguinot, Dominique Viale
-
Publication number: 20110121056Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the steps of determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.Type: ApplicationFiled: November 3, 2010Publication date: May 26, 2011Inventors: Justin Lee Cheney, John Hamilton Madok
-
Publication number: 20110068152Abstract: Disclosed herein are iron-based alloys having a structure comprising fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferrific matrix comprises <10 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the step determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.Type: ApplicationFiled: September 17, 2010Publication date: March 24, 2011Inventors: Justin Lee Cheney, John Hamilton Madok
-
Publication number: 20110018658Abstract: The invention relates to an Fe-Co alloy, the composition of which comprises in % by weight: 6?Co+Ni?22 Si?0.2 0.5?Cr?8 Ni?4 0.10?Mn?0.90 Al?4 Ti?1 C?1 Mo?3 V+W?3 Nb+Ta?1 Si+Al?6 O+N+S+P+B?0.1 the balance of the composition consisting of iron and inevitable impurities due to the smelting, it being furthermore understood that the contents thereof satisfy the following relationships: Co+Si?Cr?27 Si+Al+Cr+V+Mo+Ti?3.5 1.23(Al+Mo)+0.84(Si+Cr+V)?1.3 14.5(Al+Cr)+12(V+Mo)+25 Si ?50.Type: ApplicationFiled: January 14, 2009Publication date: January 27, 2011Applicant: ARCELORMITTAL-STAINLESS & NICKEL ALLOYSInventors: Thierry Waeckerle, Herve Fraisse
-
Patent number: 7820098Abstract: In the thermal power system, the electricity production efficiency may be improved by providing turbine members having the improved high temperature characteristic over the corresponding prior art turbine members. Turbine members may be provided by using high resistant steels composed of any one or ones selected from the group consisting of the components, including 0.08 to 0.13% of carbon (C), 8.5 to 9.8% of chromium (Cr), 0 to 1.5% of molybdenum (Mo), 0.10 to 0.25% of vanadium (V), 0.03 to 0.08% of niobium (Nb), 0.2 to 5.0% of tungsten (W), 1.5 to 6.0% of cobalt (Co), 0.002 to 0.015% of boron (B), 0.015 to 0.025% of nitrogen (N), and optionally, 0.01 to 3.0% of rhenium (Re), 0.1 to 0.50% of silicon (Si), 0.1 to 1.0% of manganese (Mo), 0.05 to 0.8% of nickel (Ni) and 0.1 to 1.3% of cupper.Type: GrantFiled: August 16, 2001Date of Patent: October 26, 2010Assignees: The Japan Steel Works, Ltd., The Kansai Electric Power Co., Inc.Inventors: Masahiko Morinaga, Yoshinori Murata, Tsukasa Azuma, Kazuhiro Miki, Tohru Ishiguro, Ryokichi Hashizume
-
Patent number: 7794651Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.Type: GrantFiled: May 12, 2005Date of Patent: September 14, 2010Assignee: Industeel CreusotInventors: Jean Beguinot, Dominique Viale
-
Publication number: 20100028196Abstract: The present invention provides a high strength heat treated steel wire for spring having a tensile strength of 2000 MPa or more which is coiled in the cold state and can achieve both sufficient atmospheric strength and coilability and spring steel used for that steel wire, that is, a high strength heat treated steel wire for a spring characterized by comprising, by mass %, C: 0.5 to 0.9%, Si: 1.0 to 3.0%, Mn: 0.1 to 1.5%, Cr: 1.0 to 2.5%, V: over 0.15 to 1.0%, and Al: 0.005% or less, controlling N to 0.007% or less, further containing one or two of Nb: 0.001 to less than 0.01% and Ti: 0.001 to less 0.005%, and having a tensile strength of 2000 MPa or more, having cementite-based spheroidal carbides and alloy-based spheroidal carbides in a microscopic visual field satisfying an area percentage of carbides with a circle equivalent diameter of 0.Type: ApplicationFiled: November 9, 2006Publication date: February 4, 2010Inventors: Masayuki Hashimura, Hiroshi Hagiwara, Takayuki Kisu, Kouichi Yamazaki, Tatsuroi Ochi, Takashi Fujita
-
Patent number: 7494618Abstract: To provide an alloy tool steel having high-temperature strength at an operating temperature of the order of 700° C., while maintaining room-temperature strength as high as that of a conventional matrix high-speed tool steel. The steel contains from 0.45 wt % to 0.65 wt % C, from 0.10 wt % to 1.00 wt % Si, from 0.20 wt % to 2.00 wt % Mn, not more than 0.020 wt % P, not more than 0.015 wt % S, not more than 1.00 wt % Cu, not more than 1.00 wt % Ni, from 3.50 wt % to 5.00 wt % Cr, from 0.00 wt % to 3.00 wt % Mo, from 0.00 wt % to 10.00 wt % W, from 1.00 wt % to 2.00 wt % V, from 0.00 wt % to 8.00 wt % Co, not more than 0.10 wt % Al, not more than 0.01 wt % O, not more than 0.02 wt % N, and the balance substantially constituted of Fe and unavoidable impurities, in which Weq is from 2.0 to 10.0, 2Mo/Weq is not more than 0.60, and ?C is from ?0.3 to 0.0.Type: GrantFiled: December 7, 2004Date of Patent: February 24, 2009Assignee: Daido Tokushuko Kabushiki KaishaInventor: Kozo Ozaki
-
Patent number: 7357060Abstract: A vehicle is armored the steps of sequentially making a steel plate with a thickness of 4 mm to 15 mm of by weight 0.2 to 0.4% carbon, 0.3 to 0.8% silicon, 1.0 to 2.5% manganese, max. 0.02% phosphorous, max. 0.02% sulfur, max. 0.05% aluminum, max. 2% copper, 0.1 to 0.5% chromium, max. 2% nickel 0.1 to 1% molybdenum, 0.001 to 0.01% boron, 0.01 to 1% tungsten, max. 0.05% nitrogen, and balance iron and impurities. This plate is heated to above the AC3 temperature and deformed without cooling in a press. While still in the press, the steel plate is cooled and cured. Then the deformed and cured steel plate is taken out of the press and mounted on the motor vehicle without significant further working or shaping.Type: GrantFiled: March 23, 2006Date of Patent: April 15, 2008Assignee: Benteler Automobiltechnik GmbHInventors: Markus Müller, Christian Gnass, Wilfried Rostek, Thomas Tröster, Rainer Lübbers
-
Patent number: 6776728Abstract: A weight member for a golf club head is made of a WFeNi alloy by a precision casting process. The WFeNi alloy includes wt 15%-40% of iron, wt 30%-60% of nickel, wt 15%-30% of tungsten, wt 1.5%-10.0% of chromium, and wt 0.5%-5.0% of molybdenum. Chromium improves the rust-resisting property of the weight member. Molybdenum reduces the risk of cracks in the weight member during welding. Uniformity of shining finishing of the weight member can be improved by controlling a mixture ratio of nickel to tungsten. Manganese, copper, vanadium, and niobium may be added to improve the mechanical properties of the weight member.Type: GrantFiled: July 3, 2003Date of Patent: August 17, 2004Assignee: Nelson Precision Casting Co., Ltd.Inventors: Chan-Tung Chen, Yan-Zheng Su
-
Patent number: 6758764Abstract: A weight member for a golf club head is made of a WFeNi alloy by a precision casting process. The WFeNi alloy includes nickel 30-60 wt %, tungsten 15-30 wt %, chromium 1.5-10.0 wt %, and iron that is the remaining portion. Chromium improves the rust resisting property of the weight member and lengthens the life of the weight member. Uniformity of shining finishing of the weight member can be improved by controlling a mixture ratio of nickel to tungsten. Silicon may be added to improve the flowability of the molten metal. Manganese, copper, vanadium, and niobium may be added to improve the mechanical properties of the weight member.Type: GrantFiled: July 3, 2003Date of Patent: July 6, 2004Assignee: Nelson Precision Casting Co., Ltd.Inventors: Chan-Tung Chen, Yan-Zheng Su
-
Patent number: 6702981Abstract: High speed steel (HSS) compositions having less C and Cr contents than standard grades of HSS to permit carburization using conventional techniques. The alloys contain less than 0.40 wt. % C and less than 2% Cr. The low Cr content is a critical factor in enhancing the ease of carburizing the present steels. The resulting HSS compositions possess high hardness and fracture resistance. More particularly, the steels include, in % by weight: 0-0.4% C; 0.5-1.5% Cr; 1.5-3.5% Ni; 0.1-0.6% M; 0.15-0.65% Si; 0.03 max % P; 0.03 max % S; one or more members selected from the group consisting of 4.0-15.3% Mo; 1.0-5.7% V; up to 13% Co and up to 28% W, and wherein the aggregate amount of %Cr+%Mo+%V+%W+%Co is between 7.5-35% and balance essentially Fe and incidental impurities. A method for treating the above alloy includes the steps of carburizing at about 960° C. followed by quenching, preheating to about 870° C. followed by austenitizing at 1125° C.-1225° C.Type: GrantFiled: December 5, 2001Date of Patent: March 9, 2004Assignee: The Timken CompanyInventor: Dennis W. Hetzner
-
Publication number: 20030034101Abstract: A low-alloy heat-resistant steel may be used to manufacturing a large element which has uniform superior high temperature properties through a surface layer to a center part. The low-alloy heat-resistant steel comprises carbon in an amount of 0.20 to 0.35% by weight, silicon in an amount of 0.005 to 0.35% by weight, manganese in an amount of 0.05 to 1.0% by weight, nickel in an amount of 0.05 to 0.3% by weight, chromium in an amount of 0.8 to 2.5% by weight, molybdenum in an amount of 0.1 to 1.5% by weight, tungsten in an amount of 0.1 to 2.5% by weight, vanadium in an amount of 0.05 to 0.3% by weight, phosphorus in an amount not greater than 0.012% by weight, sulfur in an amount not greater than 0.005% by weight, copper in an amount not greater than 0.10% by weight, aluminum in an amount not greater than 0.01% by weight, arsenic in an amount not greater than 0.01% by weight, tin in an amount not greater than 0.01% by weight, antimony in an amount not greater than 0.Type: ApplicationFiled: March 4, 2002Publication date: February 20, 2003Applicant: MITSUBISHI HEAVY INDUSTRIES LTD.Inventors: Masatomo Kamada, Akitsugu Fujita, Yoshiyuki Ooba, Yoshihiro Okamura, Makoto Yamaguchi
-
Patent number: 6272963Abstract: A metal band saw is disclosed which is used to cut cutting-resistant materials such as SKD11, stainless steel, etc. and has characteristics of generating less chips on the cutting edge as well as improving wear resistance, resulting in very long service life. The blade material for the metallic band saw comprises high-speed steel containing 2 wt. % or less of vanadium (V), wherein 3 area % or more of carbide grains having a major diameter of 3 &mgr;m or more as observed in a metallographic structure.Type: GrantFiled: August 10, 1999Date of Patent: August 14, 2001Assignee: Hitachi Metals, Ltd.Inventor: Shiho Fukumoto
-
Patent number: 6048491Abstract: A steel alloy ahs the following composition in weight % 0.075-0.15% C from traces to max. 1.0 Si, 1-3 Mn, 2-5 Cr, 1-4 Ni, wherein the total amount of Mn+Cr+Ni>6, 0.1-1.0 Mo, which wholly or partly can be replaced by the double amount of W, max. 0.015 P, max 0.02 S, balance essentially only iron and impurities and accessory elements in normal amounts.Type: GrantFiled: November 30, 1998Date of Patent: April 11, 2000Assignee: Uddeholm Tooling AktiebolagInventors: Lars-.ANG.ke Norstrom, Henrik Jesperson
-
Patent number: 5746843Abstract: A low Mn-low Cr ferritic heat resistant steel consisting essentially of, in weight %: 0.02-0.20% C, up to 0.7% Si, less than 0.1% Mn, up to 0.8% Ni, 0.8-3.5% Cr, 0.01-3.0% W, 0.1-0.5% V, 0.01-0.20% Nb, 0.001-0.05% Al, 0.0005-0.05% Mg, 0.0005-0.01% B, less than 0.05% N, up to 0.03% P, up to 0.015% S, 0.001-0.05% Ti and the balance Fe and incidental impurities, wherein the B content is defined so as to satisfy the following formula (14/11)B>N-N(V/51)/{(C/12)+(N/14)}-N(Nb/93)/{(C/12)+(N/14)}-N(Ti/48)/{C/12 )+(N/14)}. The steel can further contain optionally 0.01-1.5% Mo, and/or one or more elements selected from the group consisting of 0.01-0.2% La, 0.01-0.2% Ce, 0.01-0.2% Y, 0.01-0.2% Ca, 0.01-0.2% Ta and 0.01-0.2% Zr. The steel can be used in place of the austenitic steels or high Cr ferritic steels, since it has remarkably improved toughness, workability and weldability, and excellent creep properties at elevated temperatures.Type: GrantFiled: February 10, 1997Date of Patent: May 5, 1998Assignees: Sumitomo Metal Industries, Ltd., Mitsubishi Jukogyo Kabushiki KaishaInventors: Kaori Miyata, Masaaki Igarashi, Fujimitsu Masuyama, Nobuyoshi Komai, Tomomitsu Yokoyama
-
Patent number: 4772451Abstract: A low-alloy steel suitable for use in caster shells for continuous aluminum casting operations. It has a lower carbon and chromium content than prior art steels, and exhibits high yield strength at elevated temperatures, excellent toughness over the entire temperature range of aluminum casting, and decreased heat checking.Type: GrantFiled: September 30, 1987Date of Patent: September 20, 1988Assignee: Earle M. Jorgensen Co.Inventors: Rockne J. Andreini, Sveltana Yaguchi
-
Patent number: 4650645Abstract: A heat-resisting steel suitable for use in valve parts of internal combustion engine is disclosed, which consists essentially by weight percentage of 0.3-0.5% of C, more than 1.0% to 2.5% of Si, 0.1-2.0% of Mn, 0.5-7.0% of Cr, 0.3-2.0% of Mo and 0.1-1.0% of V as basic ingredients, at least one of 0.3-2.0% of Cu and 0.001-0.05% of REM as sub-ingredients and if necessary, at least one of 0.1 to less than 2.0% of Ni, 0.1-1.5% of W and 0.03-1.0% of Nb+Ta, and the balance of Fe and inevitable impurities.Type: GrantFiled: December 3, 1984Date of Patent: March 17, 1987Assignee: Daido Steel Company LimitedInventors: Tetsuo Kato, Susumu Isobe, Kenkichi Matsunaga
-
Patent number: H326Abstract: Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.Type: GrantFiled: June 23, 1986Date of Patent: September 1, 1987Assignee: The United States of America as represented by the United States Department of EnergyInventors: Howard R. Brager, Francis A. Garner