Zirconium Containing Patents (Class 420/414)
  • Publication number: 20140248288
    Abstract: The invention relates to biodegradable, metal alloy-containing compositions, methods for their preparation and applications for their use. The compositions include magnesium and other components, such as yttrium, calcium, silver, cerium, and zirconium; or zinc, silver, cerium, and zirconium; or aluminum, zinc, calcium, manganese, silver, yttrium; or strontium, calcium, zinc. The compositions are prepared by vacuum induction/crucible melting together the components and casting the melted mixture in a preheated mild steel/copper mold. In certain embodiments, the compositions of the invention are particularly useful for forming medical devices for implantation into a body of a patient.
    Type: Application
    Filed: October 5, 2012
    Publication date: September 4, 2014
    Inventors: Prashant N. Kumta, Da-Tren Chou, Daeho Hong, Partha Saha
  • Publication number: 20140050608
    Abstract: A method for reducing impurities in magnesium comprises: combining a zirconium-containing material with a molten low-impurity magnesium including no more than 1.0 weight percent of total impurities in a vessel to provide a mixture; holding the mixture in a molten state for a period of time sufficient to allow at least a portion of the zirconium-containing material to react with at least a portion of the impurities and form intermetallic compounds; and separating at least a portion of the molten magnesium in the mixture from at least a portion of the intermetallic compounds to provide a purified magnesium including greater than 1000 ppm zirconium. A purified magnesium including at least 1000 ppm zirconium and methods for producing zirconium metal using magnesium reductant also are disclosed.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 20, 2014
    Applicant: ATI PROPERTIES, INC.
    Inventors: Scott Coffin, Arnel M. Fajardo
  • Patent number: 8475608
    Abstract: Magnesium-based hydrogen storage alloys having metallic magnesium (Mg) and a magnesium-containing intermetallic compound (MgxMy wherein y is 1?x) and containing not less than 60 mass-% of magnesium in total, and having a phase of a primarily crystallized magnesium-containing intermetallic compound in its solidification structure.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: July 2, 2013
    Assignee: Japan Metals and Chemicals Co., Ltd.
    Inventors: Masahito Osawa, Hidenori Tomioka, Naoyoshi Terashita, Noboru Hayami, Shigeru Tsunokake
  • Publication number: 20130089457
    Abstract: Provided is a composite material suitable for forming a part for continuous casting capable of producing cast materials of excellent surface quality for a long period of time and with which a molten metal is inhibited from flowing into a gap between a nozzle and a moving mold. A composite material (nozzle 1) includes a porous body 2 having a large number of pores and a filler incorporated in at least part of a portion that comes into contact with the molten metal, the portion being part of a surface portion of the porous body. The filler incorporated in the porous body 2 is at least one selected from a nitride, a carbide, and carbon.
    Type: Application
    Filed: June 3, 2011
    Publication date: April 11, 2013
    Applicant: Sumitomo Electric Industries Ltd
    Inventors: Michimasa Miyanaga, Takeshi Uchihara, Masatada Numano, Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20130060326
    Abstract: An implant made in total or in parts of a biodegradable magnesium alloy consisting of Y: 2.0-6.0% by weight, Nd: 1.5-4.5% by weight, Gd: 0-4.0% by weight, Dy: 0-4.0% by weight, Er: 0-4.0% by weight, Zr: 0.1-1.0% by weight, Li:0-0.2% by weight, Al: 0-0.3% by weight, under the condition that a) a total content of Er, Gd and Dy is in the range of 0.5-4.0% by weight and b) a total content of Nd, Er, Gd and Dy is in the range of 2.0-5.5% by weight, the balance being magnesium and incidental impurities up to a total of 0.3% by weight.
    Type: Application
    Filed: October 31, 2012
    Publication date: March 7, 2013
    Inventor: Biotronik Vi Patent Ag
  • Publication number: 20120269673
    Abstract: The present invention relates to a magnesium alloy having controlled corrosion resistance properties, which comprises magnesium (Mg) and an alloying element and includes a magnesium phase and a phase composed of magnesium and the alloying element, wherein the difference in electrical potential between the magnesium phase and the phase composed of magnesium and the alloying element is greater than 0 V but not greater than 0.2 V.
    Type: Application
    Filed: December 7, 2010
    Publication date: October 25, 2012
    Inventors: Ja-Kyo Koo, Hyun-Kwang Seok, Seok-Jo Yang, Yu-Chan Kim, Sung-Youn Cho, Jong-Tack Kim
  • Patent number: 8268235
    Abstract: An implant consisting entirely or in part of a biocorrodible magnesium alloy having the composition Gd: 2.7-15.0 wt %, Zn: 0-0.5 wt %, Zr: 0.2-1.0 wt %, Nd: 0-4.5 wt %, Y: 0-2.0 wt %, where magnesium and impurities due to the production process account for the remainder to a total of 100 wt %.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: September 18, 2012
    Assignee: Biotronik VI Patent AG
    Inventor: Bodo Gerold
  • Publication number: 20110229365
    Abstract: Magnesium alloys containing: Y: 2.0-6.0% by weight Nd: 0-4.0% by weight Gd: 0-5.5% by weight Dy: 0-5.5% by weight Er: 0-5.5% by weight Zr: 0.05-1.0% by weight Zn+Mn: <0.11% by weight, optionally other rare earths and heavy rare earths, the balance being magnesium and incidental impurities and the total content of Gd, Dy and Er is in the range of 0.3-12% by weight, wherein either the alloy contains low amounts of Yb and Sm and exhibits a corrosion rate as measured according to ASTM B117 of less than 30 Mpy, and/or the area percentage of any precipitated particles arising when the alloy is processed having an average particle size greater than 1 m and less than 15 m is less than 3%.
    Type: Application
    Filed: September 30, 2009
    Publication date: September 22, 2011
    Applicant: Magnesium Elektron Limited
    Inventors: Paul Lyon, Ismet Syed, Anthony James Boden, Kenneth Savage
  • Patent number: 7743502
    Abstract: The present invention provides an apparatus including a magnesium alloy vessel that is substantially free of aluminum and zinc, but including magnesium in combination with a gettering metal and a method for making such apparatus. The magnesium alloy vessel has a hollow interior cavity containing a working fluid, with a stable, protective layer formed on the inside wall of the vessel so as to establish non-corrosive compatibility with the working fluid.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: June 29, 2010
    Assignee: Thermal Corp.
    Inventors: John H. Rosenfeld, G. Yale Eastman
  • Publication number: 20100161031
    Abstract: The present invention relates to compositions and structure of deformable alloys on the basis of magnesium with an optimum combination of mechanical properties (strength, plasticity) and a resistance to corrosion, including in vivo. Alloys of the new group possess an excellent formability at room temperature, high corrosion stability in sodium chloride solution, excellent heat resistance and can be used in various technical applications, particularly in vivo as a structural material for stents.
    Type: Application
    Filed: May 5, 2008
    Publication date: June 24, 2010
    Inventors: Igor Isakovich Papirov, Anatoliy Ivanovitch Pikalov, Vladimir Sergeevitch Shokurov, Sergey Vladimirovitch Sivtsov
  • Publication number: 20100075162
    Abstract: The present invention provides an implant consisting of a biodegradable magnesium-based alloy or partially applied with the magnesium-based alloy, and a method for manufacturing the same. The implant according to the present invention is biodegradable, in which its biodegradation rate can be easily controlled, and the implant has excellent strength and interfacial strength to an osseous tissue.
    Type: Application
    Filed: September 21, 2007
    Publication date: March 25, 2010
    Inventors: Seok-Jo Yang, Hyun-Kwang Seok, Jung-Gu Kim, Tae-Hong Lim, Kyeong-Ho Baik, Yu-Chan Kim, Ja-Kyo Koo
  • Publication number: 20100049299
    Abstract: Multi-component magnesium-based alloy consisting essentially of about 1.0-15.0 wt. % of scandium, about 0.1-3.0 wt. % of yttrium, about 1.0-3.0 wt. % of rare-earth metal, about 0.1-0.5 wt. % of zirconium. Purity degree of magnesium base is not less of 99.995 wt. %. Impurities of Fe, Ni and Cu do not exceed 0.001 wt. % of everyone, the contents of other impurity in an alloy does not exceed 0.005 wt. %. The alloy demonstrates an improved combination of strength, deformability and corrosion resistance at room temperature. The alloy does not contain harmful and toxic impurities. The alloy can be used in the various practical applications demanding a combination of high strength, deformability and corrosion resistance, preferably in the field of medicine.
    Type: Application
    Filed: March 15, 2007
    Publication date: February 25, 2010
    Applicant: Acrostak Corp. BVI
    Inventors: Youri Popowski, Igor Isakovich Papirov, Shokurov Vladimir Sergeevitch, Anatoliy Ivanovitch Pikalov, Sergey Vladimirovitch Sivtsov
  • Publication number: 20090116992
    Abstract: A method for making Mg(magnesium)-based intermetallic compound uses a thermal process during a melting process to produce largely the Mg-based intermetallic compound. The vapor pressure of Mg is high, thereby Mg is prone to be vaporized from a melt and a wrought solid alloy in the melting process of high temperature, for purifying the wrought Mg-based intermetallic compound. The method may simplify the process and devices for making the Mg-based intermetallic compound, and produce efficiently a larger of high purity Mg-based intermetallic compound.
    Type: Application
    Filed: December 10, 2007
    Publication date: May 7, 2009
    Inventors: Sheng-Long Lee, Jing-Chie Lin, Che-Wei Hsu, Cheng-Yu Chou, Yin-Chun Cheng, Chia-Wang Weng, Chien-Chang Chiang, Chien-Wei Chen
  • Publication number: 20090104527
    Abstract: A hydrogen storage alloy containing a phase of a chemical composition defined by a general formula A5·xB1+xC24: wherein in the general formula A5·xB1+xC24, A denotes one or more element(s) selected from rare earth elements; B denotes one or more element(s) selected from a group consisting of Mg, Ca, Sr, and Ba; C denotes one or more element(s) selected from a group consisting of Ni, Co, Mn, Al, Cr, Fe, Cu, Zn, Si, Sn, V, Nb, Ta, Ti, Zr, and Hf; and x denotes a numeral in a range from ?0.1 to 0.8: and the phase has a crystal structure belonging to a space group of R-3m and having a length ratio of the c-axis to the a-axis of the lattice constant in a range of 11.5 to 12.5.
    Type: Application
    Filed: August 11, 2006
    Publication date: April 23, 2009
    Applicant: GS Yuasa Corporation
    Inventors: Tetsuya Ozaki, Tetsuo Sakai, Manabu Kanemoto, Minoru Kuzuhara, Tadashi Kakeya, Masaharu Watada
  • Publication number: 20080311423
    Abstract: The invention is to provide a magnesium alloy material such as a magnesium alloy cast material or a magnesium alloy rolled material, excellent in mechanical characteristics and surface precision, a producing method capable of stably producing such material, a magnesium alloy formed article utilizing the rolled material, and a producing method therefor. The invention provides a producing method for a magnesium alloy material, including a melting step of melting a magnesium alloy in a melting furnace to obtain a molten metal, a transfer step of transferring the molten metal from the melting furnace to a molten metal reservoir, and a casting step of supplying a movable mold with the molten metal from the molten metal reservoir, through a pouring gate, and solidifying the molten metal to continuously produce a cast material. In a process from the melting step to the casting step, parts contacted by the molten metal are formed by a low-oxygen material having an oxygen content of 20 mass % or less.
    Type: Application
    Filed: June 28, 2005
    Publication date: December 18, 2008
    Inventors: Masatada Numano, Yoshihiro Nakai, Toshiya Ikeda, Taichiro Nishikawa
  • Publication number: 20080304997
    Abstract: Disclosed is a wrought magnesium alloy having excellent strength and extrusion or rolling formability, and a method of producing the same. The wrought magnesium alloy comprises 0.1-1.5 at % group IIIa, 1.0-4.0 at % group IIIb, 0.35 at % or less of one selected from the group consisting of groups IIa, IVa, VIIa, IVb, and a mixture thereof, 1.0 at % or less of group IIb, and a balance of Mg and unavoidable impurities and thus has a second phase composite microstructure. The wrought magnesium alloy of the present invention has high strength, toughness, and formability in addition to the electromagnetic wave shield ability of magnesium. Accordingly, the wrought magnesium alloy is a material useful to portable electronic goods, such as notebook personal computers, mobile phones, digital cameras, camcorders, CD players, PDA, or MP3 players, automotive parts, such as engine room hoods, oil pans, or inner panel of door, or structural parts for airplane.
    Type: Application
    Filed: March 11, 2005
    Publication date: December 11, 2008
    Applicant: PRIMOMETAL CO., LTD.
    Inventor: Kang-Hyung Kim
  • Patent number: 6752881
    Abstract: In a metalliferous storage material for hydrogen a metal oxide is provided in or on the surface of the metalliferous materialas a catalyst for the hydrogenation or dehydrogenation of the metalliferous storage material.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: June 22, 2004
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Thomas Klassen, Rüdiger Bormann, Wolfgang Oelerich, Volker Güther, Andreas Otto
  • Patent number: 6495267
    Abstract: An anodized magnesium piston including a head and skirt for an internal combustion engine. The piston includes a non-fiber-reinforced, magnesium-based alloy including up to 2.5 percent by weight rare earth metals. The piston further includes an external surface, at least a portion of which has a base layer of magnesium fluoride, magnesium oxofluoride, magnesium oxide or a mixture thereof electrochemically anodized thereto.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: December 17, 2002
    Assignee: Briggs & Stratton Corporation
    Inventor: Jerry L. Schenkel
  • Patent number: 5964965
    Abstract: Disclosed is a very light-weight, Mg and Be-based material which has the ability to reversibly store hydrogen with very good kinetics. This material is of the formula (M.sub.1-x A.sub.x) D.sub.y wherein M is Mg, Be or a combination of them; A is an element selected from the group consisting of Li, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, In, Sn, O, Si, B, C and F; D is a metal selected from the group consisting of Fe, Co, Ni, Ru, Rh, Pd, Ir and Pt (preferably Pd); x is a number ranging from 0 to 0.3; and y is a number ranging from 0 to 0.15. This material is in the form of a powder of particles of the formula M.sub.1-x A.sub.x as defined hereinabove, having an average size ranging from 0.1 to 100 .mu.m, each particle consisting of nanocrystalline grains having an average size of 3 to 100 nm or having a nano-layered structure with a layer spacing of 3 to 100 nm. Some of these particles have clusters of metal D attached thereto, with an average size ranging from 2 to 200 nm.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: October 12, 1999
    Assignees: Hydro-Quebec, McGill University
    Inventors: Robert Schulz, John Strom-Olsen, Leszek Zaluski, Alicja Zaluska
  • Patent number: 5342576
    Abstract: The invention provides a magnesium manganese alloy suitable for use in the production of a pellet 10 for administration to a ruminant by dposition in its rumenoreticular sac. A typical pellet 10 comprises a magnesium alloy tube 12 enclosing a degradable core formed of plurality of tablets 14, 16. The magnesium alloy used in the construction comprises at least 90% by weight of magnesium, uyp to 1% zinc and up to 2% of manganese. Preferably the alloy may further include aluminium, silicon or zirconium along with iron and beryllium. When deposited in an animal's rumen the alloy reacts with the rumen juices to form an anodic film over the exposed surface of the tube 12. This prevents corrosion or dissolution of the tube 12 except at its exposed ends where galvanic corrosion by coupling with the electrically conductive core 14, 16 is provided. The normal requirement of a non-degradable exterior coating e.g. resin for the tube exterior is obviated.
    Type: Grant
    Filed: October 25, 1991
    Date of Patent: August 30, 1994
    Assignee: Castex Products Limited
    Inventor: Derek J. Whitehead
  • Patent number: H1411
    Abstract: Magnesium lithium based alloys prepared by mechanical alloying are disclosed.
    Type: Grant
    Filed: November 12, 1992
    Date of Patent: February 7, 1995
    Inventor: Uday V. Deshmukh