Vanadium, Tantalum Or Niobium Containing Patents (Class 420/127)
  • Patent number: 8361248
    Abstract: The present invention provides a high strength steel having unprecedentedly superior CTOD (fracture toughness) properties satisfying not only the CTOD properties of the FL zone at ?60° C., but also the CTOD properties of the ICHAZ zone in small and medium heat input multilayer welding, etc.; and a method of production of the same. The steel of the present invention is steel superior in CTOD properties of the heat-affected zone containing, by mass %, C: 0.015 to 0.045%, Si: 0.05 to 0.2%, Mn: 1.5 to 2.0%, Cu: 0.25 to 0.5%, Ni: 0.7 to 1.5%, P: 0.008% or less, S: 0.005% or less, Al: 0.004% or less, Ti: 0.005 to 0.015%, Nb: 0.005% or less, O: 0.0015 to 0.0035%, and N: 0.002 to 0.006%, PCTOD: 0.065 or less, CeqH: 0.235 or less and the balance consisting of Fe and unavoidable impurities.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: January 29, 2013
    Assignee: Nippon Steel Corporation
    Inventors: Rikio Chijiiwa, Ryuji Uemori, Yoshiyuki Watanabe, Kazuhiro Fukunaga, Akihiko Kojima, Yoshihide Nagai
  • Publication number: 20130022833
    Abstract: A silicon steel sheet formed from a silicon steel alloy composition includes, in parts by weight, iron, carbon present in an amount of from about 0.002 to about 0.06, silicon present in an amount of from about 1.5 to about 4.0, aluminum present in an amount of from about 0.1 to 1.0, titanium present in an amount of less than or equal to about 0.03, vanadium present in an amount of less than or equal to about 0.005, and cobalt present in an amount of from about 0.001 to about 5.0 based on 100 parts by weight of the composition. Neither niobium nor zirconium is present in the composition. A silicon steel sheet system including the silicon steel sheet and a coating disposed thereon, and an electromagnetic machine having a magnetic core including a plurality of sheets stacked adjacent one another are also disclosed.
    Type: Application
    Filed: July 22, 2011
    Publication date: January 24, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Shekhar G. Wakade
  • Patent number: 8303734
    Abstract: The present invention provides a high strength thick steel material excellent in toughness and weldability reduced in amount of C and amount of N, containing suitable amounts of Si, Mn, Nb, Ti, B, and O, having contents of C and Nb satisfying C—Nb/7.74?0.004, having a density of Ti-containing oxides of a particle size of 0.05 to 10 ?m of 30 to 300/mm2, and having a density of Ti-containing oxides of a particle size over 10 ?m of 10/mm2 or less, produced by treating steel by preliminary deoxidation to adjust the dissolved oxygen to 0.005 to 0.015 mass %, then adding Ti and, furthermore, vacuum degassing the steel for 30 minutes or more, smelting it, then continuously casting it to produce a steel slab or billet, heating the steel slab or billet to 1100 to 1350° C., hot rolling the slab or billet to a thickness of 40 to 150 mm, then cooling it.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 6, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Publication number: 20120263971
    Abstract: A composition comprises a binary alloy of iron and one of manganese, molybdenum, or vanadium, wherein the manganese, molybdenum, or vanadium is present in the binary alloy in an amount effective to form a conductive oxide on the binary alloy, the oxidation state of the manganese, the molybdenum, and the vanadium is greater than the oxidation state of iron in the conductive oxide, and the conductive oxide has a contact resistance of less than 5×104 milli-ohms measured in accordance with ASTM B667-97 (2009).
    Type: Application
    Filed: October 7, 2011
    Publication date: October 18, 2012
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Mark AINDOW, S. Pamir ALPAY, Joseph V. MANTESE
  • Publication number: 20120247619
    Abstract: A carburized steel member is manufactured by specific carburizing, cooling, and quenching steps. The steel member contains: C: 0.1% to 0.4%, Si: 0.35% to 3.0%, Mn: 0.1% to 3.0%, P: 0.03% or less, S: 0.15% or less, Al: 0.05% or less, and N: 0.03% or less, and a content of Cr is less than 0.2%, a content of Mo is 0.1% or less, and remainder is constituted of Fe and unavoidable impurities. A surface layer thereof includes: a first layer having a carbon concentration of 0.60 mass % to 0.85 mass % and including a martensitic structure in which no grain boundary oxide layer caused by Si exists; a second layer having a carbon concentration of 0.1 mass % to 0.4 mass % and including a martensitic structure; and a third layer having a carbon concentration of 0.1 mass % to 0.4 mass % and including no martensitic structure.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 4, 2012
    Applicants: NIPPON STEEL CORPORATION, AISIN AW CO., LTD.
    Inventors: Koji Obayashi, Keita Taguchi, Susumu Kato, Shuji Kozawa, Manabu Kubota, Yuji Adachi, Hirokazu Sato
  • Publication number: 20120225321
    Abstract: A magnetic layer that may serve as a top pole layer and bottom pole layer in a magnetic write head is disclosed. The magnetic layer has a composition represented by FeWCoXNiYVZ in which w, x, y, and z are the atomic % of Fe, Co, Ni, and V, respectively, and where w is between about 60 and 85, x is between about 10 and 30, y is between 0 and about 20, z is between about 0.1 and 3, and wherein w+x+y+z=100. An electroplating process having a plating current density of 3 to 30 mA/cm2 is used to deposit the magnetic layer and involves an electrolyte solution with a small amount of VOSO4 which is the V source. The resulting magnetic layer has a magnetic saturation flux density BS greater than 1.9 Telsa and a resistivity ? higher than 70 ?ohms-cm.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 6, 2012
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Feiyue Li, Xiaomin Liu
  • Patent number: 8257647
    Abstract: A micro-alloyed low carbon steel strip is obtained by hot rolling at temperature of the pre-strip never lower than 900° C. and shows such metallurgical and geometrical features, as well as relating to planarity and deformability, to render the same suitable to obtain structures of low weight and good mechanical resistance, thus being able for use in replacement of cold rolled strips for the production of finished stamped or cut pieces. Said steel strip, having thickness>0.7 mm, has a ratio yield load/breaking load>70%, a fine grain structure better than grade 10 of ASTM E 112 standard in a percentage higher than 90% of the whole structure and a ratio between breaking limit under strain and yield point ?/RPo.2>90%.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: September 4, 2012
    Inventor: Giovanni Arvedi
  • Patent number: 8192562
    Abstract: An object of the preset invention is to provide a spring steel wire that: shows excellent wire drawability not only when it is used as a spring steel wire for cold-winding formed into a steel spring by applying quenching and tempering treatment after wiredrawing but also when it is used as a spring steel wire for cold-winding formed into a steel spring as it is wiredrawn; and secures a spring having an excellent fatigue characteristic after the spring steel wire is formed into the spring. The spring steel wire according to the present invention is a spring steel wire excellent in fatigue characteristic and wire drawability, wherein: the contents of C, Si, Mn, Cr, Ti, B, and other elements are specified; the contents (mass %) of B, Ti, and N satisfy the expression (1) below; the amount of solid solute B is in the range of 0.0005% to 0.0040%; the remainder in the spring steel wire is composed of Fe and unavoidable impurities; and the solid solute B concentrates at the grain boundaries of pearlite nodules, 0.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 5, 2012
    Assignee: Kobe Steel, Ltd.
    Inventor: Nao Yoshihara
  • Publication number: 20120132323
    Abstract: A steel product having, by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, aluminum 0.008% or less by weight, and at least one element selected from the group consisting of titanium between about 0.01% and about 0.20%, niobium between about 0.01% and about 0.20%, molybdenum between about 0.05% and about 0.50%, and vanadium between about 0.01% and about 0.20%, and having a microstructure comprised of a majority bainite, and fine oxide particles of silicon and iron distributed through the steel microstructure of average precipitate size less than 50 nanometers. The yield strength of the steel product may be at least 55 ksi (380 MPa) or the tensile strength of at least 500 MPa, or both. The steel product may have total elongation of at least 6% or 10%, and thickness less than 3.0 mm.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 31, 2012
    Applicant: NUCOR CORPORATION
    Inventors: Christopher Ronald KILLMORE, James Geoffrey WILLIAMS
  • Patent number: 8187530
    Abstract: An object of this invention is to provide a steel for high-cleanliness spring which is useful for the production of a spring excellent in fatigue characteristics in high Si steels. The steel for high-cleanliness spring with excellent fatigue characteristics according to the invention contains: in terms of mass %, C: 1.2% or less (excluding 0%); Si: 1.8% to 4%; Mn: 0.1% to 2.0%; and total Al: 0.01% or less (excluding 0%), with the remainder being iron and inevitable impurities, in which the Si amount and a solute (SIMS) Ca amount in the steel satisfy a relationship of the following expression (1): Si×10?7?solute (SIMS) Ca?Si×5×10?7??(1) (in which each of the solute (SIMS) Ca and Si represents the amount thereof (mass %) in the steel).
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 29, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomoko Sugimura, Koichi Sakamoto, Yoshio Fukuzaki, Atsuhiko Yoshida, Takeshi Inoue
  • Publication number: 20120121454
    Abstract: A low-carbon resulfurized free-machining steel is excellent in machinability and contains 0.02% to 0.15% by mass of C; 0.004% by mass or less (exclusive of 0%) of Si; 0.6% to 3% by mass of Mn; 0.02% to 0.2% by mass of P; 0.35% to 1% by mass of S; 0.005% by mass or less (exclusive of 0% by mass) of Al; 0.008% to 0.03% by mass of 0; and 0.007% to 0.03% by mass of N, with the remainder being iron and inevitable impurities, in which the ratio [Mn]/[S] of the manganese content [Mn] to the sulfur content [S] is within the range of 3 to 4, and the carbon content [C], the manganese content [Mn] and the nitrogen content [N] satisfy the following Expression (1): 10[C]×[Mn]?0.94+1226 [N]2?1.2, wherein [C], [Mn] and [N] represent the contents on the percent by mass basis of carbon, manganese, and nitrogen, respectively.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 17, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Koichi SAKAMOTO, Atsuhiko Yoshida
  • Publication number: 20120114519
    Abstract: The invention relates to a cold-rolled carbon steel comprising (in % by weight) C 0.63-0.85%, max. 0.40% Si, 0.20-0.90% Mn, max. 0.035% P, max. 0.035% S, max. 0.060% Al, max. 0.40% Cr, 0.003-0.010% N, preferably 0.005-0.008%, and a maximum of 0.12% of at least one micro-alloying element, the remainder being iron and steel production-related pollutants. Possible micro-alloying elements are Ti, Nb, V and optionally Zr. A carbon steel of the type is cold-rolled into texture-rolled strip steel with a high cold reduction degree and can be used in particular as a material for coiling springs or other components having spring properties.
    Type: Application
    Filed: February 25, 2010
    Publication date: May 10, 2012
    Applicant: C.D. Waelzholz GmbH
    Inventors: Hans-Toni Junius, Heino Buddenberg, Michael Hellmann, Dirk Wilmes
  • Publication number: 20120014831
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Application
    Filed: October 19, 2010
    Publication date: January 19, 2012
    Inventors: Shingo Yamasaki, Toshiyuki Manabe, Daisuke Hirakami, Nariyasu Muroga
  • Patent number: 8097096
    Abstract: The present invention provides a fire resistant steel material excellent in high temperature strength, toughness, and reheating embrittlement resistance containing, by mass %, C: 0.001% to 0.030%, Si: 0.05% to 0.50%, Mn: 0.4% to 2.0%, Nb: 0.03% to 0.50%, Ti: 0.005% to less than 0.040%, N: 0.0001% to less than 0.0050%, and Al: 0.005% to 0.030%, limiting P: 0.03% or, less and S: 0.02% or less, satisfying C—Nb/7.74?0.005 and 2?Ti/N?12, and having a balance of Fe and unavoidable impurities and, further, a process for production of a fire resistant material comprising heating a steel slab comprised of this chemical composition to 1100 to 1350° C. and hot rolling it by a cumulative reduction rate at 1000° C. or less of 30% or more.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Suguru Yoshida, Kita Hiroshi, Hirokazu Sugiyama, Yoshiyuki Watanabe, Yasushi Hasegawa
  • Publication number: 20110318214
    Abstract: A water atomised prealloyed chromium-free, iron-based steel powder is provided which comprises by weight-%: 0.05-0.4 V, 0.09-0.3 Mn, less than 0.1 Cr, less than 0.1 Mo, less than 0.1 Ni, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, and less than 0.5 of unavoidable impurities, with the balance being iron.
    Type: Application
    Filed: March 15, 2010
    Publication date: December 29, 2011
    Applicant: HOGANAS AB (PUBL)
    Inventor: Sven Bengtsson
  • Publication number: 20110287280
    Abstract: A cold-rolled steel sheet has a chemical composition of C: 0.12% to 0.3%, Si: 0.5% or less, Mn: less than 1.5%, Al: 0.15% or less, N: 0.01% or less, P: 0.02% or less, and S: 0.01% or less, with the remainder including iron and inevitable impurities and has a martensite single-phase structure as its steel microstructure. In a surface region of the steel sheet from the surface to a depth one-tenth the gauge, the number density of n-ary groups of inclusions determined by specific n-th determinations is 120 or less per 100 cm2 of a rolling plane, where the distance in steel sheet rolling direction between outermost surfaces of two outermost particles of the group of inclusions is 100 ?m or more. The steel sheet is a high-strength cold-rolled steel sheet which has a sufficiently minimized rate of bending fracture starting from inclusions and thereby has excellent bending workability.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 24, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Atsuhiro SHIRAKI, Sae Hamamoto, Yukihiro Utsumi, Tetsuji Hoshika, Yuichi Futamura
  • Patent number: 8057650
    Abstract: A soft-magnetic FeCo based target material is provided which has a high saturation magnetic flux density and superior atmospheric corrosion resistance. The target material is a soft-magnetic FeCo based target material made of an FeCo based alloy. The FeCo based alloy comprises 0 to 30 at. % of one or more metal elements selected from the group consisting of B, Nb, Zr, Ta, Hf, Ti and V; and the balance being Fe and Co with unavoidable impurities. The Fe:Co atomic ratio ranges from 10:90 to 70:30. The FeCo based alloy may further comprise 0.2 at. % to 5.0 at. % of Al and/or Cr.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: November 15, 2011
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Ryoji Hayashi, Akihiko Yanagitani, Yoshikazu Aikawa, Toshiyuki Sawada
  • Publication number: 20110256017
    Abstract: A product including an iron casting alloy including iron, niobium and compacted graphite structures.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 20, 2011
    Applicant: BorgWarner Inc.
    Inventor: David M. Decker
  • Publication number: 20110236696
    Abstract: A high mechanical strength reinforcement steel comprising, in addition to iron, at most about 0.5% by weight carbon, at most about 0.5% by weight vanadium and/or niobium, and the usual residual elements of scrap steel. A method of reinforcing a dwelling from damage resulting from seismic activity, the method comprising providing, as a component of the dwelling, at least one rebar of a composition comprising, in addition to iron, at most about 0.5% by weight carbon, at most about 0.5% by weight vanadium and/or niobium, at most 1.7% by weight of manganese, at most 0.5% by weight of silicon, and the usual residual elements of scrap steel.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Inventors: Winky Lai, Cameron A. Cossette, James F. Petersen
  • Patent number: 7935883
    Abstract: A thermoelectric material has a composition expressed by (Fe1-pVp)100-x(Al1-qSiq)x (0.35?p?0.7, 0.01?q?0.7, 20?x?30 atomic %). The thermoelectric material includes a crystal phase having an L21 structure or a crystal phase having a B2 structure as a main phase.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: May 3, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Sakurada, Naoki Shutoh
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Patent number: 7905966
    Abstract: The invention relates to a method of producing a strip of nanocrystalline material which is obtained from a wound ribbon that is cast in an amorphous state, having atomic composition [Fe1?a?bCoaNib]100?x?y?z??????CuxSiyBzNb?M??M??, M? being at least one of elements V, Cr, Al and Zn, and M? being at least one of elements C, Ge, P, Ga, Sb, In and Be, with: a ?0.07 and b ?0.1, 0.5 ?x ?1.5 and 2 ???5, 10?y?16.9 and 5?z?8, ??2 and ??2. According to the invention, the amorphous ribbon is subjected to crystallization annealing, in which the ribbon undergoes annealing in the unwound state, passing through at least two S-shaped blocks under voltage along an essentially longitudinal axial direction of the ribbon, such that the ribbon is maintained at an annealing temperature of between 530° C. and 700° C. for between 5 and 120 seconds and under axial tensile stress of between 2 and 1000 MPa.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: March 15, 2011
    Assignee: Imphy Alloys
    Inventors: Thierry Waeckerle, Thierry Save, Alain Demier
  • Patent number: 7879287
    Abstract: A hot-rolled steel sheet for high-strength ERW pipes contains about 0.02% to about 0.06% C; about 0.05% to about 0.50% Si; about 0.5% to about 1.5% Mn; about 0.010% or less P; about 0.0010% or less S; about 0.01% to about 0.10% Al; about 0.01% to about 0.10% Nb; about 0.001% to about 0.025% Ti; about 0.001% to about 0.005% Ca; about 0.003% or less 0; and about 0.005% or less N, and at least one element selected from the group consisting of about 0.01% to about 0.10% V; about 0.01% to about 0.50% Cu; about 0.01% to about 0.50% Ni; and about 0.01% to about 0.50% Mo on the basis of mass. The group of C, Si, Mn, Cu, Ni, Mo, and V and the group of Ca, 0, and S satisfy specific relationships, and the microstructure of the steel sheet is composed of about 95% by volume or more bainitic ferrite.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: February 1, 2011
    Assignee: JFE Steel Corporation
    Inventors: Takashi Kobayashi, Hiroshi Nakata, Chikara Kami, Toru Inazumi, Shuji Kawamura
  • Publication number: 20110002807
    Abstract: This steel for induction hardening includes: in terms of mass %, C: 0.40% or more to 0.75% or less; Si: 0.002% or more to 3.0% or less; Mn: 0.20% or more to 2.0% or less; S: 0.002% or more to 0.1% or less; Al: more than 0.10% to 3.0% or less; P: 0.030% or less; and N: 0.035% or less, with the remainder being Fe and inevitable impurities.
    Type: Application
    Filed: January 5, 2010
    Publication date: January 6, 2011
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hajime Saitoh, Toshiharu Aiso, Masayuki Hashimura, Atsushi Mizuno, Manabu Kubota
  • Patent number: 7820099
    Abstract: The present invention provides a high strength hot rolled steel sheet raised in Si content, wherein a conversion coating can be formed homogeneously over the entire surface of the steel sheet, no new step is added in the production of the steel sheet, and quality control is also facilitated, comprising, by mass %, C: 0.03 to 0.15%, Si: 0.8 to 3.0%, Mn: 0.5 to 3.0%, P: 0.07% or less, S: 0.01% or less, Al: 0.015 to 0.1%, N: 0.001 to 0.008%, and, if necessary, having Ti, Nb, etc. added, the oxides on the steel sheet surface having an Si concentration of 3.5% or less and an Mn concentration of 3.5% or less. Preferably, the average roughness Ra is 3.0 ?m or less and the pitting due to pickling is an average of 5 or less in 10 ?n side squares. The scale after the hot rolling is washed off by dipping the sheet in a solution having an HCl concentration of 7 to 15% and an Fe ion concentration of 4 to 12% at a solution temperature of 80 to 98° C. for 40 sec or more.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: October 26, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Teruki Hayashida, Masahiro Ohara
  • Patent number: 7819990
    Abstract: An iron-cobalt alloy containing in weight percentages: 10 to 22% of Co; traces to 2.5% of Si; traces to 2% of Al; 0.1 to 1% of Mn; traces to 0.0100% of C, a total of O, N and S content ranging between traces of 0.0070%; a total of Si, Al, Cr, Mo, V, Mn content ranging between 1.1 and 3.5%; a total of Cr, Mo and V content ranging between traces of 3%; a total of Ta and Nb content ranging between traces and 1%; and the rest being iron and impurities resulting from production wherein: 1.23×(Al+Mo) %+0.84 (Si+Cr+V) %?0.15×(Co %?15)?2.1, and 14.5×(Al+Cr) %+12×(V+Mo) %+25×Si %?21. The inventive alloy is useful for making electromagnetic actuator mobile cores.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: October 26, 2010
    Assignee: Imphy Ugine Precision
    Inventors: Thierry Waeckerle, Lucien Coutu, Marc Leroy, Laurent Chaput, Herve Fraisse
  • Publication number: 20100209283
    Abstract: A steel sheet excellent in mechanical strength, workability and thermal stability and suited for use as a raw material in such fields of manufacturing automobiles, household electric appliances and machine structures and of constructing buildings, and a manufacturing method thereof are provided. The steel sheet is a hot-rolled steel sheet of carbon steel or low-alloy steel, the main phase of which is ferrite, and is characterized in that the average ferrite crystal grain diameter D (?m) at the depth of ¼ of the sheet thickness from the steel sheet surface satisfies the relations respectively defined by the formulas (1) and (2) given below and the increase rate X (?m/min) in average ferrite crystal grain diameter at 700° C. at the depth of ¼ of the sheet thickness from the steel sheet surface and said average crystal grain diameter D (?m) satisfy the relation defined by the formula (3) given below: 1.2?D?7??formula (1) D?2.7+5000/(5+350.C+40.Mn)2??formula (2) D·X?0.
    Type: Application
    Filed: April 27, 2010
    Publication date: August 19, 2010
    Inventors: Toshirou Tomida, Norio Imai, Mitsuru Yoshida, Kaori Kawano, Masayuki Wakita, Tamotsu Toki, Masanori Yasuyama, Hitomi Nishibata
  • Patent number: 7776259
    Abstract: A high strength and creep resistant soft magnetic Fe—Co alloy includes, in weight %, Fe and Co such that the difference between the Fe and Co is at least 2%, at least 35% Co, and 2.5%?(V+Mo+Nb), wherein 0.4%?Mo and/or 0.4%?Nb. This alloy can further include B, C, W, Ni, Ti, Cr, Mn and/or Al. A vanadium-free high strength soft magnetic Fe—Co alloy includes in weight %, Fe and Co such that the difference between the Fe and Co is at least 2%, and at least 15% Co, the alloy further satisfying (0.1%?Nb and 0.1%?W) or 0.25%?Mn. This alloy can further include B, C, Ni, Ti, Cr and/or Al.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: August 17, 2010
    Assignee: Philip Morris USA Inc.
    Inventors: Seetharama C. Deevi, Rangaraj S. Sundar
  • Publication number: 20100186855
    Abstract: The invention relates to a steel and a processing method for high-strength fracture-splittable machine components that are composed of at least two fracture-splittable parts. The steel and method are characterized in that the chemical composition of the steel (expressed in percent by weight) is as follows: 0.40%?C?0.60%; 0.20%?Si?1.00%; 0.50%?Mn?1.50%; 0%?Cr?1.00%; 0%?Ni?0.50%; 0%?Mo?0.20%; 0%?Nb?0.050%; 0%?V?0.30%; 0%?Al?0.05%; 0.005%?N?0.020%, the rest being composed of iron and smelting-related impurities and residual matter.
    Type: Application
    Filed: July 27, 2007
    Publication date: July 29, 2010
    Inventors: Roman Diederichs, Axel Stueber, Robert Lange
  • Publication number: 20100186856
    Abstract: A steel product or thin steel cast strip including, by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, and at least one of niobium between 0.01% and 0.20% and vanadium between 0.01% and 0.20%, and a microstructure of a majority bainite and acicular ferrite, and more than 70% niobium and/or vanadium in solid solution. The steel product may have an increase in elongation and an increase in yield strength after age hardening. The age hardened steel product may have niobium carbonitride particles with an average particle size of 10 nanometers and less, and may have substantially no niobium carbonitride particles greater than 50 nanometers. The steel product may have a yield strength of at least 380 MPa, a tensile strength of at least 410 MPa, or both. The product may have a total elongation of at least 6% or 10%.
    Type: Application
    Filed: February 19, 2010
    Publication date: July 29, 2010
    Applicant: NUCOR CORPORATION
    Inventors: James Geoffrey WILLIAMS, Harold Roland KAUL, Daniel Geoffrey EDELMAN, Christopher Ronald KILLMORE
  • Publication number: 20100172788
    Abstract: A method of manufacturing a cold-rolled steel sheet includes: adding, by weight %, carbon (C) 0.005% or less, nitrogen (N) 0.002 to 0.005%, manganese (Mn) 0.1 to 1.0%, phosphorous (P) 0.005 to 0.1%, niobium (Nb) 0.015 to 0.04%, silicon (Si) 0.30 or less, sulfur (S) 0.02% or less, aluminum 0.001 to 0.03%; adjusting the atomic ratio of Nb/C to 1 or more and the atomic ratio of Al/N to 0.5 to 1.5, homogenizing a steel containing iron (Fe) and elements inevitably contained in manufacturing the steel as the remainder at temperature of 1150 to 1300° C., setting the final hot-rolling temperature to 890 to 950° C. that is over an Ar3 critical point; and hot-winding the hot-rolled steel sheet and cold-rolling the hot-rolled steel sheet at 40 to 80% cold reduction ratio.
    Type: Application
    Filed: October 23, 2008
    Publication date: July 8, 2010
    Applicant: HYUNDAI STEEL COMPANY
    Inventors: Seongju Kim, Jeongsu Lee, Yongbin Im
  • Patent number: 7717976
    Abstract: A method for making a strain aging resistant steel comprises adding boron to the steel, wherein substantially all of the boron in the steel forms boron nitride. A method for making steel comprises adding a nitride-forming element to the steel to lower the free nitrogen content of the steel to a free nitrogen content specification. A high-carbon steel contains boron nitride, wherein the free nitrogen content of the steel is less than 80 ppm. A strain aging resistant steel wherein the carbon content of the steel is between about 0.54 percent and about 0.75 percent.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: May 18, 2010
    Assignee: L&P Property Management Company
    Inventors: C. Larry Coe, Alan T. Gorton
  • Publication number: 20100086431
    Abstract: The present invention provides a non-aging enameling steel sheet having excellent fishscale resistance characteristics that is suitable for one-coat enameling and a method of producing the same. The enameling steel sheet comprises, in mass %, C: 0.010% or less, Mn: 0.03% to 1.30%, Si: 0.100% or less, Al: 0.010% or less, N: 0.0055% or less, P: 0.035% or less, S: 0.08% or less, O: 0.005% to 0.085%, Nb: 0.055% to 0.250%, and the balance of Fe and unavoidable impurities, in which steel sheet preferably an Fe—Nb—Mn system composite oxide is present, a distribution of Nb mass % concentrations is present in the composite oxide, and the ratio of Nb mass % concentration of a high-concentration portion (Nb max %) to Nb mass % concentration of a low-concentration portion (Nb min %) is Nb max %/Nb min % ?1.2.
    Type: Application
    Filed: August 13, 2007
    Publication date: April 8, 2010
    Inventors: Hidekuni Murakami, Satoshi Nishimura
  • Publication number: 20100047617
    Abstract: Steel sheet having a composition of ingredients containing substantially, by mass %, C: 0.005 to 0.200%, Si: 2.50% or less, Mn: 0.10 to 3.00%, N: 0.0100% or less, Nb: 0.005 to 0.100%, and Ti: 0.002 to 0.150% and satisfying the relationship of Ti-48/14×N?0.0005, having a sum of the X-ray random intensity ratios of the {100}<001> orientation and the {110}<001> orientation of a ? sheet thickness part of 5 or less, having a sum of the maximum value of the X-ray random intensity ratios of the {110}<111> to {110}<112> orientation group and the X-ray random intensity ratios of the {211}<111> orientation of 5 or more, and having a high rolling direction Young's modulus measured by the static tension method and a method of production of the same are provided.
    Type: Application
    Filed: November 7, 2007
    Publication date: February 25, 2010
    Inventors: Natsuko Sugiura, Naoki Maruyama, Manabu Takahashi, Yohji Nakamura, Koji Hanya
  • Publication number: 20090311125
    Abstract: Provided is a hot-working steel excellent in machinability and impact value comprising, in mass %, C: 0.06 to 0.85%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.0%, P: 0.005 to 0.2%, S: 0.001 to 0.35%, and Al: 0.06 to 1.0% and N: 0.016% or less, in contents satisfying Al×N×105?96, and a balance of Fe and unavoidable impurities, total volume of AlN precipitates of a circle-equivalent diameter exceeding 200 nm accounting for 20% or less of total volume of all AlN precipitates.
    Type: Application
    Filed: April 17, 2008
    Publication date: December 17, 2009
    Inventors: Kei Miyanishi, Masayuki Hashimura, Atsushi Mizuno
  • Publication number: 20090274573
    Abstract: The invention provides a machine structural steel excellent in machinability and strength properties that has good machinability over a broad range of machining speeds and also has high impact properties and high yield ratio, which machine structural steel comprises, in mass %, C: 0.1 to 0.85%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.0%, P: 0.005 to 0.2%, S: 0.001 to 0.15%, total Al: greater than 0.05% and not greater than 0.3%, Sb: less than 0.0150% (including 0%), and total N: 0.0035 to 0.020%, solute N being limited to 0.0020% or less, and a balance of Fe and unavoidable impurities.
    Type: Application
    Filed: December 25, 2007
    Publication date: November 5, 2009
    Inventors: Kei Miyanishi, Masayuki Hashimura, Atsushi Mizuno, Kenichiro Miyamoto
  • Publication number: 20090260729
    Abstract: A high-carbon hot-rolled steel sheet with excellent width-direction homogeneity is provided. The steel sheet contains 0.2% to 0.7% carbon, 0.01% to 1.0% silicon, 0.1% to 1.0% manganese, 0.03% or less phosphorus, 0.035% or less sulfur, 0.08% or less aluminum, and 0.01% or less nitrogen, and the balance is iron and incidental impurities. The structure is such that the average ferrite grain size of edge parts of the steel sheet is less than 35 ?m, the average ferrite grain size of a part closer to the center of the steel sheet than the edge parts is less than 20 ?m, and the average carbide grain size is 0.10 ?m or more and less than 2.0 ?m. The steel sheet is produced by roughly rolling the steel, finish-rolling the steel at a finishing temperature of more than (Ar3+40° C.), cooling the steel at a cooling rate of more than 120° C./s within two seconds after the finish rolling to a cooling termination temperature of more than 550° C. and less than 650° C., coiling the steel at a temperature of 550° C.
    Type: Application
    Filed: August 6, 2007
    Publication date: October 22, 2009
    Inventors: Shunji Iizuka, Kazuhiro Seto, Akio Kobayashi, Kenichi MItsuzuka, Naoya Aoki, Hideyuki Kimura, Nobuyuki Nakamura
  • Publication number: 20090252955
    Abstract: Disclosed is a steel sheet, containing: Si: 0.20-2% (the term “%” herein means “mass %”, the same is true hereinbelow), Mn: 1-2.5%, a total mass of Si and Mn being 1.5% or more, and O: 0.002% or less (exclusive of 0%), C: 0.02-0.25%, P: 0.1% or less (exclusive of 0%), S: 0.05% or less (exclusive of 0%), Al—0.02-0.2%, and N: 0.0015-0.015%. The steel sheet of the invention can be advantageously used for forming wide beads even in high-speed arc welding of 100 cm/min or higher.
    Type: Application
    Filed: June 19, 2009
    Publication date: October 8, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tetsuo Soshiroda, Reiichi Suzuki, Kei Yamazaki
  • Publication number: 20090252641
    Abstract: A steel sheet contains, in terms of percent by mass, C: 0.01 to 0.2%, Si: 2.0% or less, and Mn: 3.0% or less and has a martensite phase as dominant phase and ferrite with a grain size of 20 ?m or less as a second phase. The ferrite is contained in area ratio of 1% to 30% and the amount of solute carbon being 0.01 percent by mass of more. The steel sheet can provide a hot-rolled steel sheet suitable for automobile steel sheet, i.e., has excellent press workability and excellent strain aging property whereby the tensile strength significantly increases by heat treatment at about the same temperature as typical baking process after the press-working. Moreover, hardening of the ferrite phase improves the fatigue strength after the strain aging.
    Type: Application
    Filed: March 29, 2006
    Publication date: October 8, 2009
    Applicant: JFE Steel Corporation a corporation of Japan
    Inventors: Toru Hoshi, Saiji Matsuoka
  • Patent number: 7582171
    Abstract: A high-strength, soft-magnetic iron-cobalt-vanadium alloy selection is proposed, consisting of 35.0?Co?55.0% by weight, 0.75?V?2.5% by weight, O?Ta+2×Nb?0.8% by weight, 0.3<Zr?1.5% by weight, remainder Fe and melting-related and/or incidental impurities. This zirconium-containing alloy selection has excellent mechanical properties, in particular a very high yield strength, high inductances and particularly low coercive forces. It is eminently suitable for use as a material for magnetic bearings used in the aircraft industry.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 1, 2009
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Joachim Gerster, Johannes Tenbrink
  • Publication number: 20090202384
    Abstract: A high tensile strength hot-rolled steel sheet having superior strain aging hardenability, which has high formability and stable quality characteristics, and in which satisfactory strength is obtained when the steel sheet is formed into automotive components, thus enabling the reduction in weight of automobile bodies. Specifically, a method for producing a high tensile strength hot-rolled steel sheet having superior strain aging hardenability with a BH of 80 MPa or more, a ?TS of 40 MPa or more, and a tensile strength of 440 MPa or more includes the steps of heating a steel slab to 1,000° C. or more, the steel slab containing, in percent by mass, 0.15% or less of C, 0.45% or less of Si, 3.0% or less of Mn, 0.08% or less of P, 0.02% or less of S, 0.02% or less of Al, 0.0050% to 0.0250% of N, and optionally 0.1% or less in total of at least one of more than 0.02% to 0.1% of Nb and more than 0.02% to 0.1% of V, the ratio N (mass %)/Al (mass %) being 0.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 13, 2009
    Applicant: JFE Steel Corporation, a Corporation of Japan
    Inventors: Akio Tosaka, Sinjiro Kaneko, Yoichi Tominaga, Noriyuki Katayama, Nobutaka Kurosawa, Kei Sakata, Osamu Furukimi
  • Patent number: 7569286
    Abstract: Disclosed is a hardfacing alloy capable of withstanding service abrasion of the order of silicious earth particles and weldable on industrial products, such as tool joints and stabilizers used in oil and gas well drilling, and other industrial products. The hardfacing alloy has a low coefficient of friction resulting from excellent metal to metal resistance and significant reduction in industrial wear on industrial products, such as casing wear. Other embodiments of the invention include tool joints having the hardbanding alloy welded to the outer cylindrical surface to its box and pin members and to stabilizer ribs on the stabilizer used in earth boring, such as boring for oil and gas, other industrial products, and methods of applying the hardfacing alloy to their surfaces.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 4, 2009
    Assignee: ATT Technology, Ltd.
    Inventors: Roger Auguste Daemen, Keith E. Moline
  • Publication number: 20090134647
    Abstract: Steels having a pearlitic structure and containing 0.65 to 0.80 weight percent carbon, 0.90 to 1.10 weight percent silicon, 0.85 to 1.15 weight percent manganese, 0.001 to 0.030 weight percent phosphorus, 0.009 to weight percent niobium, 0.05 to 0.15 nickel, 0.20 to 0.30 weight percent molybdenum, 0.10 to 0.30 weight percent vanadium and 0.005 to 0.040 weight percent sulfur with the remainder of said steel being iron and incidental impurities, can be used to make railway wheels that are particularly resistant to rolling contact fatigue and, hence, shelling.
    Type: Application
    Filed: December 15, 2008
    Publication date: May 28, 2009
    Applicant: TRANSPORTATION TECHNOLOGY CENTER, INC.
    Inventors: Francisco C. Robles Hernandez, Daniel Hunter Stone
  • Publication number: 20090051182
    Abstract: Steels having a pearlitic structure and containing 0.65 to 0.80 weight percent carbon, 0.90 to 1.10 weight percent silicon, 0.85 to 1.15 weight percent manganese, 0.001 to 0.030 weight percent phosphorus, 0.009 to 0.013 weight percent niobium, 0.05 to 0.15 nickel, 0.20 to 0.30 weight percent molybdenum, 0.10 to 0.30 weight percent vanadium and 0.005 to 0.040 weight percent sulfur with the remainder of said steel being iron and incidental impurities, can be used to make railway wheels that are particularly resistant to rolling contact fatigue and, hence, shelling.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 26, 2009
    Applicant: TRANSPORTATION TECHNOLOGY CENTER, INC.
    Inventors: Francisco C. Robles Hernandez, Daniel Hunter Stone
  • Publication number: 20080219879
    Abstract: A steel product or thin steel cast strip comprised of, by weight, less than 0.25% carbon, between 0.20 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, and at least one of niobium between 0.01% and 0.20% and vanadium between 0.01% and 0.20%, and having a microstructure of a majority bainite and acicular ferrite, and more than 70% niobium and/or vanadium in solid solution. The steel product may have an increase in elongation and an increase in yield strength after age hardening. The age hardened steel product may have niobium carbonitride particles with an average particle size of 10 nanometers and less, and may have substantially no niobium carbonitride particles greater than 50 nanometers. The steel product may have a yield strength of at least 380 MPa or a tensile strength of at least 410 MPa, or both. The steel product or thin cast steel strip may have a total elongation of at least 6% or 10%.
    Type: Application
    Filed: May 6, 2008
    Publication date: September 11, 2008
    Applicant: NUCOR CORPORATION
    Inventors: James Geoffery WILLIAMS, Harold Roland KAUL, Daniel Geoffrey EDELMAN, Christopher Ronald KILLMORE
  • Publication number: 20080166257
    Abstract: The present invention provides a steel sheet excellent in workability, which may be used for components of an automobile or the like, and a method for producing the same. More specifically, according to one exemplary embodiment of the present invention, a steel sheet excellent in workability, including in mass, 0.08 to 0.25% C, 0.001 to 1.5% Si, 0.01 to 2.0% Mn, 0.001 to 0.06% P, at most 0.05% S, 0.001 to 0.007% N, 0.008 to 0.2% Al, at least 0.01% Fe. The steel sheet having an average r-value of at least 1.2, an r-value in the rolling direction of at least 1.3, an r-value in the direction of 45 degrees to the rolling direction of at least 0.9, and an r-value in the direction of a right angle to the rolling direction of at least 1.2.
    Type: Application
    Filed: March 14, 2008
    Publication date: July 10, 2008
    Inventors: Naoki Yoshinaga, Nobuhiro Fujita, Manabu Takahashi, Koji Hashimoto, Shinya Sakamoto, Kaoru Kawasaki, Yasuhiro Shinohara, Takehide Senuma
  • Publication number: 20080156403
    Abstract: Disclosed herein is a steel for high-speed cold working which exhibits good cold workability during working and also exhibits high hardness after working. The steel for high-speed cold working contains C: 0.03 to 0.6% (by mass), Si: 0.005 to 0.6%, Mn: 0.05 to 2%, P: no more than 0.05% (excluding 0%), S: no more than 0.05% (excluding 0%), and N: no more than 0.04% (excluding 0%), with the remainder being iron and inevitable impurities and the amount of dissolved nitrogen in the steel being no less than 0.006%.
    Type: Application
    Filed: December 5, 2007
    Publication date: July 3, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Tomokazu MASUDA, Takuya Kochi, Shogo Murakami, Hiroshi Yaguchi
  • Publication number: 20080138235
    Abstract: A (CoFe)ZrNb/Ta/Hf based target material is provided which is capable of achieving a high sputtering efficiency and a high sputtering effect by increasing the leakage magnetic flux in the magnetron sputtering, and a method for producing the target material. This target material is made of an Fe—Co based alloy comprising not less than 80 atomic % in total of Fe and Co having an Fe:Co atomic ratio of 80:20 to 0:100, and less than 20 atomic % of one or more selected from the group consisting of Zr, Hf, Nb and Ta. The Fe—Co based alloy comprises a Co—Fe phase being a ferromagnetic phase, and the one or more selected from the group consisting of Zr, Hf, Nb and Ta are solid-solved into the Co—Fe phase in a total amount of 0.5 to 2 atomic %.
    Type: Application
    Filed: November 16, 2007
    Publication date: June 12, 2008
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani, Ryoji Hayashi, Yoshikazu Aikawa
  • Patent number: 7361411
    Abstract: Disclosed is a hardfacing alloy capable of withstanding service abrasion of the order of silicious earth particles and weldable on industrial products, such as tool joints and stabilizers used in oil and gas well drilling, and other industrial products. The hardfacing alloy has a low coefficient of friction resulting from excellent metal to metal resistance and significant reduction in industrial wear on industrial products, such as casing wear. Other embodiments of the invention include tool joints having the hardbanding alloy welded to the outer cylindrical surface to its box and pin members and to stabilizer ribs on the stabilizer used in earth boring, such as boring for oil and gas, other industrial products, and methods of applying the hardfacing alloy to their surfaces.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: April 22, 2008
    Assignee: ATT Technology, Ltd.
    Inventors: Roger Auguste Daemen, Keith E. Moline
  • Publication number: 20080091267
    Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. The endoprostheses comprise a tubular member capable of maintaining patency of a bodily vessel. The tubular member includes a mixture of at least two compositions, where the presence of the second composition gives the mixture a greater hardness than that of the first composition alone. The first composition includes less than about 25 weight percent chromium, less than about 7 weight percent molybdenum, from about 10 to about 35 weight percent nickel, and iron. The second composition is different from the first and is present from about 0.1 weight percent to about 5 weight percent of the mixture.
    Type: Application
    Filed: March 29, 2007
    Publication date: April 17, 2008
    Inventors: Jonathan S. Stinson, Matthew Cambronne, Richard B. Frank, Richard A. Gleixner, James E. Heilmann