Nickel Containing, But 10 Percent Or Less Patents (Class 420/119)
  • Publication number: 20120093678
    Abstract: The present invention provides a steel material for automobile chassis parts, having high fatigue characteristics, without a heat treatment, and superior shapeability, and a method of production of such automobile chassis parts. The surface of the steel has a high hardness and the center has a low hardness, providing the superior characteristics. With an annealing step of the invention, it is possible to relieve internal stress and further improve fatigue characteristics.
    Type: Application
    Filed: November 21, 2011
    Publication date: April 19, 2012
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NIPPON STEEL CORPORATION
    Inventors: Hideyuki NAKAMURA, Isao Anai, Yasushi Yamamoto, Takaaki Fukushi, Izuru Yamamoto, Masaaki Kondo, Satoru Shimazu
  • Publication number: 20120063945
    Abstract: Provided is a steel for machine structural use which has excellent machinability (particularly, with respect to tool life) for both intermittent cutting with a high-speed steel tool and continuous cutting with a cemented carbide tool while maintaining strength properties required of the steel for machine structural use. Specifically, the steel for machine structural use contains C: 0.05-0.9 mass %, Si: 0.03-2 mass %, Mn: 0.2-1.8 mass %, P: 0.03 mass % or less, S: 0.03 mass % or less, Al: 0.1-0.5 mass %, N: 0.002-0.017 mass %, and O: 0.003 mass % or less, and contains one or more selected from a group consisting of Ti: 0.05 mass % or less (excluding 0 mass %) and B: 0.008 mass % or less (excluding 0 mass %), with the remainder being iron and unavoidable impurities, and satisfies all of the following inequalities (1)-(3) below: (1): [N]?0.3[Ti]?1.4[B]<(0.0004/[Al])?0.002; (2): [Ti]?[N]/0.3<0.005; and (3): [B]?([N]?0.3[Ti])/1.4<0.003 when [Ti]?[N]/0.3<0 and [B]<0.003 when [Ti]?[N]/0.3?0.
    Type: Application
    Filed: June 1, 2010
    Publication date: March 15, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Takehiro Tsuchida, Tomokazu Masuda, Masaki Shimamoto, Mutsuhisa Nagahama
  • Publication number: 20120048427
    Abstract: Steel for nitrocarburizing includes, by mass %, C: 0% to less than 0.15%; Si: 0.01% to 1.00%; Mn: 0.01% to 1.00%; S: 0.0001% to 0.050%; Al: 0.0001% to 0.050%; Ti: more than 0.50% to 1.50%; N: 0.0005% to 0.0100%; and the balance consisting of Fe and inevitable impurities, in which P is limited to 0.050% or less; O is limited to 0.0060% or less; and the amount of Ti [Ti %], the amount of C [C %], the amount of N [N %], and the amount of S [S %] satisfy 0.48<[Ti %]?47.9×([C %]/12+[N %]/14+[S %]/32)?1.20.
    Type: Application
    Filed: January 25, 2011
    Publication date: March 1, 2012
    Inventor: Manabu Kubota
  • Publication number: 20120021917
    Abstract: Disclosed is a low-cost metal substrate which is resistant to high-temperature oxidation, has excellent strength, is non-magnetic and is ideal for a high-temperature superconducting wire to be used at or lower than liquid nitrogen temperature. Austenitic stainless steel containing 0.4 weight or more of nitrogen is used as the metal substrate for the superconducting wire. After heat treatment of 700 to 950° C. in the high-temperature superconducting layer formation step is carried out, the metal substrate has an extremely high 0.20 proof stress at liquid nitrogen temperature.
    Type: Application
    Filed: September 28, 2010
    Publication date: January 26, 2012
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hisaki Sakamoto, Yoshinori Nagasu
  • Publication number: 20120014831
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Application
    Filed: October 19, 2010
    Publication date: January 19, 2012
    Inventors: Shingo Yamasaki, Toshiyuki Manabe, Daisuke Hirakami, Nariyasu Muroga
  • Publication number: 20120014828
    Abstract: In a non-oriented electrical steel sheet, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, and so on are contained. (1) expression described below is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]. [Ti]?0.8×[Bi]+0.
    Type: Application
    Filed: May 25, 2010
    Publication date: January 19, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masafumi Miyazaki, Hideaki Yamamura, Takeshi Kubota, Yousuke Kurosaki, Kazuto Kawakami, Kazumi Mizukami, Takeaki Wakisaki
  • Publication number: 20110314965
    Abstract: There is provided a metal powder for powder metallurgy including Zr and Si in a manner such that following conditions of (A) and (B) are satisfied, wherein a remainder thereof includes at least one element selected from the group consisting of Fe, Co and Ni, (A) the mass ratio of a content of Zr to a content of Si is 0.03 to 0.3, and (B) the content of Si is 0.35 to 1.5% by mass.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 29, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Hidefumi NAKAMURA
  • Publication number: 20110318214
    Abstract: A water atomised prealloyed chromium-free, iron-based steel powder is provided which comprises by weight-%: 0.05-0.4 V, 0.09-0.3 Mn, less than 0.1 Cr, less than 0.1 Mo, less than 0.1 Ni, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, and less than 0.5 of unavoidable impurities, with the balance being iron.
    Type: Application
    Filed: March 15, 2010
    Publication date: December 29, 2011
    Applicant: HOGANAS AB (PUBL)
    Inventor: Sven Bengtsson
  • Patent number: 8071018
    Abstract: A high carbon hot-rolled steel sheet which is a hot-rolled spheroidizing annealed material, including 0.2 to 0.7% C, 2% or less Si, 2% or less Mn, 0.03% or less P, 0.03% or less S, 0.08% or less Sol.Al., and 0.01% or less N, by mass, which contains carbide having a particle size of smaller than 0.5 ?m in a content of 15% or less by volume to the total amount of carbide, and the difference between the maximum hardness Hv max and the minimum hardness Hv min, ?Hv (=Hv max?Hv min), in the sheet thickness direction being 10 or smaller.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 6, 2011
    Assignee: JFE Steel Corporation
    Inventors: Nobusuke Kariya, Norio Kanamoto, Hidekazu Ookubo, Yoshiharu Kusumoto, Takeshi Fujita
  • Publication number: 20110287280
    Abstract: A cold-rolled steel sheet has a chemical composition of C: 0.12% to 0.3%, Si: 0.5% or less, Mn: less than 1.5%, Al: 0.15% or less, N: 0.01% or less, P: 0.02% or less, and S: 0.01% or less, with the remainder including iron and inevitable impurities and has a martensite single-phase structure as its steel microstructure. In a surface region of the steel sheet from the surface to a depth one-tenth the gauge, the number density of n-ary groups of inclusions determined by specific n-th determinations is 120 or less per 100 cm2 of a rolling plane, where the distance in steel sheet rolling direction between outermost surfaces of two outermost particles of the group of inclusions is 100 ?m or more. The steel sheet is a high-strength cold-rolled steel sheet which has a sufficiently minimized rate of bending fracture starting from inclusions and thereby has excellent bending workability.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 24, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Atsuhiro SHIRAKI, Sae Hamamoto, Yukihiro Utsumi, Tetsuji Hoshika, Yuichi Futamura
  • Publication number: 20110268600
    Abstract: The invention provides a steel material with satisfactory hydrogen embrittlement resistance, and particularly it relates to high-strength steel with satisfactory hydrogen embrittlement resistance and a strength of 1200 MPa or greater, as well as a process for production thereof. At least one simple or compound deposit of oxides, carbides or nitrides as hydrogen trap sites which trap hydrogen with a specific trap energy is added to steel, where the mean sizes, number densities, and length-to-thickness ratios (aspect ratio) are in specific ranges. By applying the specific steel components and production process it is possible to obtain high-strength steel with excellent hydrogen embrittlement resistance.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 3, 2011
    Applicant: Nippon Steel Corporation
    Inventors: Shingo YAMASAKI, Daisuke Hirakami, Toshimi Tarui, Seiki Nishida
  • Publication number: 20110268601
    Abstract: A steel for a welded structure includes the following composition: by mass %, C at a C content [C] of 0.015 to 0.045%; Si at a Si content [Si] of 0.05 to 0.20%; Mn at a Mn content [Mn] of 1.5 to 2.0%; Ni at a Ni content [Ni] of 0.10 to 1.50%; Ti at a Ti content [Ti] of 0.005 to 0.015%; O at an O content [O] of 0.0015 to 0.0035%; and N at a N content [N] of 0.002 to 0.006%, and a balance composed of Fe and unavoidable impurities. In the steel for a welded structure, the P content [P] is limited to 0.008% or less, the S content [S] is limited to 0.005% or less, the Al content [Al] is limited to 0.004% or less, the Nb content [Nb] is limited to 0.005% or less, the Cu content [Cu] is limited to 0.24% or less, the V content [V] is limited to 0.020% or less, and a steel composition parameter PCTOD is 0.065% or less, and a steel composition hardness parameter CeqH is 0.235% or less.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 3, 2011
    Inventors: Yoshiyuki Watanabe, Kazuhiro Fukunaga, Akihiko Kojima, Ryuji Uemori, Rikio Chijiwa
  • Patent number: 8043407
    Abstract: It is an object of the present invention to provide a similar composition metal type welding solid wire capable of forming a welded joint having excellent cryogenic characteristics, such as ensuring a low-temperature toughness equivalent to that of the cryogenic base metal, and in addition, further having a high crack initiation resistance, and a weld metal thereof. The welding solid wire of the present invention is an iron base welding solid wire including carbon: 0.10 mass % or less (not inclusive of 0%), silicon: 0.15 mass % or less (not inclusive of 0%), nickel: 8.0 to 15.0 mass %, manganese: 0.10 to 0.80 mass %, and Al: 0.1 mass % or less (not inclusive of 0%), and oxygen in an amount of 150 ppm or less (inclusive of 0), characterized by including: a REM: 0.005 to 0.040 mass %, or chromium: 4.0 mass % or less (not inclusive of 0%).
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: October 25, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Hidenori Nako, Hiroyuki Takeda, Yoshitomi Okazaki, Kazuyuki Suenaga, Kohjiroh Nakanishi
  • Publication number: 20110182765
    Abstract: A steel grade for use in a hot forming and press hardening process has the following composition, in weight percent: C 0.15%=C<0.35%, Mn 0.8-2.5%, Si 1.5-2.5%, Cr max. 0.4%, Al max. 0.1%, Ni max. 0.3%, B 0.0008-0.005%, Ti 0.005-0.1%, Nb max. 0.1%, remainder iron and unavoidable impurities as well as a hot formed and press hardened structural part made of this steel grade.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 28, 2011
    Applicant: Benteler Automobiltechnik GmbH
    Inventors: HUBERTUS GIEFERS, KARSTEN BAKE, ANDREAS FREHN
  • Publication number: 20110129381
    Abstract: The present invention provides a high-tensile steel material having a tensile strength of the 550 MPa class or more which can simultaneously raise the strength and toughness of the heat affected zone of weld to equal those of the matrix and a method of production of the same, that is, a high-tensile steel material with excellent weldability and toughness and with tensile strength of the 550 MPa class or more containing, by mass %, C: 0.005 to 0.10%, W: 0.10 to 3.0%, Nb: 0.010 to 0.080%, and V: 0.010 to 0.50%, limiting the Ti to less than 0.005%, satisfying equation; EC=2[C]?[Nb]/9?[V]/12>0.020, having an amount of precipitation of W contained in the steel material, in terms of analytical value obtained by quantitative analysis of potential electrolysis extraction residue by fluorescent X-ray analysis, of 0.0050% or less, and having 60% or more of its structural composition in a cross-section of the steel as a bainite structure.
    Type: Application
    Filed: May 2, 2005
    Publication date: June 2, 2011
    Applicant: NIPON STEEL CORPORATION
    Inventors: Yasushi Hasegawa, Naoki Saitoh, Youichi Tanaka
  • Publication number: 20110103996
    Abstract: A continuous cast slab includes the following component: by mass %, C: 0.01˜0.3%, Si: 0.05˜0.5%, Mn: 0.4˜2%, P: 0.03% or less, S: 0.03 or less, Al: 0.005˜0.03%, Ni: 0.2˜2%, O: 0.006% or less, and N: 0.006% or less; wherein the balance is composed of Fe and inevitable impurities; wherein a structure in steel in a region within at least 2 mm from a broad surface is composed of ferrite and pearlite and a equivalent circular diameter of ferrite grains in the region is equal to or shorter than 30 ?m.
    Type: Application
    Filed: July 15, 2009
    Publication date: May 5, 2011
    Inventors: Akihito Kiyose, Toshiyuki Kajitani, Mineo Niizuma, Yasuhiko Otani
  • Patent number: 7914629
    Abstract: The present invention provides high strength thick steel plate superior in crack arrestability high in strength, free of deterioration of HAZ toughness, and free of anisotropy, that steel plate containing, by mass %, C: 0.03 to 0.15%, Si: 0.1 to 0.5%, Mn: 0.5 to 2.0%, P: ?0.02%, S: ?0.01%, Al: 0.001 to 0.1%, Ti: 0.005 to 0.02%, Ni: 0.15 to 2%, and N: 0.001 to 0.008% and having a balance of iron and unavoidable impurities as chemical components, having a microstructure of a ferrite and/or pearlite structure with bainite as a matrix phase, and having an average circle equivalent diameter of crystal grains with a crystal misorientation angle of 15° or more of 15 ?m or less in the regions of 10% of plate thickness from the front and rear surfaces and of 40 ?m or less in the other region including the center part of plate thickness.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: March 29, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Kiyotaka Nakashima, Masanori Minagawa, Kouji Ishida, Akira Ito
  • Publication number: 20110038750
    Abstract: In a hot isostatic pressing process or hot uniaxial pressing process for producing a net or near net shape product, a diffusion filter comprising boron nitride is provided between a graphite former and metal powder to be pressed thereagainst. The diffusion filter allows a controlled amount of carbon to diffuse into the surface of the pressed component. The boron nitride is conveniently applied as an aqueous slurry by spraying. In order to obtain adherence between the coating and the surfaces of the former, one or more thin ghost coat layers of slurry are applied to the surface of the graphite former before one or more layers of normal strength slurry are applied. Each layer of coating is allowed to dry before the next layer is applied, and the former may be heated to dry each layer. Pressed components of length greater than 2m can be processed, relative contraction of the component and former during cooling of the component being accommodated by the boron nitride coating on the former.
    Type: Application
    Filed: November 21, 2008
    Publication date: February 17, 2011
    Inventor: Geoffrey Archer
  • Publication number: 20100330387
    Abstract: The present invention provides a high strength thick steel material excellent in toughness and weldability reduced in amount of C and amount of N, containing suitable amounts of Si, Mn, Nb, Ti, B, and O, having contents of C and Nb satisfying C—Nb/7.74?0.004, having a density of Ti-containing oxides of a particle size of 0.05 to 10 ?m of 30 to 300/mm2, and having a density of Ti-containing oxides of a particle size over 10 ?m of 10/mm2 or less, produced by treating steel by preliminary deoxidation to adjust the dissolved oxygen to 0.005 to 0.015 mass %, then adding Ti and, furthermore, vacuum degassing the steel for 30 minutes or more, smelting it, then continuously casting it to produce a steel slab or billet, heating the steel slab or billet to 1100 to 1350° C., hot rolling the slab or billet to a thickness of 40 to 150 mm, then cooling it.
    Type: Application
    Filed: September 26, 2008
    Publication date: December 30, 2010
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Patent number: 7842141
    Abstract: A steel composition contains: 0.05% or less of C; 0.5% or less of Si; 0.20% to 1.80% of Mn; 0.03% or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; and 0.006% or less of O on a mass basis, and satisfies the following expressions: Cr+0.65Ni+0.6Mo+0.55Cu?20C?18.5 and Cr+Mo+0.3Si?43.5C?0.4Mn?Ni?0.3Cu?9N?11 (where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent their respective contents (mass %)). After such a steel pipe material is formed into a steel pipe, the steel pipe is quenched by cooling after heating to a temperature of the AC3 transformation point or more and tempered at a temperature of the AC1 transformation point or less.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: November 30, 2010
    Assignee: JFE Steel Corporation
    Inventors: Mitsuo Kimura, Takanori Tamari, Takaaki Toyooka
  • Publication number: 20100266441
    Abstract: A high carbon hot-rolled steel sheet which is a hot-rolled spheroidizing annealed material, including 0.2 to 0.7% C, 2% or less Si, 2% or less Mn, 0.03% or less P, 0.035 or less S, 0.08% or less Sol.Al., and 0.01% or less N, by mass, which contains carbide having a particle size of smaller than 0.5 ?m in a content of 15% or less by volume to the total amount of carbide, and the difference between the maximum hardness Hv max and the minimum hardness Hv min, ?Hv (=Hv max?Hv min), in the sheet thickness direction being 10 or smaller.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 21, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobusuke Kariya, Norio Kanamoto, Hidekazu Ookubo, Yoshiharu Kusumoto, Takeshi Fujita
  • Publication number: 20100263771
    Abstract: A heat treatment method of manufacturing high carbon bearing steel having excellent abrasion resistance and fatigue resistance, a steel wire rod for high carbon bearing steel subjected to the heat treatment, a manufacturing method of the steel wire rod, high carbon bearing steel manufactured by the heat treatment and a soaking method of a steel bloom used for manufacturing the steel wire rod. The heat treatment method of bearings includes the steps of: quenching a bearing-shaped steel part containing, by weight, 0.5% to 1.20% carbon and 1.0% to 2.0% silicon; and partitioning the quenched steel part at a temperature ranging from Ms?100° C. to Ms for at least 10 minutes, where Ms represents a temperature at which formation of martensite will start.
    Type: Application
    Filed: December 12, 2008
    Publication date: October 21, 2010
    Applicant: POSCO
    Inventor: Kwan-Ho Kim
  • Publication number: 20100253006
    Abstract: A steel product having a composition which contains by mass C: 0.01 to 1.9%, Si: 0.01 to 1.9%, Mn: 5.0 to 24.0% with balance consisting of Fe and unavoidable impurities and a steel product described above which further contains Cr: 18.0% or below and/or Ni: 12.0% or below in addition to the above essential elements. The above steel products may each further contain Al: 1% or below and/or N: 0.3% or below and the above steel products may each further contain one or more elements selected from among Nb, Ti, Zr, Mo and Cu in a total amount of 4.0% or below. The steel products can sufficiently follow the thermal expansion of a cylinder made of an aluminum alloy and thus enables the production of a piston ring which is suitable for use as a piston ring to slide on the inner face of a cylinder bore made of an aluminum alloy in an internal combustion engine and which can retain excellent sealing properties.
    Type: Application
    Filed: November 28, 2008
    Publication date: October 7, 2010
    Applicant: NIPPON PISTON RING CO., LTD
    Inventors: Yoshiki Ishikawa, Seisuke Takaki, Motonobu Onoda
  • Publication number: 20100247368
    Abstract: A bainitic steel alloy and a method for making such an alloy are disclosed, in which the bainite plates are particularly small, less than 50 nanometres in width. In preferred embodiments of the invention, each bainite plate is surrounded by a film of retained austenite; the level of retained austenite in the alloy is greater than 10%; and the alloy is substantially free of blocky unstable austenite and cementite.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 30, 2010
    Applicant: ROLLS-ROYCE PLC
    Inventors: Martin J. RAWSON, Mathew J. PEET, Harshad K.D.H BHADESHIA, Scott D. WOOD, Paul O. HILL, Emma E. BOOTH
  • Publication number: 20100230016
    Abstract: A high-strength steel plate includes the following composition: 0.18 to 0.23 mass % of C; 0.1 to 0.5 mass % of Si; 1.0 to 2.0 mass % of Mn; 0.020 mass % or less of P; 0.010 mass % or less of S; 0.5 to 3.0 mass % of Ni; 0.003 to 0.10 mass % of Nb; 0.05 to 0.15 mass % of Al; 0.0003 to 0.0030 mass % of B; 0.006 mass % or less of N; and a balance composed of Fe and inevitable impurities. A weld crack sensitivity index Pcm of the high-strength steel plate is 0.36 mass % or less. The Ac3 transformation point is equal to or less than 830° C., the percentage value of a martensite structure is equal to or greater than 90%, the yield strength is equal to or greater than 1300 MPa, and the tensile strength is equal to or greater than 1400 MPa and equal to or less than 1650 MPa. A prior austenite grain size number N? is calculated by N?=?3+log2m using an average number m of crystal grains per 1 mm2 in a cross section of a sample piece of the high-strength steel plate.
    Type: Application
    Filed: September 14, 2009
    Publication date: September 16, 2010
    Inventor: Tatsuya Kumagai
  • Publication number: 20100186855
    Abstract: The invention relates to a steel and a processing method for high-strength fracture-splittable machine components that are composed of at least two fracture-splittable parts. The steel and method are characterized in that the chemical composition of the steel (expressed in percent by weight) is as follows: 0.40%?C?0.60%; 0.20%?Si?1.00%; 0.50%?Mn?1.50%; 0%?Cr?1.00%; 0%?Ni?0.50%; 0%?Mo?0.20%; 0%?Nb?0.050%; 0%?V?0.30%; 0%?Al?0.05%; 0.005%?N?0.020%, the rest being composed of iron and smelting-related impurities and residual matter.
    Type: Application
    Filed: July 27, 2007
    Publication date: July 29, 2010
    Inventors: Roman Diederichs, Axel Stueber, Robert Lange
  • Patent number: 7731896
    Abstract: The present invention provides a low alloy steel and a weld joint thereof excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance, said low alloy steel containing, in mass, C: 0.001 to 0.2%, Si: 0.01 to 2.5%, Mn: 0.1 to 2%, Cu: 0.1 to 1%, Mo: 0.001 to 1%, Sb: 0.01 to 0.2%, P: 0.05% or less, and S: 0.05% or less, with the balance consisting of Fe and unavoidable impurities; and the acid corrosion resistance index AI of said low alloy steel being zero or positive. Here, said AI is given by the following expression, AI/10,000=0.0005+0.045×Sb %?C %×Mo %, where % means mass %.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: June 8, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Akira Usami, Shunji Sakamoto, Satoshi Nishimura, Motohiro Okushima, Takashi Kusunoki
  • Patent number: 7718843
    Abstract: An iron powder for decomposition of organic chlorinated compounds, comprising from 0.03 to 0.5% by weight of Ni and from 0.005 to 5% by weight of carbon, wherein particles having a particle size of less than 53 ?m occupies less than 40% by weight, is used. It is particularly preferable that Ni, carbon and iron are partially alloyed. When the iron powder for decomposition is used by mixing with, for example, an Ni-free iron powder, the total Ni content can be reduced without deterioration of decomposition performance to organic chlorinated compounds. The iron powder has high decomposition performance in the treatment of a solid such as soil.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: May 18, 2010
    Assignee: Tosoh Corporation
    Inventors: Yoju Shimizu, Yasuyuki Nagai
  • Publication number: 20100086431
    Abstract: The present invention provides a non-aging enameling steel sheet having excellent fishscale resistance characteristics that is suitable for one-coat enameling and a method of producing the same. The enameling steel sheet comprises, in mass %, C: 0.010% or less, Mn: 0.03% to 1.30%, Si: 0.100% or less, Al: 0.010% or less, N: 0.0055% or less, P: 0.035% or less, S: 0.08% or less, O: 0.005% to 0.085%, Nb: 0.055% to 0.250%, and the balance of Fe and unavoidable impurities, in which steel sheet preferably an Fe—Nb—Mn system composite oxide is present, a distribution of Nb mass % concentrations is present in the composite oxide, and the ratio of Nb mass % concentration of a high-concentration portion (Nb max %) to Nb mass % concentration of a low-concentration portion (Nb min %) is Nb max %/Nb min % ?1.2.
    Type: Application
    Filed: August 13, 2007
    Publication date: April 8, 2010
    Inventors: Hidekuni Murakami, Satoshi Nishimura
  • Publication number: 20100078097
    Abstract: A steel material superior in high temperature characteristics and toughness is provided, that is, a steel material containing, by mass %, C: 0.005% to 0.03%, Si: 0.05% to 0.40%, Mn: 0.40% to 1.70%, Nb: 0.02% to 0.25%, Ti: 0.005% to 0.025%, N: 0.0008% to 0.0045%, B: 0.0003% to 0.0030%, restricting P: 0.030% or less, S: 0.020% or less, Al: 0.03% or less, and having a balance of Fe and unavoidable impurities, where the contents of C and Nb satisfy C?Nb/7.74?0.02 and Ti-based oxides of a grain size of 0.05 to 10 ?m are present in a density of 30 to 300/mm2.
    Type: Application
    Filed: April 4, 2008
    Publication date: April 1, 2010
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Publication number: 20100047107
    Abstract: A steel material superior in high temperature characteristics and toughness is provided, the fire resistant steel material containing by mass %, C: 0.001% to 0.030%, Si: 0.05% to 0.50%, Mn: 0.40% to 2.00%, Nb: 0.03% to 0.50%, Ti: 0.005% to less than 0.040%, and N: 0.0008% to less than 0.0050%, restricting P: 0.030% or less and S: 0.020% or less, and having a balance of Fe and unavoidable impurities, where the contents of C and Nb satisfy C—Nb/7.74?0.004, and Ti-based oxides of a grain size of 0.05 to 10 ?m are present in a density of 30 to 300/mm2.
    Type: Application
    Filed: April 11, 2008
    Publication date: February 25, 2010
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Publication number: 20090311125
    Abstract: Provided is a hot-working steel excellent in machinability and impact value comprising, in mass %, C: 0.06 to 0.85%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.0%, P: 0.005 to 0.2%, S: 0.001 to 0.35%, and Al: 0.06 to 1.0% and N: 0.016% or less, in contents satisfying Al×N×105?96, and a balance of Fe and unavoidable impurities, total volume of AlN precipitates of a circle-equivalent diameter exceeding 200 nm accounting for 20% or less of total volume of all AlN precipitates.
    Type: Application
    Filed: April 17, 2008
    Publication date: December 17, 2009
    Inventors: Kei Miyanishi, Masayuki Hashimura, Atsushi Mizuno
  • Publication number: 20090277547
    Abstract: A high strength steel sheet with both excellent elongation and stretch-flanging performance is provided. The high strength steel sheet of the present invention comprises, in percent by mass, C: 0.05 to 0.3%, Si: 0.01 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to 0.1%, and Fe and inevitable impurities as the remainder, and has a structure mainly composed of tempered martensite and annealed bainite. The space factor of the tempered martensite is 50 to 95%, the space factor of the annealed bainite is 5 to 30%, and the mean grain size of the tempered martensite is 10 ?m or smaller in terms of the equivalent of a circle diameter. The steel sheet has a tensile strength of 590 MPa or higher.
    Type: Application
    Filed: July 13, 2007
    Publication date: November 12, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO
    Inventors: Kenji Saito, Tomokazu Masuda, Masaaki Miura, Yoichi Mukai, Shushi Ikeda
  • Publication number: 20090277542
    Abstract: The present invention provides a steel material for automobile chassis parts which has high fatigue characteristics, does not require much cost for heat treatment, and further is superior in shapeability and a method of production of automobile chassis parts using this steel material, that is, one being a steel material to which Nb and Mo have been compositely added and having a difference 50 to 150 points between a Vicker's hardness of the center of plate thickness and a maximum value of Vicker's hardness within 0.5 mm from the surface after bending by a bending R of the plate outer surface of 2 to 5 times the plate thickness. The surface is high in hardness and the center part is low in hardness, so the fatigue characteristics and shapeability are superior. Note that if annealing under conditions giving a tempering parameter ? defined by ?=T(20+log(t)) of 14000 to 19000 (where T is the absolute temperature, t is the time (h), and the temperature rise is 660° C.
    Type: Application
    Filed: August 8, 2007
    Publication date: November 12, 2009
    Inventors: Hideyuki Nakamura, Isao Anai, Yasushi Yamamoto, Takaaki Fukushi, Izuru Yamamoto, Masaaki Kondo, Satoru Shimazu
  • Patent number: 7604860
    Abstract: Provided are the high tensile nonmagnetic stainless steel wire for an low loss overhead electric conductor, the low loss overhead electric conductor using the high tensile nonmagnetic stainless steel wire as its core, and a manufacturing method of them respectively. The high tensile nonmagnetic stainless steel wire reduces a core loss and eddy current loss and minimizes effective electric resistance of the conductor by using the nonmagnetic stainless steel wire, that is a non-magnetic material, rather than a high carbon steel wire, that is a strong magnetic material. In addition, an overall power transmission loss is minimized by strengthening the tensile strength of and reducing a sectional area of the steel wire, making an aluminium-welded layer thicker, and increasing the sectional area of an aluminium conductor.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: October 20, 2009
    Assignees: Korea Sangsa Co., Ltd., Korea Electro Technology Research Institute
    Inventors: Byung Geol Kim, Shang Shu Kim, Byung Chul Woo, Hee Woong Lee, Ju Hwan Park, Yong Keun Jeong, Min Bum Lee, Sun Hwan Ahn
  • Publication number: 20090258250
    Abstract: An iron based hardfacing alloy with an undiluted (all weld material) alloy composition is substantially balanced in order to achieve an hypo-eutectic primary austenitic with secondary martensitic solidification mode. The alloy enables the deposition of substantially crack-free single layers of hardfacing onto industrial components without any post weld treatment. The hardfacing alloy is capable of withstanding abrasion of silicious earth particles when applied to industrial products, such as tool joints, stabilizers and casing and other tubulars used in oil and gas well drilling, and other industrial products.
    Type: Application
    Filed: June 17, 2009
    Publication date: October 15, 2009
    Applicant: ATT Technology, Ltd. d/b/a Amco Technology Trust, Ltd.
    Inventors: Roger Auguste Daemen, Keith E. Moline
  • Patent number: 7597841
    Abstract: Provided is a weld metal for Cr—Mo steels which is suppressed in the formation of ferrite bands and therefore has heightened toughness and tensile strength and at the same time, good SR cracking resistance. The weld metal according to the present invention contains C: 0.02 to 0.06% (mass %, which will equally apply hereinafter), Si: 0.1 to 1.0%, Mn: 0.3 to 1.5%, Cr: 2.0 to 3.25%, Mo: 0.8 to 1.2%, Ti: 0.010 to 0.05%, B: 0.0005% or less (inclusive of 0%), N: 0.002 to 0.0120%, O: 0.03 to 0.07%, and the balance being Fe and inevitable impurities, wherein a ratio of the Ti content [Ti] to the N content [N] satisfies the following range: 2.00<[Ti]/[N]<6.25.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 6, 2009
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshitomi Okazaki, Koichi Hosoi
  • Publication number: 20090238715
    Abstract: A steel sheet for forming having low-temperature heat treatment property, in which heat treatment is performed within a range of lower temperature than a conventional steel sheet in the event of hot press forming or post-heat treatment after cold forming, a method of manufacturing the same, and a method of manufacturing parts using the same. The steel sheet has a composition of, by weight, carbon (C): 0.15 to 0.35%, silicon (Si): 0.5% or less, manganese (Mn): 1.5 to 2.2%, phosphorus (P): 0.025% or less, sulfur (S): 0.01% or less, aluminum (Al): 0.01 to 0.05%, nitrogen (N): 50 to 200 ppm, titanium (Ti): 0.005 to 0.05%, tungsten (W): 0.005 to 0.1%, and boron (B): 1 to 50 ppm, wherein Ti/N: less than 3.4, where Ti/N is the atomic ratio of the corresponding elements, Ceq expressed by the following formula ranges from 0.48 to 0.58, and temperature Ar3 ranges from 670° C. to 725° C. Wherein Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+V/14 where C, Si, Mn, Ni, Cr and V indicate the contents (wt %) of the respective elements.
    Type: Application
    Filed: July 31, 2008
    Publication date: September 24, 2009
    Applicant: POSCO
    Inventors: Yeol-Rae Cho, Jin Keun Oh, Sung-Ho Park
  • Patent number: 7582171
    Abstract: A high-strength, soft-magnetic iron-cobalt-vanadium alloy selection is proposed, consisting of 35.0?Co?55.0% by weight, 0.75?V?2.5% by weight, O?Ta+2×Nb?0.8% by weight, 0.3<Zr?1.5% by weight, remainder Fe and melting-related and/or incidental impurities. This zirconium-containing alloy selection has excellent mechanical properties, in particular a very high yield strength, high inductances and particularly low coercive forces. It is eminently suitable for use as a material for magnetic bearings used in the aircraft industry.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 1, 2009
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Joachim Gerster, Johannes Tenbrink
  • Publication number: 20090202384
    Abstract: A high tensile strength hot-rolled steel sheet having superior strain aging hardenability, which has high formability and stable quality characteristics, and in which satisfactory strength is obtained when the steel sheet is formed into automotive components, thus enabling the reduction in weight of automobile bodies. Specifically, a method for producing a high tensile strength hot-rolled steel sheet having superior strain aging hardenability with a BH of 80 MPa or more, a ?TS of 40 MPa or more, and a tensile strength of 440 MPa or more includes the steps of heating a steel slab to 1,000° C. or more, the steel slab containing, in percent by mass, 0.15% or less of C, 0.45% or less of Si, 3.0% or less of Mn, 0.08% or less of P, 0.02% or less of S, 0.02% or less of Al, 0.0050% to 0.0250% of N, and optionally 0.1% or less in total of at least one of more than 0.02% to 0.1% of Nb and more than 0.02% to 0.1% of V, the ratio N (mass %)/Al (mass %) being 0.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 13, 2009
    Applicant: JFE Steel Corporation, a Corporation of Japan
    Inventors: Akio Tosaka, Sinjiro Kaneko, Yoichi Tominaga, Noriyuki Katayama, Nobutaka Kurosawa, Kei Sakata, Osamu Furukimi
  • Patent number: 7572407
    Abstract: A martensitic stainless steel sheet having superior corrosion resistance, toughness at the weld zones, and workability. The composition of the steel sheet is, on a mass basis: less than about 0.02% of carbon; about 1.0% or less of silicon; less than about 1.5% of manganese; about 0.04% or less of phosphorus; about 0.01% or less of sulfur; about 0.1% or less of aluminum; about 1.5% or more and less than about 4.0% of nickel; about 11% or more and less than about 15% of chromium; about 0.5% or more and less than about 2.0% of molybdenum; and less than about 0.02% of nitrogen, the balance being iron and unavoidable impurities, wherein 15.0%?[Cr]+1.5×[Mo]+1.2×[Ni]?20.0%; [C]+[N]<0.030%; [Ni]+0.5×([Mn]+[Mo])+30×[C]>3.0%; and 8.0%?72×[C]+40×[N]+3×[Si]+2×[Mn]+4×[Ni]+[Mo]?18.0%.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: August 11, 2009
    Assignee: JFE Steel Corporation
    Inventors: Junichiro Hirasawa, Takumi Ujiro, Osamu Furukimi
  • Patent number: 7569286
    Abstract: Disclosed is a hardfacing alloy capable of withstanding service abrasion of the order of silicious earth particles and weldable on industrial products, such as tool joints and stabilizers used in oil and gas well drilling, and other industrial products. The hardfacing alloy has a low coefficient of friction resulting from excellent metal to metal resistance and significant reduction in industrial wear on industrial products, such as casing wear. Other embodiments of the invention include tool joints having the hardbanding alloy welded to the outer cylindrical surface to its box and pin members and to stabilizer ribs on the stabilizer used in earth boring, such as boring for oil and gas, other industrial products, and methods of applying the hardfacing alloy to their surfaces.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 4, 2009
    Assignee: ATT Technology, Ltd.
    Inventors: Roger Auguste Daemen, Keith E. Moline
  • Publication number: 20090148336
    Abstract: The present invention relates to a compound body comprising cemented carbide and steel with a carbon content corresponding to a carbon equivalent Ceq=wt-% C+0.3(wt-% Si+wt-% P) of from about 0.1 to about 0.85 wt-%. The body is particularly useful for earth moving tools e.g. dredge cutter heads.
    Type: Application
    Filed: November 7, 2008
    Publication date: June 11, 2009
    Applicant: Sandvik Intellectual Property AB
    Inventors: Stefan Ederyd, Per Quarfordt
  • Publication number: 20090092515
    Abstract: The present invention provides high strength thick steel plate superior in crack arrestability high in strength, free of deterioration of HAZ toughness, and free of anisotropy, that steel plate containing, by mass %, C: 0.03 to 0.15%, Si: 0.1 to 0.5%, Mn: 0.5 to 2.0%, P: ?0.02%, S: ?0.01%, Al: 0.001 to 0.1%, Ti: 0.005 to 0.02%, Ni: 0.15 to 2%, and N: 0.001 to 0.008% and having a balance of iron and unavoidable impurities as chemical components, having a microstructure of a ferrite and/or pearlite structure with bainite as a matrix phase, and having an average circle equivalent diameter of crystal grains with a crystal misorientation angle of 15° or more of 15 ?m or less in the regions of 10% of plate thickness from the front and rear surfaces and of 40 ?m or less in the other region including the center part of plate thickness.
    Type: Application
    Filed: April 13, 2007
    Publication date: April 9, 2009
    Inventors: Kiyotaka Nakashima, Masanori Minagawa, Kouji Ishida, Akira Ito
  • Publication number: 20090047168
    Abstract: The present invention provides a continuously cast enameled steel sheet with remarkably excellent fishscale resistance improving the ability to form spaces in the steel sheet so as to increase the hydrogen trap ability, and a method of production of the same, comprised of steel having as ingredients, by mass %, C: 0.010% or less, Mn: 0.03 to 1.30%, Si: 0.100% or less, Al: 0.030% or less, N: 0.0055% or less, P: 0.035% or less, S: 0.08% or less, O: 0.005 to 0.085%, and B: 0.0003 to 0.0250% and including in the steel sheet not integral or integral oxides differing in mass concentration of B or Mn. The ratio of the maximum concentration and minimum concentration is made 1.2 or more. When not integral, they are present with a straight line distance between centers of the oxides differing in concentration of 0.10 ?m to 20 ?m and with an angle of the line connecting the centers of the two oxides of within ±10° from the rolling direction.
    Type: Application
    Filed: November 9, 2006
    Publication date: February 19, 2009
    Inventors: Hidekuni Murakami, Satoshi Nishimura
  • Publication number: 20080241584
    Abstract: Disclosed is a hardfacing alloy capable of withstanding service abrasion of the order of silicious earth particles and weldable on industrial products, such as tool joints and stabilizers used in oil and gas well drilling, and other industrial products. The hardfacing alloy has a low coefficient of friction resulting from excellent metal to metal resistance and significant reduction in industrial wear on industrial products, such as casing wear. Other embodiments of the invention include tool joints having the hardbanding alloy welded to the outer cylindrical surface to its box and pin members and to stabilizer ribs on the stabilizer used in earth boring, such as boring for oil and gas, other industrial products, and methods of applying the hardfacing alloy to their surfaces.
    Type: Application
    Filed: March 10, 2008
    Publication date: October 2, 2008
    Applicant: ATT Technology, Ltd.
    Inventors: Roger Anguste Daemen, Keith E. Moline
  • Publication number: 20080156403
    Abstract: Disclosed herein is a steel for high-speed cold working which exhibits good cold workability during working and also exhibits high hardness after working. The steel for high-speed cold working contains C: 0.03 to 0.6% (by mass), Si: 0.005 to 0.6%, Mn: 0.05 to 2%, P: no more than 0.05% (excluding 0%), S: no more than 0.05% (excluding 0%), and N: no more than 0.04% (excluding 0%), with the remainder being iron and inevitable impurities and the amount of dissolved nitrogen in the steel being no less than 0.006%.
    Type: Application
    Filed: December 5, 2007
    Publication date: July 3, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Tomokazu MASUDA, Takuya Kochi, Shogo Murakami, Hiroshi Yaguchi
  • Publication number: 20080114198
    Abstract: In an iron powder for decomposition of organic chlorinated compounds, an iron powder having high decomposition performance in the treatment of a solid such as in a soil, and having low Ni content was required. An iron powder for decomposition of organic chlorinated compounds, comprising from 0.03 to 0.5% by weight of Ni and from 0.005 to 5% by weight of carbon, wherein particles having a particle size of less than 53 ?m occupies less than 40% by weight, is used. It is particularly preferable that Ni, carbon and iron are partially alloyed. When the iron powder for decomposition is used by mixing with, for example, an Ni-free iron powder, the total Ni content can be reduced without deterioration of decomposition performance to organic chlorinated compounds.
    Type: Application
    Filed: July 17, 2007
    Publication date: May 15, 2008
    Applicant: TOSOH CORPORATION
    Inventors: Yoju SHIMIZU, Yasuyuki NAGAI
  • Patent number: 7361411
    Abstract: Disclosed is a hardfacing alloy capable of withstanding service abrasion of the order of silicious earth particles and weldable on industrial products, such as tool joints and stabilizers used in oil and gas well drilling, and other industrial products. The hardfacing alloy has a low coefficient of friction resulting from excellent metal to metal resistance and significant reduction in industrial wear on industrial products, such as casing wear. Other embodiments of the invention include tool joints having the hardbanding alloy welded to the outer cylindrical surface to its box and pin members and to stabilizer ribs on the stabilizer used in earth boring, such as boring for oil and gas, other industrial products, and methods of applying the hardfacing alloy to their surfaces.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: April 22, 2008
    Assignee: ATT Technology, Ltd.
    Inventors: Roger Auguste Daemen, Keith E. Moline
  • Patent number: 7267757
    Abstract: At least one of lower and upper magnetic cores is composed of magnetic films each of which contains two or more elements of Co, Ni, and Fe, which are formed by electroplating in a plating bath with pH 2 or less, and which have a saturation magnetic flux density of 23,000 gauss or more.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: September 11, 2007
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kazue Kudo, Gen Oikawa, Tetsuya Okai, Ichiro Oodake, Hiromi Shiina